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Abstract. In this paper we shall study, in terms of a metric and an order relation, the existence,
uniqueness and data dependence for the solutions of integral equation

t t
z(t) = (g1(¢) Jr/Kl(t7 s,x(s))ds) - (g2(t) +/K2(t,s,x(s))ds), t € [a,b].
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1. INTRODUCTION

Let X be a nonempty set and T : X — X an operator. We denote by 70 := 1x,
T' =T, T"" .= T" o T, n € N the iterate operators of the operator 7. We also
have

Fr={re X |T(x)=xa}
the set of fixed point for operator T

Definition 1.1. (see [3]) Let X be a nonempty set and let us consider
s(X) == {{zn}nen | zn € X}, ¢(X) C s(X) and Lim : ¢(X) — X an operator. We say
that (X, c(X), Lim) is an L—space (denoted also by (X, i)) if the following conditions
are satisfied:
(1) if xp = for alln € N then {z,}nen € ¢(X) and Lim{z,}nen =
(ii) if {zn}tnen € c¢(X) and Lim{x,}nen = x then for all subsequences {xp, }ien
of {zn}tnen we have {x,, }ien € ¢(X) and Lim{x,, }ien =T

Definition 1.2. Let (X, £>) be an L—space An operator T : X — X is orbitally
continuous if v € X and T"V(z) = a € X as i — oo imply T"D T (x) — T(a) € X
as i — 00.
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Definition 1.3. (see [12]) Let (X,g) be an L—space An operator T : X — X is
weakly Picard operator (WPO) if the sequence (T"(x))nen converges, for all x € X
and the limit (which depend on z ) is a fized point of T.

Definition 1.4. (see [12]) If the operator T is WPO and Fr = {x*} then by definition
T is Picard operator.

Notice that if T' is WPO, then we define the operator T°° : X — Fr by
T°°(z) :nh_>rr;OT ().

Definition 1.5. A triple (X,i,j) is called an ordered L—space if (X,i) is an

L—space and =< is a partial order on X which is closed with respect to £ e if
{zn}nen and {yntnen are sequences in X such that x,, < y, for every n € N and
Ty = X, Yo — Y aSN — 00 then x Ry

The following abstract Gronwall type lemma takes place for POs

Lemma 1.1. Let (X, £>, =) be an ordered L—space and T : X — X be an operator.
We suppose that:

(a) T is a PO with respect to — (we denote by x%. its unique fized point);
(b) T is increasing with respect to <;
Then we have:
(i) z € X, v < T(x) implies x < x¥.;
(ii) z € X, T(x) <X z implies x4 < x.
Definition 1.6. (see [9]) A nonempty ordered set (X, =) is said to be generalized

directed set if for each pair of elements x,y € X there exists z € X such that (z,z)
and (y,z) are in X< where X< :={(z,y) e X x X |z <y or y X z}.

Definition 1.7. (see [9]) Let us consider (X, =) an ordered set and T : X — X an
operator. Then T is called a generalized monotone operator if (T x T)(X<) C X<,
where (T x T))(z,y) := (T(x),T(y)) for (z,y) € X x X.

Definition 1.8. (see [11]) A function ¢ : Ry — Ry is a comparison function if the
following conditions are satisfied:
(i) ¢ is increasing;

(i) the sequence ©™(t) — 0 as n — oo, for every t > 0.

Definition 1.9. (see [11]) A comparison function is a strong comparison function if
Zapk(t) < 00, for anyt > 0.
k>0
Next result will be used by us in order to study the existence and uniqueness of

solution for the above mentioned integral equation.

Lemma 1.2. (see [9]) Let X be a nonempty set, d be a metric on X and = an order
relation on X. We consider an operator T : X — X having the generalized monotone
property. We suppose that:
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(i) (X, =) is a generalized directed set;
(i) of (z,y) € X<, then x and y are asymptotically equivalent;
(iii) theset Xp ={zx e X |T(x) Rz orxz <T(x)} is not empty and T : X7 — Xr
is WPO.
Then T : X — X is a PO.

