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1. Introduction

1.1. Preliminaries. Let X be a Banach space with norm ‖ · ‖ and dual X∗. We
denote the value of x∗ ∈ X∗ at x ∈ X by 〈x, x∗〉. A Banach space X is called
separable if it contains a countable, dense subset. In separable Banach spaces, the
closed unit ball of X∗ is metrizable in weak∗ topology, therefore by Banach-Alaoglu
theorem it is sequentially compact. Let X∗∗ = (X∗)∗ denote the second dual of
X. The canonical map i : X → X∗∗

x 7→x̂
, which x̂(f) = f(x), f ∈ X∗ gives a linear

isomorphism (embedding) from X into X∗∗. X is called reflexive if i : X → X∗∗ is

surjective. A Banach space X is said to be strictly convex if ‖x+ y

2
‖ < 1 , for all

x, y ∈ X with ‖x‖ = ‖y‖ = 1 and x 6= y. Equivalently X is strictly convex if and
only if for every x, y ∈ X that are linearly independent, we have ‖x+ y‖ < ‖x‖+‖y‖.
J : X −→ 2X

∗
defined by

J(x) := {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2, ‖x‖ = ‖x∗‖}

is called the duality mapping from X into X∗. Reflexivity of X implies that the
duality mapping J : X → 2X

∗
is surjective. See [3, 4, 20].

A multi-valued operator A : X −→ 2X with domain D(A) := {z ∈ X : Az 6= ∅}
and range R(A) :=

⋃
{Az : z ∈ D(A)} is said to be accretive if for each xi ∈ D(A)

and yi ∈ Axi, i = 1, 2, there is j ∈ J(x1 − x2) such that 〈y1 − y2, j〉 > 0. In this
paper in order to simplify we write 〈y1 − y2, J(x1 − x2)〉 ≥ 0. An accretive operator
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A is said to be maximal if its graph G(A) = {(x, y) ∈ X ×X : x ∈ D(A), y ∈ Ax}
is not properly contained in the graph of any other accretive operator. An accretive
operator A is called m-accretive if for some λ > 0 (equivalently, for each λ > 0)
R(I + λA) = X, where I is the identity operator from X to X. It is well-known
that, every m-accretive operator is maximal accretive. For an m-accretive operator
A and for all x0 ∈ X and λ > 0, the inclusion 0 ∈ (x − x0) + λAx has a unique
solution. This unique point is denoted by Jλx0 := (I + λA)−1(x0) and is called the
resolvent of A of order λ at the point x0. It is easily seen that Fix(Jλ) = A−1(0),
where Fix(Jλ) = {x ∈ X : Jλ(x) = x}. It is well-known that for an m-accretive
operator A, its resolvent of order λ is nonexpansive for each λ > 0; i.e.

‖Jλx− Jλy‖ ≤ ‖x− y‖, ∀x, y ∈ X. (1.1)

For each m-accretive operator A and λ, µ > 0, the resolvent identity

Jλx = Jµ
(µ
λ
x+

λ− µ
λ
Jλx

)
, ∀x ∈ X (1.2)

holds. For accretive operators, their properties and resolvents the reader can consult
with [4, 20].

We consider the inclusion problem, which is to find x ∈ X such that

0 ∈ A(x), (1.3)

where A : X −→ 2X is an m-accretive operator. The solution set of the inclusion
problem (1.3) is denoted by A−1(0) = {x ∈ D(A) : 0 ∈ A(x)}. In the last subsections
of this section, we give some motivations for studying (1.3) as well as some coercivity
conditions are stated which are needed for studying (1.3). Section 2 is devoted to the
main results of the paper. We prove the equivalency of the coercivity conditions (A′′)
and (B′′)(see Subsection 1.3) with non-emptiness and boundedness of the zero set of
the m-accretive operator A. In Section 3, we apply Theorem 2 to prove the existence
of a fixed point for nonexpansive mappings in Banach spaces.

1.2. Some Motivations. Finding a solution of (1.3) for an accretive operator A is
applicable in fixed point theory and evolution equations of accretive type.
Fixed Point Theory. Let X be a Banach space and C ⊂ X be nonempty and
closed. Let T : C → X satisfy

〈Tx− Ty, j〉 ≤ ‖x− y‖2, (1.4)

for each x, y ∈ C and some j ∈ J(x−y), then A := I−T is an accretive operator and
Fix(T ) = A−1(0). Evidently, every nonexpansive mapping (i.e. ‖Tx−Ty‖ ≤ ‖x−y‖)
satisfies (1.4). An easy application of Banach contraction principle implies that if
T : X → X is nonexpansive, then A = I − T is m-accretive. For more details see
Theorem 4.6.4 in [20].
Evolution Equations of Accretive Type. Consider the first order evolution equa-
tion {

