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1. Introduction

While the existence of a stable matching, in the context of the marriage problem,
was first studied and solved by Gale and Shapley (1962) [7], the more general room-
mate problem was completely solved by Tan (1991) [23] who gave a necessary and
sufficient condition for the existence of a stable matching when preferences are strict.
When weak preferences are allowed, Chung (2000) [4] provided a sufficient condition
for the existence of a stable matching. In this paper, we use a fixed point approach to
completely characterize the roommate problem for the case of weak preferences and,
thus, we thus generalize Chung’s result. We also generalize our results to the case of
a countable number of agents.

In the original marriage problem, there are n men and n women, where each
has a strict preference ordering over all the individuals of the opposite sex. In this
context, a stable symmetric matching is a one-to-one mapping of the men with the
women such that there is no man-woman pair who prefer each other over their present
mates. Gale and Shapley’s simple algorithm provides a stable matching for any given
arbitrary preference relation. Since then, several authors (for example, see [19], [18],
[20], [23], [16], [17], [2], [3], [6], [8], [9], [11] and [12]) have provided conditions for
the existence of a stable matching for some modified version of the original problem.
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While these results typically provide sufficient conditions for the existence of a stable
matching, this paper is the first to characterize a general existence result for general
preferences.1

The success of the Gale and Shapley’s algorithm for the marriage problem is due to
the fact that the set of agents can be partitioned into two sets such that agents in each
set strictly prefer agents in the other set to agents in their own partition. However,
because this ”bipartite” partitioning is not always possible for the more general room-
mate problem, the Gale and Shapley’s algorithm does not work in general settings.
By ruling out odd-rings, Chung [4] showed that, in a sense, Gale and Shapley’s result
can be restored. This result is not surprising as it is well-known in graph theory that
a graph is bipartite if and only if it does not contain any odd cycles.2 This fact can
be applied to the roommate problem by representing the set of agents (vertices) and
the ring relation (edges) to which they belong as a digraph. 3

Taking the above into account, we represent the problem of finding a stable match-
ing as a fixed point problem of some ”best-response mapping” over the space of all
matchings. We show that the mapping has a fixed point if and only if no optimal
bilateral deviations are possible. We then demonstrate that the existence of an odd-
ring free sequence of optimal bilateral deviations is necessary and sufficient for the
existence of a stable matching. Our proof is based on an extension of Abian’s [1]
fixed point theorem and that of Wisniewski (1973)[24] who obtained the same result
for the infinite case. Abian and Wisniewski gave a fixed point theorem that does not
rely on any topological properties. While Luckraz (2014) [13] relates this theorem of
Abian to the cyclicity of the mapping, Luckraz (2022) [15] generalizes this result for
the case of set-valued maps.

The rest of this paper is organized as follows. In the next section we describe the
class of matching problems and give the main theorem of the paper, Section 3 gives
the proof of the main theorem, Section 4 gives a generalization of the main theorem
to the countable infinity case, while Section 5 concludes.

2. The Canonical Matching Problem

Consider a canonical one-to-one matching problem. Let I be a finite set and
Ψ ⊆ II be the set of all matchings from I to I. In particular, ψ ∈ Ψ iff for all i, j ∈ I,
ψ (i) = j iff ψ (j) = i. The latter implies that the mapping is necessarily a bijection.
Let {�i}i∈I be the usual weak preference relations (transitive and complete) of each
i over I agents. Agent i is allowed to include itself in its choice set. It is well-known
that such preferences admit utility functions. We denote the utility function of player
i by Ui(.). Pair (i, j) is said block matching ψ iff j �i ψ (i) and i �j ψ (j). Note that
i can be equal to j. A matching ψ is stable iff there exist no pair (i, j) that blocks it.

1Note that Chung (2000) provides a sufficient condition for this general class of weak preferences.
2Note that one agent can be part of many rings. But this can be represented by a vertex that

has many incident edges such that the out-degree neighbours of that vertex will be the agents that
are strictly preferred by the agent at the designated vertex.

