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Abstract. In the framework of b-metric spaces, we establish three fixed point theorems concerning

multi-valued contractions, which improve and generalize various well known results in the literature.
Based on the result of Aydi et al. (Journal of Fixed Point Theory and Applications 2012: 88 2012),

we give the first fixed point theorem for q-multi-valued quasi-contraction, where the range of the

contraction constant is extended to

[
0, 1

3
√

s+2s2

)
(1 ≤ s ≤ 1 +

√
2) and

[
0, 1

s

)
(s > 1 +

√
2).

Also, we establish the second result which extends the theorem presented by Haghi et al. (Applied

Mathematics Letters 25: 843-846 2012) from metric spaces to b-metric spaces. Furthermore, we

give a unified result to improve the recent several fixed point theorems for multi-valued mappings
provided by Miculescu et al. (Journal of Fixed Point Theory an Applications 19: 2153-2163 2017).

Two technical lemmas are used to ensure that a Picard sequence is a Cauchy sequence. Finally, some

applications are included to vindicate that the improvements are indeed genuine.

Key Words and Phrases: Multi-valued quasi-contractions, Ćirić type contraction, Hausdorff

metric, fixed point theorem.
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1. Introduction

In 1969, Nadler [23] presented a fixed point theorem for multi-valued mappings
with Hausdorff metric, which is an extension of Banach contraction principle. In
the last decades, all kinds of fixed point results for multi-valued functions have been
studied in the framework of metric spaces (see, for example, [26, 15, 27, 12, 4, 30, 5,
13, 14, 1, 28, 3, 29, 24, 22, 19] and the references therein).

Definition 1.1 ([6]). Let X be any nonempty set. An element x in X is said to be a
fixed point of a multi-valued mapping T : X → 2X if x ∈ Tx, where 2X denotes the
collection of all nonempty subsets of X.

Definition 1.2 ([6]). Let (X, d) be a metric space. Let CB(X) be the collection of
all nonempty closed bounded subsets of X. For A,B ∈ CB(X), define

H(A,B) = max{δ(A,B), δ(B,A)}, (1.1)
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where

δ(A,B) = sup{d(a,B), a ∈ A}, δ(B,A) = sup{d(b, A), b ∈ B} (1.2)

with

d(a,C) = inf{d(a, x), x ∈ C}, C ∈ CB(X). (1.3)

Note that H is called the Hausdorff metric induced by the metric d.
On the other hand, in 1993, Czerwik [10] introduced a new class of generalized

metric spaces called b-metric spaces which have been studied by numerous authors
(also see [16]). In the sequel, the letters R+, N and N∗ will denote the set of all
nonnegative real numbers, the set of all natural numbers and the set of all positive
integer numbers, respectively.

Definition 1.3 ([10]). Let X be a nonempty set and s ≥ 1 a given real number. A
mapping d : X ×X → R+ is called a b-metric if

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x), for all x, y ∈ X;
(3) d(x, y) ≤ s[d(x, z) + d(z, y)], for all x, y, z ∈ X.

Then, the pair (X, d) is called a b-metric space.

As a kind of the meaningful fixed point results, the theorems for multi-valued
contractions have also been studied in the setting of b-metric spaces, see [6, 11, 21, 17,

2, 20, 8, 7, 25]. By combining the results of Nadler [23] and Ćirić [9], Amini-Harandi
[5] initiated the concept of q-multi-valued quasi-contraction in 2011 and proved the
corresponding fixed point theorem in metric spaces. After these pioneering work, Aydi
et al. [6] extended Amini-Harandi’s theorem and some existing results in the literature
to b-metric spaces with contraction constant q < 1

s2+s . In addition, Amini-Harandi

[5] put forward a question:
Does the conclusion of [5, Theorem 2.2] remain true for any k ∈

[
1
2 , 1
)
?

As the research on Amini-Harandi’s question [5], Haghi et al. [14] introduced
the notion of multi-valued quasi-contraction type multifunction and extended the
contraction constant to [0, 1) for such mappings. Furthermore, Lu et al. [19] presented
the fixed point theorem for q-multi-valued quasi-contraction mapping in metric spaces

by extending the contraction constant from
[
0, 12
)

to
[
0, 1

3√3

)
, which partially answers

the Amini-Harandi’s [5] question. Naturally, a question will arise:
Can the theorem provided by Haghi et al. [14] and Lu et al. [19] be improved to

b-metric spaces?
Another remarkable generalization of Nadler’s contraction principle was given by

Miculescu et al. [20] in 2017. In their outstanding paper, the authors proposed
three fixed point theorems for multi-valued mappings in b-metric spaces, which also
improved the result due to Aydi et al. [6].

In this paper, drawing inspiration from the above mentioned works, we establish
three fixed point theorems concerning multi-valued mappings by using the Hausdorff
metric in b-metric spaces. The first theorem generalizes [6, Theorem 2.2] and [2,
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Theorem 3.3] in b-metric spaces, where the contraction constant

q <

{
1

3√s+2s2
, 1 ≤ s ≤ 1 +

√
2;

1
s , s > 1 +

√
2.

The second result extends the theorem by Haghi et al. [14] from metric spaces to
b-metric spaces. As the last part of our main results, we establish an unified result
of three theorems for multi-valued functions by Miculescu et al. [20]. This theorem
also improves Nadler’s fixed point theorem, Rus’s fixed point theorem, Reich’s fixed
point theorem and Hardy-Rogers type fixed point theorem. The scientific novelty of
our proofs lies in the application of two crucial lemmas and some skills to prove a
Picard sequence is a Cauchy sequence. Finally, some related applications are given
to illustrate that our results are true extensions of the existing ones.

2. Preliminaries

In this section, we present two lemmas which will be applied in later sections.
Other elementary lemmas concerning Hausdorff metric refer to [6].

Lemma 2.1 ([18]). Let (X, d) be a b-metric space and {xn} a sequence in X. If there
exist P ≥ 0 and 0 ≤ Q < 1 such that

d(xn, xn+1) ≤ PQn+1

for all n ∈ N∗, then {xn} is a Cauchy sequence.