−u′(t) ∈ A(u(t)), a.e. t ≥ 0

u(0) = x ∈ D(A)
(1.5)
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where A : X → 2X is an m-accretive operator. If A−1(0) 6= ∅, say x ∈ A−1(0), the
differential inclusion (1.5) has a stationary solution u(t) ≡ x. By Theorem 2.1 in [1,
Chap. 3 p. 124] every solution to (1.5) is bounded and stable. Existence of a solution
to the stationary equation (1.3) also ensures the existence of solutions to the following
incomplete Cauchy problem associated with A and its discrete version:{

u′′(t) ∈ Au(t), a.e. t ≥ 0

u(0) = x ∈ D(A), supt≥0 ‖u(t)‖ < +∞.
(1.6)

For a fuller treatment we refer the reader to [16, 17].

1.3. Coercivity Conditions. The problem of the existence of a solution for (1.3),
when A is an accretive operator, is taken into consideration by many authors, see for
instance [6, 7, 8, 9, 11, 12, 13, 14, 15, 18, 19]. In this paper, we consider the problem
(1.3) by assuming the coercivity like conditions studied in [2, 5, 10, 21] for maximal
monotone operators. In the next definition, we present some coercivity conditions
that were either mentioned in the literature for monotone operators (Conditions (A)
and (B)) or to the best of our knowledge seem new (Conditions (A′′) and (B′′)).
Definition 1.1 Let A : X → 2X be an accretive operator. Following are some
coercivity conditions for A:

(A) There exists ρ > 0 such that for every x ∈ D(A) with ‖x‖ > ρ there is
x̄ ∈ D(A) with ‖x̄‖ < ‖x‖ satisfying: infy∈A(x)〈y, J(x− x̄)〉 > 0.

(B) There exists ρ > 0 such that for every x ∈ D(A) with ‖x‖ > ρ there is
x̄ ∈ D(A) with ‖x̄‖ < ‖x‖ satisfying: supȳ∈A(x̄)〈ȳ, J(x− x̄)〉 > 0.

(A′) There exist ρ > 0 and z ∈ X such that for every x ∈ D(A) with ‖x− z‖ > ρ
there is x̄ ∈ D(A) with ‖x̄−z‖ < ‖x−z‖ satisfying: infy∈A(x)〈y, J(x−x̄)〉 > 0.

(B′) There exist ρ > 0 and z ∈ X such that for every x ∈ D(A) with ‖x− z‖ > ρ
there is x̄ ∈ D(A) with ‖x̄−z‖ < ‖x−z‖ satisfying: supȳ∈A(x̄)〈ȳ, J(x−x̄)〉 > 0.

(A′′) There exist ρ > 0 and z ∈ X such that for every x ∈ D(A) with ‖x− z‖ > ρ
there is x̄ ∈ D(A) with ‖x̄− z‖ < 1

2‖x− z‖ satisfying:

inf
y∈A(x)

〈y, J(x− x̄)〉 > 0.

(B′′) There exist ρ > 0 and z ∈ X such that for every x ∈ D(A) with ‖x− z‖ > ρ
there is x̄ ∈ D(A) with ‖x̄− z‖ < 1

2‖x− z‖ satisfying:

sup
ȳ∈A(x̄)

〈ȳ, J(x− x̄)〉 > 0.

Conditions (A) and (B) of 1.3.1 are the modified versions of the coercivity
conditions (A) and (B) defined in [21], which have been applied to study (1.3) for
maximal monotone operators in Hilbert and Banach spaces [2, 5, 10, 21].
Proposition 1.2 The following implications hold for the above coercivity conditions:

A′′ =⇒ A =⇒ A′

⇑ ⇑ ⇑
B′′ =⇒ B =⇒ B′
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Proof. A′′ ⇒ A: Take z ∈ X and ρ > 0 as assumed in A′′. A simple computation
shows that ρ0 = 3‖z‖ + ρ satisfies the coercivity condition A. A ⇒ A′ is trivial.
Similar proof works for implications B′′ ⇒ B ⇒ B′. B′′ ⇒ A′′ is proved while
proving Theorem 2. B ⇒ A and B′ ⇒ A′ are similar.

2. Main results

In this section we state the main results, which prove that the existence and bound-
edness of solutions to (1.3) are respectively equivalent to the coercivity conditions (A′′)
and (B′′). These results extend the results of [21] to accretive operators in Banach
spaces. In Theorem 2 we remove the extra condition ”convexity of the domain of
the operator” assumed in [21, Theorem 4.1]. Our approach is using the resolvent
operator.
Theorem 2.1 Let X be a reflexive and separable Banach space. Suppose A : D(A) ⊆
X −→ 2X is an m-accretive mapping. Then the coercivity condition (A′′) in Defini-
tion 1.1 holds if and only if the inclusion problem (1.3) has a solution.
Proof. Only if part. Suppose the coercivity condition (A′′) holds. Let ρ > 0 and
z ∈ X as assumed in the coercivity condition (A′′). Since A is m-accretive, then

xλ := Jλ(z) = (I + λA)−1(z) ∈ D(A) or z ∈ xλ + λAxλ, hence
−1

λ
(xλ − z) ∈ Axλ.