3Note that odd cycles are ruled out in the marriage problem because an odd cycle would imply
that a player prefers an agent in its own partition to some agent in the other partition, a contradiction.
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For a given matching u and agents i and j, we say that vu,i,j ∈ Ψ is a bilateral
deviation of u for players i and j if and only if

(i) vu,i,j(i) = j , vu,i,j(j) = i,
(ii) vu,i,j(u(i)) = u(i), vu,i,j(u(j)) = u(j),
(iii) vu,i,j(k) = u(k) for all k 6= i, j, u(i), u(j).
We say that vu,i,j is a bilateral deviation block of u for players i and j if and only

if vu,i,j is a bilateral deviation and the following conditions are satisfied.

vu,i,j(i) �i u(i)

vu,i,j(j) �j u(j)

For a given matching u and agent i, let Ψi
u,(i,j) denote the set of all bilateral

deviations blocks of u for agent i with some agent j. Note that it is possible that
Ψi

u,(i,j) = ∅. When Ψi
u,(i,j) 6= ∅, we say that vi∗u,i,j ∈ Ψi

u,(i,j) is an optimal bilateral

deviation block for agent i at u iff

vi∗u,i,j(i) ∈ Argmax{
vu,i,j∈Ψi

u,(i,j)
:j∈I

}Ui(vu,i,j(i))

Finally, define an optimal bilateral deviation block set-valued map as follows. F :
Ψ � Ψ such that

F (u) =

{ {
v : v = vi∗u,i,j for some i

}
if Ψi

u,(i,j) 6= ∅ for some i ;

{u} otherwise.

Note that the above is well-defined since the finiteness of I ensures that
Argmax{

vu,i,j∈Ψi
u,(i,j)

:j∈I
}Ui(vu,i,j(i)) is either non-empty or empty. It can be verified that

F (u) is a set-valued mapping has a fixed point if and only if some stable matching
exists. An orbit of the above set-valued map, at some point u, is an infinite sequence
of iterations of the mapping starting with u. We say that an orbit is acyclical if it
has no finite cyclic subsequence.

For a given u, we can also define F 2(u) as follows.

F 2(u) =
⋃

v∈F (u)

F (v)

And more generally, we can define Fn(u) for n ≥ 2 recursively as follows.

Fn(u) =
⋃

v∈Fn−1(u)

F (v),

where we use the convention that F 0(u) = {u}, so that F 0 is the identity mapping.
We can thus say that w ∈ Ψ is on the orbit of F for some initial point u if w ∈ Fn(u)
for some n.

Note that if, at some u, player i strictly prefers itself to u(i), then, in one step, it
can form a blocking pair by pairing with itself. Therefore, it does not lead to any loss
in generality to assume that all possible optimal blocks of player i are those that it
weakly prefers to matchings in which it gets matched with itself. More formally, we
define the concept of dominance as follows.
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For a given y ∈ Ψ, we say that y is dominated if some agent i strictly prefers being
alone than its match in y. We then denote the restriction of F to subset Ω ⊆ Ψ,
where Ω is the set of undominated elements of Ψ, by F |Ω.

We next give a definition of odd rings, following Chung (2000). Chung shows that
if no stable matching exists, then some odd ring must exist. We consider a weaker
version of the no-odd ring condition given as follows.

An odd ring is an ordered subset of agents 〈x1, ...xk〉 (mod k) for k ≥ 3 satisfying
the following.

xi+1 �i xi−1 �i xi 1 ≤ i ≤ k
and k is odd.

We define a k−general ring as an infinite sequence of agents denoted by
〈x1, ...xk, ...〉 (mod k). We call k−general ring 〈x1, ...xk, xk+1, ..〉 (mod k) (where
xk+1 = x1) an optimal k−general ring for some cyclical orbit M of F |Ω at some

u ∈ Ω if M has a finite subsequence segment of length k, denoted by M ′ = 〈mj〉kj=1,

satisfying
(i) m1 = u,
(ii) x1 = mk(xk) and
(iii) xi = mi−1(xi−1) for i = 2, .., k, where xi 6= xi−1 for each i and each mi is on

the orbit of F |Ω for initial point u.
We say that an optimal k−general ring is odd (even) if k is odd (even). We say

that some orbit M of F |Ω is optimal and odd rings free if for all u along M , there
exist no optimal odd k −general rings at u.