Lemma 2.2. Let (X, d) be a b-metric space, {An} ⊂ CB(X) be a sequence of set and
A∗ ∈ CB(X). Let {an} ⊂ X be a sequence such that an ∈ An for all n ∈ N. If

lim
n→∞

H(An, A
∗) = 0 (2.1)

and

lim
n→∞

d(an, a
∗) = 0 (2.2)

for some a∗ ∈ X, then a∗ ∈ A∗.

Proof. By means of an ∈ An for all n ∈ N, we have d(an, A
∗) ≤ H(An, A

∗). Due to
(2.1), we can obtain that

lim
n→∞

d(an, A
∗) = 0. (2.3)

Then, there exists a sequence {bn} ⊂ A∗ such that d(an, bn) ≤ d(an, A
∗) + 1

n for all
n ∈ N. From (2.3), we deduce that

lim
n→∞

d(an, bn) = 0. (2.4)

By the triangle inequality, we get d(bn, a
∗) ≤ s[d(bn, an)+d(an, a

∗)]. Combining (2.2)
and (2.4), we conclude that limn→∞ bn = a∗, which implies a∗ ∈ A∗. �
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3. Main Results

In this section, we establish and prove our main results. Before that we give two
significant lemmas, which play a crucial role in the sequel.

Lemma 3.1. Let (X, d) be a b-metric space with s ≥ 1 and {xn} a sequence in X.
Suppose that there exist β < 1 and a positive integer p such that

d(xn, xn+1) ≤ βmax{d(xi, xi+1) : n− p ≤ i ≤ n− 1} (3.1)

for all n ∈ N with n ≥ p, then {xn} is a Cauchy sequence.

Proof. Let brc = max{n ∈ N : n ≤ r} for all r ∈ R. Define that

G = max{d(xi, xi+1) : 0 ≤ i ≤ p− 1}.

By (3.1), we obtain that d(xp, xp+1) ≤ βG < G. Then, applying (3.1) again, we have
d(xp+1, xp+2) ≤ βG. Continuing this process, we can see that

d(xp+j , xp+j+1) ≤ βG

for all 0 ≤ j ≤ p − 1, which implies that max{d(xp+j , xp+j+1) : 0 ≤ j ≤ p − 1} ≤
βG. Similarly, we can obtain that max{d(x2p+j , x2p+j+1) : 0 ≤ j ≤ p − 1} ≤ β2G.
Proceeding inductively, we conclude that max{d(xip+j , xip+j+1) : 0 ≤ j ≤ p − 1} ≤
βiG for all i ∈ N.

For all n ∈ N, by n =
⌊
n
p

⌋
p+ j for some 0 ≤ j ≤ p− 1, we derive that

d(xn, xn+1) ≤ max
{
d(xbn

p cp+j , xbn
p cp+j+1) : 0 ≤ j ≤ p− 1

}
≤ βb

n
p cG

≤ β
n
p−1G

= β
n
p
G

β

= ( p
√
β)nG∗,

where G∗ = G
β and for all n ∈ N. From Lemma 2.1, we can obtain that {xn} is a

Cauchy sequence in X. �

Lemma 3.2. Let (X, d) be a b-metric space with s > 1 +
√

2 and {xn} a sequence in
X. If there exist λ ∈

[
0, 1s
)

and a positive integer k ≥ 2 such that

d(xn, xn+1) ≤ max{λ2d(xn−2, xn), λ3d(xn−3, xn), · · · , λkd(xn−k, xn)} (3.2)

for all n ∈ N and n ≥ k, then

d(xn, xn+1) ≤ 2s+ 1

s2
max{d(xn−1, xn), d(xn−2, xn−1), · · · , d(xn−k, xn−k+1)}.

Proof. From (3.2) we consider the following four cases to prove the desired result.
Case 1. If

d(xn, xn+1) ≤ λ2d(xn−2, xn), (3.3)
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then we prove

d(xn, xn+1) ≤ 2

s
max{d(xn−2, xn−1), d(xn−1, xn)}. (3.4)

From (3.3) and using the triangle inequality,

d(xn, xn+1) ≤ λ2d(xn−2, xn)

≤ sλ2[d(xn−2, xn−1) + d(xn−1, xn)]

≤ 2sλ2 max{d(xn−2, xn−1), d(xn−1, xn)}.

Since λ < 1
s , we conclude that

d(xn, xn+1) ≤ 2

s
max{d(xn−2, xn−1), d(xn−1, xn)}.

Case 2. If

d(xn, xn+1) ≤ λ3d(xn−3, xn), (3.5)

then we will show that

d(xn, xn+1) ≤ 2s+ 1

s2
max{d(xn−3, xn−2), d(xn−2, xn−1), d(xn−1, xn)}. (3.6)

By (3.5), we obtain that

d(xn, xn+1) ≤ λ3d(xn−3, xn)

≤ sλ3[d(xn−3, xn−1) + d(xn−1, xn)]

≤ s2λ3[d(xn−3, xn−2) + d(xn−2, xn−1)] + sλ3d(xn−1, xn)

≤ (2s2λ3 + sλ3) max{d(xn−3, xn−2), d(xn−2, xn−1), d(xn−1, xn)}.

Similarly, owing to λ < 1
s , we get

d(xn, xn+1) ≤ 2s2 + s

s3
max{d(xn−3, xn−2), d(xn−2, xn−1), d(xn−1, xn)}

=
2s+ 1

s2
max{d(xn−3, xn−2), d(xn−2, xn−1), d(xn−1, xn)}.