More results about generalized contraction in partially ordered complete metric
spaces can be found in [2], [1], [5], [4], [6], [8], [10], [9]
2. EXISTENCE AND UNIQUENESS RESULTS
Let us consider denote
X =C([a,b],Ry) :={x: [a,b] = Ry | x is continuous}.
We consider on X the following norms:

xoo—ma x z||r = max |z(t ~e_7(t_“)7 >0
el = mass [a(t). [l = mas la(t) -

and the standard order relation
xRy <= x(t) <yt), (V)€ a,b.

We get the following Banach lattices (X, +,R, |||, X) and (X, +,R, || - ||oc, <X). From
the above definition we notice that (X, =) is a generalized directed set. Next we
shall study, in the above defined Banach lattices, the existence and uniqueness, data
dependence for the solution of the following integral equation:

a( /Kltsx /thsx ds), t € [a,b]  (2.1)

The equation (2.1) is equivalent with the following fixed point problem
x=T(z) (2.2)

where:
T: C(la,b],Ry) = C([a, b, R+)

T(z)(t) = /K1 (t,s,2(s))ds) - (ga(t /K2 (t,s,z(s))ds) (2.3)

Our first result is the followmg one, where we get the existence and uniqueness, in
the Banach lattices (X, +,R,| - ||+, =), for the solution of equation (2.1)

Theorem 2.1. We suppose that
(i) g;: € C(la,b],Ry), K; € C([a,b] x [a,b] x Ry, Ry), i =1,2;
(il) K;(t,s, ) : Ry — Ry is increasing for every t,s € [a,b], i = 1,2;
(iil) there exists Ly, > 0 such that
|K;(t, s,u) — K;(t,s,0)| <

for allt,s € [a,b], u,v € Ry,u<w,i=1,2;

u— v,
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(iv) there exists Mg, > 0 such that
‘Ki(tvsvu)‘ < MKi?

forallt,s € [a,b], u,v e Ry, i =1,2;
(v) the set X is not empty;
Then

(a) the equation (2.1) has a unique solution * € C([a,b],Ry);
(b) if x € X is such that x <X T(z) then x < x*;
(¢) if x € X is such that T(x) 2 x then x* < x;

Proof. (a) First of all we remark that the condition (ii) leads us to the fact that the
operator T defined by equation (2.3) is increasing and consequently it is a generalized
monotone operator. On the other hand for all z,y € X< we have that

IT(x)(t) = T(y) ()| <

<I(g /Kltsx()ds (ga(t /thsx ))ds)—
- /Kltsy()ds (ga(t /thsy ))ds)| =
= (g /Kltsx()ds (ga(t /thsx ))ds)—
- /Kltsm()ds (ga(t /thsy ))ds)+
+(g /Kltsm()ds (g2(t /thsy )ds)—

— /Kltsy()ds (g2(t /thsy )ds)| <

Ly, M(g1,K,) n Ly, M (g2, K>)
r T

)iz —ylre™ ",

(

where
M(g1, K1) == tfél[%] lg1(t)| + Mg, (b — a)

M(ga, k) = mass laa(t)] + M, (b — )]

)

Then, for any z,y € X< we have that
Lg,M(g1,K1) | L, M(g2, Ks)
IT@) =Tl < (—— A

Nz =yl-
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Thus, for any x € X7 we get that
Ly,M(g1,K1) = Lk, M(g2, K3)
202y S0 20 g — ()

and consequently T : X7 — Xrp is a graphic L—contraction. and taking into account
that

T () = T*(@)ll- < (

Or(z) :={T"(2) | ne N} C Xr
we get that T"(z) — T°°(z) € Fr, for any z € Xp. Hence T is a WPO on Xp. Since
the operator T is a L—contraction on X1 we obtain that
d(T™(x),T"(y)) < L" - d(z,y) — 0,

as n — oo for any x,y € X< and consequently z, y are asymptotic equivalent. Lemma
1.2 leads us to the conclusion that operator T is PO and therefore the equation (2.1)
has a unique solution in C([a, ], Ry).