The following theorem is the main result of our paper.
Theorem 1. A stable matching of Ψ exists iff F |Ω has some orbit that is optimal
and odd rings free.

Theorem 1 completely characterizes the existence of stable matchings for general
preferences. It strengthens the existing result of [4], who showed that the no-odd ring
condition is sufficient for the existence of a stable matching for this class of problems.
The following example shows that even if the no-odd ring condition is violated, a
stable matching can exist as long as the no optimal odd k −general rings is satisfied.
Example 1. Consider a matching problem with four agents: A,B,C,D with the
following preferences.

Agent A: D �A B �A C �A A

Agent B: C �B D �B A �B B

Agent C: A �C B �C D �C C

Agent D: A �D C �D B �D D

Matching u that maps A with D and B with C is stable. Note that the no-odd
ring condition is violated as the following odd ring can be constructed.

〈x1, ...xk〉 (mod k) for k = 3,

where x1 = A, x2 = B and x3 = C.

However, it can be verified that the above odd ring is not an optimal odd k −general
ring since only mappings that map A with D are optimal.
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3. Proof of Theorem 1

In this section we construct a proof of the main result of the paper. Our strategy
will be to show that F |Ω has a fixed point iff the no odd k −general rings condition
is satisfied. We will use the [13]’s adaptation of the Abian’s fixed point theorem. We
therefore first state the Abian’s theorem.
Abian Theorem. Let X be a non-empty finite set and let f : X → X. Then, f
has a fixed point iff X cannot be partitioned into three sets A,B and C such that
A ∩ F (A) = B ∩ F (B) = C ∩ F (C) = ∅.

Since Theorem 1 is based on a set-valued map, a generalization of the Abian’s
theorem is needed. However, [14] observed that the partitioning method does not
work if the mapping is set-valued. We first state the Abian’s theorem for set-valued
maps.
Claim 1. Let F : X � X be a set-valued mapping. Then F has a fixed point iff X
cannot be partitioned into three sets A,B and C such that A ∩ F (A) = B ∩ F (B) =
C ∩ F (C) = ∅.

The above is equivalent to the statement that the mapping has no fixed points
iff such a partitioning exists. The following counter-example shows that the claim is
false.
Example 2. Let X = {a, b, c, d}, F (a) = {b, c}, F (b) = {c}, F (c) = {b, d} and
F (d) = {a, b}. Then clearly, F has no fixed points. Then by the negation of Claim
1, we should be able to find a partition of X into sets A,B and C such that that
A∩F (A) = B ∩F (B) = C ∩F (C) = ∅. Suppose such three sets exist, then from the
given set-valued map F , a, b and c need to be in three different sets. But d cannot be
in any of these three sets, which is a counter-example to Claim 1.

We show that even with n ≥ 3 partitions, Abian’s theorem does not generalize.
The following definition and example follow from [14].
Definition. Let X be a non-empty finite set and let F : X → P (X) be a non-empty
valued set-valued map. Then collection X = {Xi}i∈{1,..,k} is called a trivial partition

of X iff k = |X| and each Xi is a singleton.
Example 3. Let X be a non-empty finite set and let F denote the set of all set-valued
maps from X to X. Then, there exist some F ∈ F that has no fixed points and that
does not satisfy Abian’s partitioning condition for any number of sets strictly less than
|X|. Indeed, since X is finite it can be enumerated as follows: X = {xi}i∈{1,..,|X|}.
For each pair i, j, let xi ∈ F (xj) iff i 6= j. Then clearly, X cannot be partitioned into
n sets such that n < |X| and that satisfy Abian’s condition.

Since the Abian’s theorem does not generalize, we make use of [15]’s idea of cycles
to study the fixed points of the mappings. The following can be derived from Theorem
4 of [15].
Result 1. [15] Let F be a set-valued map from a finite set D into itself. Then, F
has a fixed point iff F has an acyclical orbit.