Case 3. If

d(xn, xn+1) ≤ λld(xn−l, xn), (3.7)

where l = 2m for some m ∈
{

2, 3, · · · ,
⌊
k
2

⌋}
, then we prove

d(xn, xn+1) ≤2s2 + 2s3 + · · ·+ 2sm−1 + 4sm

s2m
max{d(xn−2m, xn−2m+1),

d(xn−2m+1, xn−2m+2), · · · , d(xn−1, xn)}. (3.8)
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By (3.7) and applying the triangle inequality,

d(xn, xn+1) ≤ λ2md(xn−2m, xn)

≤sλ2m[d(xn−2m, xn−m) + d(xn−m, xn)]

≤[s2λ2md(xn−2m, xn−2m+1) + s3λ2md(xn−2m+1, xn−2m+2)

+ · · ·+ smλ2m(d(xn−m−2, xn−m−1) + d(xn−m−1, xn−m))]

+ [s2λ2md(xn−m, xn−m+1) + s3λ2md(xn−m+1, xn−m+2)

+ · · ·+ smλ2m(d(xn−2, xn−1) + d(xn−1, xn))]

≤(2s2λ2m + 2s3λ2m + · · ·+ 2sm−1λ2m + 4smλ2m)

·max{d(xn−2m, xn−2m+1), d(xn−2m+1, xn−2m+2), · · · , d(xn−1, xn)}.

Using the fact that λ < 1
s , we deduce that

d(xn, xn+1) ≤ 2s2 + 2s3 + · · ·+ 2sm−1 + 4sm

s2m
max{d(xn−2m, xn−2m+1),

d(xn−2m+1, xn−2m+2), · · · , d(xn−1, xn).

Case 4. If

d(xn, xn+1) ≤ λld(xn−l, xn), (3.9)

where l = 2m+ 1 for some m ∈
{

2, 3, · · · ,
⌊
k−1
2

⌋}
, then we shall prove that

d(xn,xn+1) ≤ 2s2 + 2s3 + · · ·+ 2sm−1 + 3sm + 2sm+1

s2m+1

·max{d(xn−2m−1, xn−2m), d(xn−2m, xn−2m+1), · · · , d(xn−1, xn)}. (3.10)

Employing (3.9) and the triangle inequality again, we derive

d(xn, xn+1)

≤λ2m+1d(xn−2m−1, xn) ≤ sλ2m+1[d(xn−2m−1, xn−m) + d(xn−m, xn)]

≤[s2λ2m+1d(xn−2m−1, xn−2m) + s3λ2m+1d(xn−2m, xn−2m+1) + · · ·
+ smλ2m+1d(xn−m−3, xn−m−2)

+ sm+1λ2m+1(d(xn−m−2, xn−m−1) + d(xn−m−1, xn−m))]

+ [s2λ2m+1d(xn−m, xn−m+1) + s3λ2m+1d(xn−m+1, xn−m+2)

+ · · ·+ smλ2m+1(d(xn−2, xn−1) + d(xn−1, xn))]

≤(2s2λ2m+1 + 2s3λ2m+1 + · · ·+ 2sm−1λ2m+1 + 3smλ2m+1

+ 2sm+1λ2m+1) max{d(xn−2m−1, xn−2m), d(xn−2m, xn−2m+1), · · · , d(xn−1, xn)}.

Since λ < 1
s , we conclude that

d(xn, xn+1) ≤ 2s2 + 2s3 + · · ·+ 2sm−1 + 3sm−1 + 2sm+1

s2m+1

·max{d(xn−2m−1, xn−2m), d(xn−2m, xn−2m+1), · · · , d(xn−1, xn)}.
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Using the fact that s > 1 +
√

2, it is easy to calculate that

1

s
<

2s+ 1

s2
,

2s2 + 2s3 + · · ·+ 2sm−1 + 4sm

s2m
<

1

s

(
m ∈

{
2, 3, · · · ,

⌊
k

2

⌋})
and

2s2 + 2s3 + · · ·+ 2sm−1 + 3sm + 2sm+1

s2m+1
<

1

s

(
m ∈

{
2, 3, · · · ,

⌊
k − 1

2

⌋})
.

Combining (3.4), (3.6), (3.8) and (3.10), from (3.2), we deduce that

d(xn, xn+1)

≤max{λ2d(xn−2, xn), λ3d(xn−3, xn), · · · , λkd(xn−k, xn)}

≤max

{
2s+ 1

s2
max{d(xn−1, xn), d(xn−2, xn−1)},

2s+ 1

s2
max{d(xn−1, xn), d(xn−2, xn−1), d(xn−3, xn−2)}, · · · ,

2s+ 1

s2
max{d(xn−1, xn), d(xn−2, xn−1), · · · , d(xn−k, xn−k+1)}

}
=

2s+ 1

s2
max{d(xn−1, xn), d(xn−2, xn−1), · · · , d(xn−k, xn−k+1)}.

Therefore, the proof of this lemma is completed. �

Now we introduce the notion of q-multi-valued quasi-contraction in the framework
of b-metric spaces and prove the corresponding theorem.

Definition 3.3 ([6]). Let (X, d) be a b-metric space with s ≥ 1. The multi-valued
map T : X → CB(X) is said to be a q-multi-valued quasi-contraction if for any
x, y ∈ X,

H(Tx, Ty) ≤ qM(x, y), (3.11)

where 0 ≤ q < 1 and

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Theorem 3.4. Let (X, d) be a complete b-metric space with s ≥ 1 and T be a q-
multi-valued quasi-contraction. Assume that

q <

{
1

3√s+2s2
, 1 ≤ s ≤ 1 +

√
2;

1
s , s > 1 +

√
2,

then T has a fixed point in X, that is, there exists u ∈ X such that u ∈ Tu.

Proof. From the assumption, there exists λ such that

q < λ <

{
1

3√s+2s2
, 1 ≤ s ≤ 1 +

√
2;

1
s , s > 1 +

√
2.

By a simple calculation, we can obtain that 1
3√s+2s2

≤ 1
s when 1 ≤ s ≤ 1 +

√
2, which

leading to λ < 1
s for s ≥ 1. Let x0 ∈ X and x1 ∈ Tx0. If x0 ∈ Tx0, then x0 is a
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fixed point of T . Thus, we assume that x0 /∈ Tx0, which implies that x0 6= x1 and
d(x0, Tx0) > 0. Thus, there must exist x2 ∈ Tx1 such that

d(x1, x2) ≤ H(Tx0, Tx1) + (λ− q)M(x0, x1)

≤ qM(x0, x1) + (λ− q)M(x0, x1)

= λM(x0, x1).