(b)+(c) It follows from Lemma 1.1 applied to the operator T. O

Theorem 2.2. We suppose that g1, g2, K1, Ka , verify the conditions (i) — (v) from
the Theorem 2.1 and (Lk, - M (g2, K2) + Lk, - M (g1, K1)) - (b—a) < 1 where

M(g1,K,) == tfél[%] lg1(t)| + Mg, (b — a)

M (g2, Kz) 1= mase 92(8)] + Mic, (b — )]

Then

(a) the equation (2.1) has a unique solution * € C([a,b],Ry);
(b) if v € X is such that x < T(z) then x < x*;
(¢c) if x € X is such that T'(x) < x then z* < x.

Proof. (a) By using the same arguments as in the proof of Theorem 2.1 we have that
1T (z) = T(y)()lloo < M(g1, 92, K1, K2)(b = a)||z = Y[
for all z,y € X<.
M(g1, 92, K1, K2) := Lg, M (g2, K2) + L, M (g1, K1).
Now, the conclusions follows from Lemma 1.2
(b)-(e) Analogous with the proof or Theorem?2.1. O

Theorem 2.3. We suppose that
(i) 91,92, K1, Ko , verify the conditions (i), (ii), (iv) and (iv) from the Theorem
2.1;
(i) there exists ¢ : Ry — Ry a strong comparison function such that
‘Ki(tv Svu) - Ki(tv S,U)‘ < 30(|u - U')’
for allt,s € la,b], u,v e Ry, u<vi=1,2;
(iil) (M (g1, K1) + M (g2, K3))(b—a) <1
(iv) X7 is not empty and T : X — X is orbitally continuous;
Then
(a) the equation (2.1) has a unique solution * € C([a,b],Ry);
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(b) if v € X is such that x < T(z) then x < x*;
(¢c) if x € X is such that T'(x) < x then z* < x.

Proof. (a) First of all we remark that the condition (ii) leads us to the fact that
the operator T has the generalized monotone property. On the other hand for all

z,y € X< we have that
1T ()(t) = T(y) ()] <
<|(g /Kltsx()ds (g2(t /thsm )ds)—
- /Kltsy()ds (ga(t /thsy )ds)| =

=|(g /Kltsa:()ds (g2(t /thsac )ds)—

/Kltsx /thsy )ds)+

o / Ky (t, 5, 2(s))ds) - (ga(t) + / Ko(t, 5, y(s))ds)—

- /K1 (t,s,y(s))ds) - (g2(t )+/K2(t,s,y(s))d5)| <

(M(gl,KlHM(gz,Kz)) (b*a) ([lz = ylloo),
where
M(g1, K1) := Jnax lg1(t)| + Mg, (b — a)

M (g2, K3) := Jnax, g2(t)] + MK, (b — a)].

Then, for any z,y € X< we have that
1T(x) = T(y)lloe < (M(g1, K1) + M(g2, K2)) - (b—a) - ([l = ylloc) < @(llz = ylloo)-

From the above inequality we get that T : X+ — X is a ¢p—contraction and conse-
quently
d(Tz, T?(z)) < p(d(z,T(2))),
for every = € Xp. Then we obtain
d(T" (), T (2)) < ¢"(d(z, T(2))) — 0,

as n — oo, for every x € Xp. Therefore, for any n € N and p > 1 we have that

d(T"(z), TP (2)) < Y ¢" ¥ (d(x, T()))

B
Il
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and taking into consideration the strong comparison assumption on ¢ we get that,
for each € Xrp, the sequence {T"(x)}nen is Cauchy. Since T | Xp is orbitally
continuous it follows that T"(z) — T>°(z) € Fr as n — oo, for each z € Xy and
consequently T : X7 — Xp is WPO.
On the other hand the operator T being a ¢p—contraction on X7 we obtain that
d(T"(x), T"(y)) < " (d(z,y)) = 0,

as n — oo for any z,y € X< and consequently z,y are asymptotic equivalent.
By using Lemma 1.2 we conclude that the equation (2.1) has a unique solution in
C([aﬂ b]a R+)