We are now ready to prove Theorem 1.
Proof of Theorem 1.

(If) We prove by contradiction. Suppose that F |Ω has some orbit that is free from
optimal odd k −general rings but F |Ω has no fixed points. Then, by the finiteness
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of the number of agents, the acyclicity of the preference relation and Result 1, all
orbits M must be cyclic. But the definition of optimal k −general rings implies that
all cyclic orbits have subsequence segments that form optimal k −general rings since,
starting from any point of some M , some agent will be matched to its initial match
at some point along M . Hence, each term of each M is the initial point of some
subsequence that generates some optimal k −general ring (even or odd).

Next, we claim that the above implies that all generated optimal k −general rings
must be odd. Suppose not. Then, there must exist some optimal k −general ring
generated by terms of some M that is even. Then, one can consider some optimal
even k −general ring (generated by some term of some M), denoted by ω, and let
matching v∗ ∈ Ω be such that agent i is mapped to agent i + 1 for each i < k along
ω. Thus, the k agents on ω are arranged into k/2 pairs via v∗, where for each pair,
each agent weakly prefers her match to being alone (by the definition of Ω). Since
each z ∈ Ω is part of some cyclical orbit (because F |Ω has no fixed points), there
must exist some orbit N and some optimal k′ −general ring denoted by µ for some
subsequence segment N ′ of N with initial point v∗. But on µ at v∗, there must exist at
least one agent that we could designate as agent 1 on µ so that x1 = mk′(xk′) cannot
hold since the optimal choice of x1 at v∗ (subject to the other agents willingness to
form a bilateral deviation block with it) is its current match x2 = v∗ (x1). As a result,
we have a contradiction to the fact that at least one optimal k −general ring must be
even. Hence, we obtain the claim that all generated optimal k −general rings must
be odd. However, this contradicts the hypothesis of the theorem that F |Ω has some
orbit that is optimal odd k −general rings free.

(Only if) We prove by contradiction. Suppose that a fixed point exists and that
each orbit M of F |Ω contains at least one point u ∈ Ω so that u is the initial point
of some finite subsequence segment M ′ (of M) that generates some optimal odd k
−general ring, for some k. Then, the definition of orbits and that of F |Ω would imply
that all orbits of F |Ω are cyclical, a contradiction to Result 1.�

4. Generalizations to the countable case

For single-valued mappings on infinite sets, Wisniewski (1973)4 introduced a fixed
point theorem that is in similar vein of the Abian’s Theorem. Using similar arguments
as in Claim 1, Example 2 and Example 3 from the previous sections, one can show that
the fixed point theorem cannot be applied in a straightforward manner to set-valued
maps since in the matching problem at hand, F |Ω need not be single-valued.

For set-valued maps defined on countable domains, [15] (Remark 1 on page 4),
gave a characterization of fixed points that is closely related to the acyclicity of the
mapping. In order to apply [15]’s result to the problem at hand when the agent set
can be countably infinite, we first need to assume the following.

(A1) Argmax{
vu,i,j∈Ψi

u,(i,j)
:j∈I

}Ui(vu,i,j(i)) is well-defined.

4We thank an anonymous referee for suggesting this reference.
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We say that F |Ω contains an infinite cycle if it has some orbit of infinite length
with all distinct elements. We can now restate Theorem 1 of the previous section as
follows.
Theorem 2. Suppose that A1 holds and I is countable. Then, Ψ has a stable
matching iff F |Ω has some orbit that is not an infinite cycle and that is optimal and
odd rings free.

The proof follows from [15]’s result and from Theorem 1.

5. Conclusion

This paper gave a necessary and sufficient condition for the existence of a stable
matching when agents are allowed to have general weak preferences. The no-odd
ring condition of Chung (2000) was generalized to a no-optimal odd k −general ring
condition. The proof was constructed by representing the existence problem as a fixed
point problem and by using an extension of the Abian’s and Wisniewski’s theorems.
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