Similarly, suppose that x1 /∈ Tx1. Then, we can find x3 ∈ Tx2 such that

d(x2, x3) ≤ H(Tx1, Tx2) + (λ− q)M(x1, x2)

≤ qM(x1, x2) + (λ− q)M(x1, x2)

= λM(x1, x2).

Repeating this process infinitely, there exists a sequence {xn} in X such that xn+1 ∈
Txn, xn /∈ Txn and

d(xn, xn+1) ≤ H(Txn−1, Txn) + (λ− q)M(xn−1, xn)

≤ qM(xn−1, xn) + (λ− q)M(xn−1, xn)

= λM(xn−1, xn) (3.12)

for all n ∈ N∗.
For s ≥ 1, we consider the following two cases.

Case 1. If 1 ≤ s ≤ 1 +
√

2, for any n ∈ N∗,

M(xn−1, xn)

= max{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn), d(xn−1, Txn), d(xn, Txn−1)}
≤max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, Txn), d(xn, xn)}
= max{d(xn−1, xn), d(xn, xn+1), d(xn−1, Txn)}.

If max{d(xn−1, xn), d(xn, xn+1), d(xn−1, Txn)} = d(xn, xn+1) for some n ∈ N∗.
From (3.12), we find that d(xn, xn+1) ≤ λM(xn−1, xn) ≤ λd(xn, xn+1), which is a
contradiction with 0 ≤ λ < 1

3√s+2s2
< 1. Then (3.12) turns into

d(xn, xn+1) ≤ λM(xn−1, xn) ≤ max{λd(xn−1, xn), λd(xn−1, Txn)}. (3.13)

Using the condition (3.11), we have

d(xn−1, Txn) ≤ H(Txn−2, Txn) ≤ λM(xn−2, xn)

=λmax{d(xn−2, xn), d(xn−2, Txn−2), d(xn, Txn), d(xn−2, Txn), d(xn, Txn−2)}
≤λmax{d(xn−2, xn), d(xn−2, xn−1), d(xn, xn+1), d(xn−2, Txn), d(xn, xn−1)}. (3.14)

Similarly, M(xn−2, xn) 6= d(xn, xn+1) for all n ∈ N. Thus, by (3.13) and (3.14)

d(xn, xn+1) ≤ max{λd(xn−1, xn), λ2d(xn−2, xn), λ2d(xn−2, xn−1), λ2d(xn−2, Txn)}.
(3.15)
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By (3.11), we deduce

d(xn−2, Txn) ≤ H(Txn−3, Txn) ≤ λM(xn−3, xn)

=λmax{d(xn−3, xn), d(xn−3, Txn−3), d(xn, Txn), d(xn−3, Txn), d(xn, Txn−3)}
≤λmax{d(xn−3, xn), d(xn−3, xn−2), d(xn, xn+1), d(xn−3, Txn), d(xn, xn−2)}. (3.16)

It is similar to the process above, M(xn−3, xn) 6= d(xn, xn+1) for all n ∈ N. By (3.15)
and (3.16), we get

d(xn, xn+1) ≤ max{λd(xn−1, xn), λ2d(xn−2, xn), λ2d(xn−2, xn−1),

λ3d(xn−3, xn), λ3d(xn−3, xn−2), λ3d(xn−3, Txn)}. (3.17)

Applying the condition (3.11),

d(xn−3, Txn) ≤ H(Txn−4, Txn) ≤ λM(xn−4, xn)

=λmax{d(xn−4, xn), d(xn−4, Txn−4), d(xn, Txn), d(xn−4, Txn), d(xn, Txn−4)}
≤λmax{d(xn−4, xn), d(xn−4, xn−3), d(xn, xn+1), d(xn−4, Txn), d(xn, xn−3)}. (3.18)

Note that if

d(xn−3, Txn) ≤ λd(xn−4, Txn) ≤ sλ[d(xn−4, xn−3) + d(xn−3, Txn)],

then

d(xn−3, Txn) ≤ sλ

1− sλ
d(xn−4, xn−3). (3.19)

From (3.17), (3.18) and (3.19),

d(xn, xn+1)

≤max

{
λd(xn−1, xn), λ2d(xn−2, xn), λ2d(xn−2, xn−1),

λ3d(xn−3, xn), λ3d(xn−3, xn−2), λ4d(xn−4, xn),

λ4d(xn−4, xn−3),
sλ4

1− sλ
d(xn−4, xn−3)

}
≤max

{
λd(xn−1, xn), sλ2[d(xn−2, xn−1) + d(xn−1, xn)],

s2λ3[d(xn−3, xn−2) + d(xn−2, xn−1)] + sλ3d(xn−1, xn),

s2λ4[d(xn−4, xn−3) + d(xn−3, xn−2) + d(xn−2, xn−1) + d(xn−1, xn)],

sλ4

1− sλ
d(xn−4, xn−3)

}
≤max

{
λ, 2sλ2, 2s2λ3 + sλ3, 4s2λ4,

sλ4

1− sλ

}
·max{d(xn−4, xn−3),

d(xn−3, xn−2), d(xn−2, xn−1), d(xn−1, xn)}
=β1 max{d(xn−4, xn−3), d(xn−3, xn−2), d(xn−2, xn−1), d(xn−1, xn)},
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where β1 = max{λ, 2sλ2, 2s2λ3 + sλ3, 4s2λ4, sλ4

1−sλ}. Since λ < 1
3√s+2s2

, it is easy to

verify that β1 < 1. From Lemma 3.1, we deduce that {xn} is a Cauchy sequence in
X.
Case 2. If s > 1+

√
2. On account of sλ < 1, there exists r ∈ N such that sλ < r < 1.