(b)+(c) It follows from Lemma 1.1 applied to the operator T. O

3. DATA DEPENDENCE: CONTINUITY

Consider the equation (2.1) and let us denote by z(-; g1, g2, K1, K2) the solution of
this equation. We have

Theorem 3.1. Let g}, g, K1, K}, j = 1,2 be as in the Theorem 2.2. We suppose
that

(a) there exists n; > 0 such that
l9: (t) — g7 (1)) < mi,

for allt € [a,b], i =1,2;
(b) there exists p1; > 0 such that

K3 (8 5,0) = K2 (2 5,u)| < i,
forallt,s € la,b], ue Ry, i=1,2.

Then
< M(g1, K1)z + pa(b — a) + M(g3, K3)(m1 + p (b — a))
— 1_ g )
where

o = max{Ly; M(g], K{) + Ly, M(g3, K3)}-

Proof. For j = 1,2 we consider the operators T; : C([a,b],Ry) — C([a,b],Ry) defined
by
T;(z)(t) = /Ktsm ))ds) /Ktsx )ds).

According with Theorem 2.2 the above operators are POs and additionally

|71 (x) = To(@)lloo < M (g1, K1) (2 + p2(b — a)) + M(g3, K3)(m + (b — a)),

for all x € C([a,b],Ry). Now the proof follows from the well known data dependence
result (see [12], Theorem 10.2.1 pp.122 ) O
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4. SMOOTH DEPENDENCE ON PARAMETER

Next we consider the following integral equation
t ¢
2t 0) = (91t N+ [ Kot (5, 0),)ds)- (9206, ) + [ Kalts,0(, 0, o), (4.1)
a a

for all ¢ € [a,b], A € J C R. We assume that

(H1) J C R an compact interval;

(HQ) g; € Cl([a,b] X J, R+), KZ c Cl([a7b] X [a,b] X R+ X J, R+)7 1= 1727
(Hj3) there exists Ly, > 0 such that:

‘Kl(tﬂgvu) - Ki(tasvv)‘ < LK@ ’ |U - U|7
for all ¢, s € [a,b], u,v E Ry, u<wv, e J,i=12;
(Hy) there exists Mg, > 0 such that
|K(t, s,u,A)| < Mg,

0K,
’ au (tas7u,)‘)| S MKz

for all t,s € [a,b],u e Ry, A e J,i=1,2;
(Hs) K;(t,s,-,A) : Ry — Ry is increasing for every t,s € [a,b], A € J, i =1,2.
We define the operator
B: C(la,b] x J,R;) = C([a,b] x J,R,),
B(z)(t,\) =

=[g1(t,\) + /Kl(t,s,x(s,)\),)\)ds] g2 (t, N) + /Kg(t,s,x(s,)\),/\)ds]

According with Theorem 2.1, under hypothesis (Hy) — (Hj), the operator B is PO.
Let 2*(-, \) the unique fixed point of operator B. Then

2t N) =

91 (8, 0) + / Ki(t, 5,2 (5, \), \)ds] - [ga(t, A) + / Koty s,2*(s,0), Vds],  (4.2)

*

0
for all t € [a,b],\ € J C R. We suppose that there exists 8733\ Then from relation
(4.2) we obtain that

oz*
o\
0 / 0K ozr* / 0K
_ 99t 1 * R gt * .
— [8)\ (t,)\)—i—/ 5 (t,s,27(s,A), \) B\ (s,/\)ds—l—/ ) (t,s,27(s,\), \)ds]
t t

[9a(E,\) + /Kg(t,s,x*(s,A),/\)ds] F (b A) + /Kl(t,s,x*(s,/\), )ds]-

a a
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6K2 or* 8 2
o —=(t,8,27(s, ), A\) - Y (s, \)ds + oY

a a

This relation suggest us to consider the following operator
C: C([a?b] X J>R+) X C([avb] X J7R+) — C([a7b] X J7R+)7
Cla,y)(t,A) :=

[892

o (t,A) +

—=(t, 8,27 (s, \), A\)ds].