Taking n0 ∈ N such that λn0 < 1−r
s . By the same proof of (3.13), (3.15) and (3.17),

we can deduce that

d(xn, xn+1) ≤ max{λd(xn−1, xn), λ2d(xn−2, xn), λ2d(xn−2, xn−1), λ3d(xn−3, xn),

λ3d(xn−3, xn−2), λ4d(xn−4, xn), λ4d(xn−4, xn−3), · · · , λn0−1d(xn−n0+1, xn),

λn0−1d(xn−n0+1, xn−n0+2), λn0−1d(xn−n0+1, Txn)}. (3.20)

Applying (3.11), we obtain that

d(xn−n0+1, Txn) ≤ H(Txn−n0 , Txn) ≤ λM(xn−n0 , xn)

=λmax{d(xn−n0
, xn), d(xn−n0

, Txn−n0
), d(xn, Txn), d(xn−n0

, Txn), d(xn, Txn−n0
)}

≤λmax{d(xn−n0
, xn), d(xn−n0

, xn−n0+1), d(xn, xn+1), d(xn−n0
, Txn),

d(xn, xn−n0+1)}. (3.21)

Note that if

d(xn−n0+1, Txn) ≤ λd(xn−n0
, Txn) ≤ sλ[d(xn−n0

, xn−n0+1) + d(xn−n0+1, Txn)],

then

d(xn−n0+1, Txn) ≤ sλ

1− sλ
d(xn−n0

, xn−n0+1). (3.22)

Combining (3.20), (3.21) and (3.22), we derive

d(xn, xn+1) ≤ max{λd(xn−1, xn), λ2d(xn−2, xn−1), · · · ,
λn0d(xn−n0 , xn−n0+1), λ2d(xn−2, xn), λ3d(xn−3, xn),

λn0d(xn−n0
, xn),

sλn0

1− sλ
d(xn−n0

, xn−n0+1)

}
. (3.23)

Owing to (3.23) and Lemma 3.2, since λ < 1
s , we deduce

d(xn, xn+1)

≤max

{
λd(xn−1, xn), λ2d(xn−2, xn−1), · · · , λn0d(xn−n0

, xn−n0+1),

2s+ 1

s2
max{d(xn−1, xn), d(xn−2, xn−1), · · · , d(xn−n0

, xn−n0+1)},

sλn0

1− sλ
d(xn−n0

, xn−n0+1)

}
≤max

{
2s+ 1

s2
max{d(xn−1, xn), d(xn−2, xn−1), · · · , d(xn−n0

, xn−n0+1)},

sλn0

1− sλ
d(xn−n0

, xn−n0+1)

}
≤β2 max{d(xn−1, xn), d(xn−2, xn−1), · · · , d(xn−n0 , xn−n0+1)},
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where β2 = max
{

2s+1
s2 , sλ

n0

1−sλ

}
. Note that β2 < 1. From Lemma 3.1, we obtain that

{xn} is a Cauchy sequence in X.
Following the above discussion, since (X, d) is complete, there exists x∗ ∈ X such

that {xn} converges to x∗. Then we shall show that x∗ is a fixed point of T . By
(3.11), we have

H(Txn, Tx
∗) ≤ λM(xn, x

∗)

=λmax{d(xn, x
∗), d(xn, Txn), d(x∗, Tx∗), d(xn, Tx

∗), d(x∗, Txn)}
≤max{d(xn, x

∗), d(xn, xn+1), d(x∗, Tx∗), d(xn, Tx
∗), d(x∗, xn+1)}.

If M(xn, x
∗) = d(x∗, Tx∗) for some n ∈ N, then we get

H(Txn, Tx
∗) ≤ λd(x∗, Tx∗) ≤ sλ[d(x∗, Txn) +H(Txn, Tx

∗)],

which implies that

H(Txn, Tx
∗) ≤ sλ

1− sλ
d(x∗, Txn) ≤ sλ

1− sλ
d(x∗, xn+1).

Similarly, if M(xn, x
∗) = d(xn, Tx

∗) for some n ∈ N, then we obtain that

H(Txn, Tx
∗) ≤ sλ

1− sλ
d(xn, Txn) ≤ sλ

1− sλ
d(xn, xn+1).

Thus, for every n ∈ N we can see that

H(Txn, Tx
∗) ≤ λmax

{
d(xn, x

∗), d(xn, xn+1),

s

1− sλ
d(x∗, xn+1),

s

1− sλ
d(xn, xn+1), d(x∗, xn+1)

= max

{
λd(xn, x

∗),
sλ

1− sλ
d(x∗, xn+1),

sλ

1− sλ
d(xn, xn+1)

}
, (3.24)

Letting n→∞, we obtain that H(Txn, Tx
∗)→ 0 as n→∞. Note that xn+1 ∈ Txn

for all n ∈ N. Thus, from Lemma 2.2, we conclude that x∗ ∈ Tx∗. Therefore, x∗ is a
fixed point of T . �

Remark 3.5. Our Theorem 3.4 generalizes [6, Theorem 2.2] and [2, Theorem 3.3],

where the contraction constant of the former theorem is q ∈
[
0, 1

s+s2

)
and the constant

of the other one is q ∈
[
0, 1

2s2

)
. Obviously, the range of the contraction constant of

Theorem 3.4 is wider than theirs. Indeed, we can see that

if 1 ≤ s ≤ 1 +
√

2, then
1

2s2
<

1

s+ s2
<

1
3
√
s+ 2s2

,

if s > 1 +
√

2, then
1

2s2
<

1

s+ s2
<

1

s
.

Next, we present the concept of multi-valued quasi-contraction type multifunctions
in the setting of b-metric spaces and investigate the existence of the fixed point of
such a mapping. The obtained result is an extension of [14, Theorem 2.2] and [19,
Theorem 3.4] from metric spaces to b-metric spaces.
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Definition 3.6. (see [14]) Let (X, d) be a b-metric space with s ≥ 1. The multi-
valued map T : X → CB(X) is said to be a multi-valued quasi-contraction type if
there exists λ ∈

[
0, 1s
)

such that

H(Tx, Ty) ≤ λN(x, y), (3.25)

for all x, y ∈ X, where N(x, y) = max{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Theorem 3.7. Let (X, d) be a complete b-metric space and T : X → CB(X) a
multi-valued quasi-contraction type multifunctions. Then T has a fixed point.