[aag)\l t,A) + / ou (t,s,2(s,A), A) 'y(&)\)ds-i-/%(t,s,x(s,)\),)\)ds]-
g2t ) + / Kalt, 5, 2(s, N), s+
[91(E,\) + /Kl(t, s, (s, \), \)ds]-

[%g)\g (t2) + /08u2 (t,s,2(s, \), )\).y(sv)\)der/%(t,s,x(s,)\)ﬁx)dtﬂ.

a

In this way we have the triangular operator
A:C([a,b] x J,R1) x C([a,b] x J,Ry) = C([a,b] x J,Ry) x C([a,b] x J,R,),
Az, y)(t, ) = (B(x)(t, A), C(z,y) (¢, A).

We remark that for each z € C([a,b] x J,R;) we have
|C(z,y)(t, A) — C(z, 2)( t,)\’:

|[%g)\1 (t,\) + /%(t,s,x(s,k),)\) 'y(57>\)ds+/a§f\ (t,5,2(s,A), \)ds]-

a a

[92(15, )\)—i—/Kg(t,s,x(s,)\),)\)ds]
+[g1(t,)\)+/K1(t,s,x(s, A), Nds]-

t
992 Ko
[BAt)\ /5 (t,s,2,\) - y(s,\)ds /Ttsx)\)ds]

a

t t
agl 8I(l 6K1
[a)\ (t /\) /E(tvsvx(sa A)a)‘) : Z(st)dS + / W(tasax(&)‘))A)ds]

a
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[92(?5,)\)+/K2(t,s,x(s,)\),/\)ds]

a
t

—[gl(t,/\)+/K1(t,s,x(s,)\),)\)ds]

a
t

[ OK 2

992 9]
[89)\ (t,\) + B —=(t, 5, 2(s,A), A) - z(s,)\)ds—i—/ ali (t,s,z(s,\), A)ds] |

a a

S[/‘(‘?;ﬁ(tsmx )|y (s, A)—z(s, )]ds]- [|gzm|+/\K2tsx(s X, V)|ds] +

/ 2 (1, 5,2(5, A), N ly (s, ) — (s,)\)|ds]-[|gl(t,)\)|+/|K1(t7s,x(s,/\),)\)\ds] <
MK1 ) M(92aK2) + MK2 ) M(glaKl) ~GT'(t7a) . ”y - ZH
T T
where
Mgy, K1) :== max |gl(t A)| + Mg, (b—a)
(t,\)€la,b] x
M(go, Ky) = £\ + My, (b — a)|.
(92, K>) “ A)Ig[%w\gz( s A+ M, (b — a)

From the above inequality we get that

Mp, - M(g2, K2) + M, - M (g1, K1)
T

for each z,y, z € C([a,b] x J,R;). Therefore the operator

C(z,-) : C([a,b] x J,Ry) = C([a,b] x J,Ry)
M(g2, K2) Mg, + M(g1, K1)Mk,

1C(z,y) = C(x, 2)||- < Ny =zl

. From the theorem

is a a— contraction with o :=
-
of fiber contraction (see I.A. Rus [12] Theorem 10.5.1, pp.125) we have that the
operator A is Picard operator. So, the sequences
Tn+1 = B(zy),n €N

Yn+1 = C(:En,yn)
converges uniformly to (z*,y*) € Fja, for all zg,yo € C([a,b] x J,Ry).
If we take xo,y0 € C([a,b] x J,Ry) such that yo = 22 then y; = 2% and by

induction we prove that y, = for all n € N*.
Thus

8,\ )
Tp — X, uniform asn — oo

o,
EXN
These imply that there exists i and % =y

—y*, uniform asmn — oo

*
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From the above considerations, we have that

Theorem 4.1. We consider the integral equation (4.1) in the hypothesis (H1) — (Hs).
Then

1

6

[7
8
[9
10
[11

[12

(i) the equation (4.1) has, in C([a,b] x J,Ry), a unique solution x*(t,-);
(i) z*(t,-) € CY(J,Ry), for all t € [a,b].
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