Proof. Since λ < 1
s , there exists α such that λ < α < 1

s . Let x0 ∈ X and x1 ∈ Tx0.
It is similar to the proof of Theorem 3.3, we can construct a sequence {xn} such that
xn+1 ∈ Txn, xn /∈ Txn and

d(xn, xn+1) ≤ αN(xn−1, xn). (3.26)

Next, we prove that {xn} is a Cauchy sequence in X. Due to the fact that α < 1
s , we

can find a positive integer r ∈ N such that

sαr+1

1− sα
<

1

s
. (3.27)

Put n ∈ N such that n ≥ r + 1. Combining (3.26) and xn+1 ∈ Txn, we can see that

d(xn, xn+1) ≤ αN(xn−1, xn)

=αmax{d(xn−1, Txn−1), d(xn, Txn), d(xn−1, Txn), d(xn, Txn−1)}
≤αmax{d(xn−1, xn), d(xn, xn+1), d(xn−1, Txn), d(xn, Txn−1)}. (3.28)

If d(xn, xn+1) ≤ αd(xn, xn+1), then we conclude xn = xn+1, which is a contradiction
with the fact xn+1 ∈ Txn and xn /∈ Txn. Thus, we obtain that

d(xn, xn+1) ≤ αmax{d(xn−1, xn), d(xn−1, Txn), d(xn, Txn−1)}. (3.29)

Owing to (3.25),

d(xn−1, Txn) ≤ H(Txn−2, Txn) ≤ λN(xn−2, xn) ≤ αN(xn−2, xn)

=αmax{d(xn−2, Txn−2), d(xn, Txn), d(xn−2, Txn), d(xn, Txn−2)}
≤αmax{d(xn−2, xn−1), d(xn, xn+1), d(xn−2, Txn), d(xn, Txn−2)}. (3.30)

From (3.25), we have

d(xn, Txn−1) ≤ H(Txn−1, Txn−1) ≤ λN(xn−1, xn−1) ≤ αN(xn−1, xn−1)

=αmax{d(xn−1, Txn−1), d(xn−1, Txn−1), d(xn−1, Txn−1), d(xn−1, Txn−1)}
≤αmax{d(xn−1, xn), d(xn−1, Txn−1)}. (3.31)

Combining (3.29), (3.30) and (3.31), we obtain that

d(xn, xn+1) ≤ max{αd(xn−1, xn), αd(xn−2, xn−1), α2d(xn−2, Txn),

α2d(xn, Txn−2), α2d(xn−1, Txn−1)}. (3.32)
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Employing (3.25) again, we have

d(xn−2, Txn) ≤ H(Txn−3, Txn) ≤ αN(xn−3, xn)

=αmax{d(xn−3, Txn−3), d(xn, Txn), d(xn−3, Txn), d(xn, Txn−3)}
≤αmax{d(xn−3, xn−2), d(xn, xn+1), d(xn−3, Txn), d(xn, Txn−3)}. (3.33)

Similarly,

d(xn, Txn−2) ≤ αmax{d(xn−3, xn−2), d(xn−2, xn−1),

d(xn−1, Txn−2), d(xn−2, Txn−1)},
d(xn−1, Txn−1) ≤ αmax{d(xn−2, xn−1), d(xn−1, xn),

d(xn−2, Txn−1), d(xn−1, Txn−2)}. (3.34)

Thus, we obtain that

d(xn, xn+1) ≤ max{αd(xn−1, xn), αd(xn−2, xn−1), αd(xn−3, xn−2),

α3d(xn−3, Txn), α3d(xn, Txn−3), α3d(xn−2, Txn−1), α3d(xn−1, Txn−2)}. (3.35)

Repeating the above process r times, we deduce that

d(xn, xn+1) ≤ maxCr ∪Dr, (3.36)

where
Cr = {αd(xn−i, xn−i+1) : 1 ≤ i ≤ r}

and
Dr = max{αrd(xn−i, Txn−j) : 0 ≤ i, j ≤ r and i+ j = r}.

Then, using (3.25),

d(xn−i, Txn−j) ≤ H(Txn−i−1, Txn−j) ≤ αN(xn−i−1, xn−j)

=αmax{d(xn−i−1, Txn−i−1), d(xn−j , Txn−j), d(xn−i−1, Txn−j), d(xn−j , Txn−i−1)}
≤αmax{d(xn−i−1, xn−i), d(xn−j , xn−j+1), d(xn−i−1, Txn−j), d(xn−j , Txn−i−1)}.

If H(Txn−i−1, Txn−j) ≤ αd(xn−i−1, Txn−j), then we deduce

H(Txn−i−1, Txn−j) ≤ sα[d(xn−i−1, Txn−i−1) +H(Txn−i−1, Txn−j)],

which implies that

H(Txn−i−1, Txn−j) ≤
sα

1− sα
d(xn−i−1, Txn−i−1) ≤ sα

1− sα
d(xn−i−1, xn−i).

If H(Txn−i−1, Txn−j) ≤ αd(xn−j , Txn−i−1), then we derive

H(Txn−i−1, Txn−j) ≤ sα[d(xn−j , Txn−j) +H(Txn−j , Txn−i−1)].

It follows that

H(Txn−i−1, Txn−j) ≤
sα

1− sα
d(xn−j , Txn−j) ≤

sα

1− sα
d(xn−j , xn−j+1).

Therefore, having in mind α < sα
1−sα , we conclude that

d(xn−i, Txn−j) ≤ H(Txn−i−1, Txn−j)

≤ sα

1− sα
max{d(xn−i−1, xn−i), d(xn−j , xn−j+1)}. (3.37)
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Hence, by (3.27), (3.36) and (3.37), we can deduce that

d(xn, xn+1) ≤ γmax{d(xn−i, xn−i+1) : 1 ≤ i ≤ r + 1},

where γ = max
{
α, sα

r+1

1−sα

}
< 1

s . According to Lemma 3.1 with p = r+1, we conclude

that {xn} is a Cauchy sequence in X. Since b-metric space (X, d) is complete, there
exists x∗ ∈ X such that xn → x∗ as n→∞. Note that

H(Txn, Tx
∗) ≤ λN(xn, x

∗)

= λmax{d(xn, Txn), d(x∗, Tx∗), d(xn, Tx
∗), d(x∗, Txn)}

≤ λmax{d(xn, xn+1), d(x∗, Tx∗), d(xn, Tx
∗), d(x∗, xn+1)}.

If H(Txn, Tx
∗) ≤ λd(x∗, Tx∗) for some n ∈ N, we can see that

H(Txn, Tx
∗) ≤ sλ[d(x∗, Txn) +H(Txn, Tx

∗)],

which implies that

H(Txn, Tx
∗) ≤ sλ

1− sλ
d(x∗, Txn) ≤ sλ

1− sλ
d(x∗, xn+1). (3.38)

If H(Txn, Tx
∗) ≤ λd(xn, Tx

∗) for some n ∈ N, we obtain that

H(Txn, Tx
∗) ≤ sλ[d(xn, Txn) +H(Txn, Tx

∗)].

It follows that

H(Txn, Tx
∗) ≤ sλ

1− sλ
d(xn, Txn) ≤ sλ

1− sλ
d(xn, xn+1). (3.39)

By inequalities (3.38) and (3.39), since λ < 1
s , we get

H(Txn, Tx
∗) ≤ sλ

1− sλ
max{d(xn, xn+1), d(x∗, xn+1)}.

Note that d(xn, xn+1) → 0 and d(x∗, xn+1) → 0 as n → ∞. Then, we can see that
(Txn, Tx

∗) → 0 as n → ∞. Observing the fact xn+1 ∈ Txn for all n ∈ N and from
Lemma 2.2, we conclude that x∗ ∈ Tx∗. Therefore, x∗ is a fixed point of T . �

Inspired by the results of Miculescu et al. [20], we propose a new theorem to
generalize and improve their three fixed point theorems for multi-valued functions in
b-metric spaces as follows.

Theorem 3.8. A function T : X → CB(X), where (X, d) is a complete b-metric
space of constant s. Suppose that there exists λ ∈ [0, 1) such that

H(Tx, Ty) ≤ λM1(x, y)

for all x, y ∈ X, where

M1(x, y) = max

{
d(x, y),

1

s
d(x, Tx),

1

s
d(y, Ty),

1

2s
[d(x, Ty) + d(y, Tx)]

}
. (3.40)

Then T has a fixed point in X.
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Proof. Since λ < 1, there exists θ such that λ < θ < 1. Let x0 ∈ X and x1 ∈ Tx0.
From a similar argument in the proof of Theorem 3.3, we can obtain a sequence {xn}
such that xn+1 ∈ Txn, xn /∈ Txn and

d(xn, xn+1) ≤ θM1(xn−1, xn)

=θmax

{
d(xn−1, xn),

1

s
d(xn−1, Txn−1),

1

s
d(xn, Txn),

1

2s
[d(xn−1, Txn) + d(xn, Txn−1)]

}
≤ θmax

{
d(xn−1, xn),

1

s
d(xn−1, xn),

1

s
d(xn, xn+1),

1

2s
[d(xn−1, xn+1) + d(xn, xn)]

}
≤ θmax

{
d(xn−1, xn),

1

s
d(xn, xn+1),

1

2
[d(xn−1, xn) + d(xn, xn+1)]

}
≤ θmax{d(xn−1, xn), d(xn, xn+1)}.

If d(xn, xn+1) ≤ θd(xn, xn+1), we have d(xn, xn+1) = 0, which is a contraction
with the fact that xn+1 ∈ Txn and xn /∈ Txn. Thus, by induction we deduce that

d(xn, xn+1) ≤ θd(xn−1, xn) ≤ θ2d(xn−2, xn−1) ≤ · · · ≤ θnd(x0, x1).

Combining the assumption θ < 1 and Lemma 2.1, we conclude that {xn} is a Cauchy
sequence in X. Since (X, d) is complete, there exists x∗ ∈ X such that {xn} converges
to x∗. Then we show that x∗ is a fixed point of T . By (3.40), we have

H(Txn, Tx
∗) ≤ λM1(xn, x

∗)

=λmax

{
d(xn, x

∗),
1

s
d(xn, Txn),

1

s
d(x∗, Tx∗),

1

2s
[d(xn, Tx

∗) + d(x∗, Txn)]

}
≤λmax

{
d(xn, x

∗),
1

s
d(xn, xn+1),

1

s
d(x∗, Tx∗),

1

2s
[d(xn, Tx

∗) + d(x∗, Txn)]

}
If M1(xn, x

∗) = 1
sd(x∗, Tx∗) for some n ∈ N, then we obtain that

H(Txn, Tx
∗) ≤ λ

s
d(x∗, Tx∗) ≤ λ[d(x∗, Txn) +H(Txn, Tx

∗)],

which implies that

H(Txn, Tx
∗) ≤ λ

1− λ
d(x∗, Txn) ≤ λ

1− λ
d(x∗, xn+1).

Similarly, if M1(xn, x
∗) = 1

2s [d(xn, Tx
∗) +d(Txn, x

∗)] for some n ∈ N, then we derive

H(Txn, Tx
∗) ≤ λ

2s
[d(xn, Tx

∗) + d(Txn, x
∗)] ≤ λ

2s
[d(xn, Tx

∗) + d(xn+1, x
∗)]

≤ λ

2
[d(xn, Txn) +H(Txn, Tx

∗)] +
λ

2s
d(xn+1, x

∗).
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It follows that

H(Txn, Tx
∗) ≤

λ
2

1− λ
2

d(xn, Txn) +
λ
2s

1− λ
2

d(xn+1, x
∗)

≤
λ
2

1− λ
2

d(xn, xn+1) +
λ
2s

1− λ
2

d(xn+1, x
∗).

Thus, for every n ∈ N we can see that

H(Txn, Tx
∗) ≤ λmax

{
d(xn, x

∗),
1

s
d(xn, xn+1),

1

1− λ
d(x∗, xn+1),

1
2

1− λ
2

d(xn, xn+1) +
1
2s

1− λ
2

d(xn+1, x
∗)

}
. (3.41)

Letting n→∞ in the above inequality, we obtain that H(Txn, Tx
∗)→ 0 as n→∞.

Note that xn+1 ∈ Txn for all n ∈ N. Hence, from Lemma 2.2, we conclude that
x∗ ∈ Tx∗. Therefore, x∗ is a fixed point of T . �

Remark 3.9. Compared with the main results in [20], it is obvious that Theorem 3.8
gives several improvements. Actually, the condition that the mapping T is closed
from [20, Theorem 3.1] and the condition that d is ∗-continuous from [20, Theorem
3.2] are omitted. Moreover, the range of contraction constant in [20, Theorem 3.3] is
smaller than ours.

Remark 3.10. In Theorem 3.7 and Theorem 3.8, the proofs that {xn} is a Cauchy
sequence are still valid for λ ∈ [0, 1). However, under the above conditions we can
not obtain the fixed points in corresponding theorems. Therefore, we present such
results.

4. Applications

In what follows we discuss some consequences of the above theorems in the context
of metric spaces and b-metric spaces. (In the following corollaries, we always assume
that M1(x, y) is same as Theorem 3.8 if not stated otherwise.)

Corollary 4.1 ([19]). Let (X, d) be a complete metric space and T : X → CB(X)

be a multi-valued quasi-contraction with constant λ. If there exists λ ∈
[
0, 1

3√3

)
such

that

H(Tx, Ty) ≤ λ{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.
Then T has a fixed point in X, that is, there exists u ∈ X such that u ∈ Tu.

Proof. In Theorem 3.4, if we take s = 1, then Theorem 3.1 in [19] is obtained. �

Corollary 4.2 (see [23]). Let (X, d) be a complete b-metric space with coefficient
s ≥ 1 and T : X → CB(X) be a mapping. Suppose that there exists α ∈ [0, 1) such
that

H(Tx, Ty) ≤ αd(x, y) (4.1)

for all x, y ∈ X. Then T has a fixed point in X.
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Proof. Note that
H(Tx, Ty) ≤ αd(x, y) ≤ αM1(x, y)

for all x, y ∈ X. By applying Theorem 3.8, it is easy to obtain the desired result. �

Remark 4.3. It is generally known that a b-metric space is a generalized metric space
and thus Corollary 4.2 is more general than the result of Nadler [23] in metric spaces.

Corollary 4.4 (see [27]). Let (X, d) be a complete b-metric space with coefficient
s ≥ 1. T : X → CB(X) be a mapping. Suppose that there exist β, γ ∈ [0, 1) such that

H(Tx, Ty) ≤ βd(x, y) + γd(y, Ty).

Assume that β + γ < 1
s , then T has a fixed point in X.

Proof. Observing that

βd(x, y) + γd(y, Ty) ≤ (β + γ) max{d(x, y), d(y, Ty)}

= λ0 max

{
1

s
d(x, y),

1

s
d(y, Ty)

}
≤ λ0M1(x, y),

where λ0 ∈ [0, 1). Thus, by Theorem 3.8, we can obtain that T has a fixed point in
X. �

Remark 4.5. Taking s = 1 in Corollary 4.4, we improve and simplify the main result
of Rus [27] by deleting the condition “T is a closed multi-valued operator”.

Corollary 4.6. Let (X, d) be a complete b-metric space with coefficient s ≥ 1 and
T : X → CB(X) be a mapping. If there exist α, β, γ ∈ [0, 1) such that

H(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty).

Assume that α+ β + γ < 1
s , then T has a fixed point in X.

Proof. It is notice that

αd(x, y)+βd(x, Tx) + γd(y, Ty) ≤ (α+ β + γ) max{d(x, y), d(x, Tx), d(y, Ty)}

=λ1 max

{
1

s
d(x, y),

1

s
d(x, Tx),

1

s
d(y, Ty)

}
≤ λ1M1(x, y),

where λ1 ∈ [0, 1). Therefore, by applying Theorem 3.8, we must have T has a fixed
point in X. �

Remark 4.7. Letting s = 1 in Corollary 4.6, we obtain the result of Reich [26].
Therefore, Corollary 4.6 is more general than theirs.

The last corollary is the fixed point theorem for Hardy-Rogers type multi-valued
contractions in b-metric spaces.

Corollary 4.8. Let (X, d) be a complete b-metric space with coefficient s ≥ 1. T :
X → CB(X) such that

H(Tx, Ty) ≤ a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + a5d(y, Tx) (4.2)

for all x, y ∈ X, where a1, a2, a3, a4, a5 are nonnegative constants such that
∑5
i=1 ai <

1
s . Then T has a fixed point in X.
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Proof. By virtue of (4.2), we can obtain

H(Ty, Tx) ≤ a1d(y, x) + a2d(y, Ty) + a3d(x, Tx) + a4d(y, Tx) + a5d(x, Ty). (4.3)

Adding (4.2) to (4.3), we deduce that

H(Tx, Ty)

≤a1d(x, y) +
a2 + a3

2
[d(x, Tx) + d(y, Ty)] +

a4 + a5
2

[d(x, Ty) + d(y, Tx)]

=a1d(x, y) + (a2 + a3)
d(x, Tx) + d(y, Ty)

2
+ (a4 + a5)

d(x, Ty) + d(y, Tx)

2

≤a1d(x, y) + (a2 + a3) max{d(x, Tx), d(y, Ty)}+ (a4 + a5)
d(x, Ty) + d(y, Tx)

2
≤(a1 + a2 + a3 + a4 + a5)

·max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
=λ2 max

{
1

s
d(x, y),

1

s
d(x, Tx),

1

s
d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
≤ λ2M1(x, y),

where λ2 ∈ [0, 1). Hence, by Theorem 3.8, it can be proved that T has a fixed point
in X. �
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Bolyai Mathematica, 36(1991), 81-99.
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