Now, we claim that ‖xλ − z‖ ≤ ρ, which implies that {xλ} is bounded. Assume to
the contrary ‖xλ − z‖ > ρ. The coercivity condition (A′′) implies that there exists
x̄ ∈ D(A) with ‖x̄− z‖ < 1

2‖xλ − z‖ such that:

0 ≤ 〈− 1

λ
(xλ − z), J(xλ − x̄)〉 = 〈− 1

λ
(xλ − x̄), J(xλ − x̄)〉+ 〈− 1

λ
(x̄− z), J(xλ − x̄)〉

Therefore

‖xλ − x̄‖2 ≤ ‖x̄− z‖‖xλ − x̄‖
Since xλ 6= x̄, we have: ‖xλ − x̄‖ ≤ ‖x̄− z‖. Now the triangle inequality yields

‖xλ − z‖ ≤ 2‖x̄− z‖,

which is a contradiction. Therefore the sequence {xλ} is bounded. It follows that

− 1

λ
(xλ − z) → 0 as λ → +∞. Fix x̄ ∈ D(A) and ȳ ∈ A(x̄). Since A is accretive we

have:

〈− 1

λ
(xλ − z)− ȳ, J(xλ − x̄)〉 ≥ 0

that is

0 ≤ 〈−ȳ, J(xλ− x̄)〉+ 〈− 1

λ
(xλ−z), J(xλ− x̄)〉 ≤ 〈−ȳ, J(xλ− x̄)〉+ 1

λ
‖xλ−z‖‖xλ− x̄‖

(2.1)
Letting λ → ∞, since J(xλ − x̄) is bounded, sequential Banach-Alaoglu theorem
implies that exists a sequence λn → ∞ such that J(xλn

− x̄) converges to x∗ in
weak∗ topology. Reflexivity of X implies that x∗ ∈ J(z − x̄) for some z ∈ X. Now
substituting λ by λn in (2.1) and letting λn → +∞, we have 〈−ȳ, J(z − x̄)〉 ≥ 0. By
maximal accretivity of A, we get z ∈ A−1(0).
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If part. Suppose that there exists x0 ∈ D(A) satisfying 0 ∈ A(x0). Since A is
accretive, we have 〈y, J(x − x0)〉 ≥ 0, for all x ∈ D(A) and y ∈ A(x). Let ρ =
2‖x0‖ + 1 > 0 and z = 0. Then for every x ∈ D(A) with ‖x‖ > ρ and y ∈ A(x), we
have 2‖x0‖ < ‖x‖ and 〈y, J(x−x0)〉 > 0. Hence, the coercivity condition (A′′) holds.
Theorem 2.2 Let X be reflexive, separable and strictly convex. Suppose A : X → 2X

is an m-accretive mapping, then the solution set of the inclusion problem (1.3) is
nonempty and bounded if and only if the coercivity condition (B′′) of Definition 1.1
holds.
Proof. If part. If the coercivity condition (B′′) holds, then there exist ρ > 0 and
z ∈ X such that for each x ∈ D(A) with ‖x − z‖ > ρ there is x̄ ∈ D(A) with
‖x̄− z‖ < 1

2‖x− z‖ such that

sup
ȳ∈A(x̄)

〈ȳ, J(x− x̄)〉 > 0.

Since A is accretive, we have:

0 ≤ sup
ȳ∈A(x̄)

〈ȳ, J(x− x̄)〉 ≤ 〈y, J(x− x̄)〉, ∀y ∈ A(x).

So

0 ≤ inf
y∈A(x)

〈y, J(x− x̄)〉.

Therefore the coercivity condition (A′′) holds and by Theorem 2.1, the set A−1(0) is
nonempty.

Now we prove the set A−1(0) is bounded. If not, then for any m > 0 and z ∈ X
there exists xm ∈ D(A) with ‖xm − z‖ > m such that 0 ∈ A(xm). By accretivity of
A, we get

〈0− y, J(xm − x)〉 ≥ 0 ∀x ∈ D(A), ∀y ∈ A(x),

therefore

sup
y∈A(x)

〈y, J(xm − x)〉 ≤ 0 ∀x ∈ D(A). (2.2)

By the coercivity condition (B′′), there exist ρ > 0 and z ∈ X such that for every
x ∈ D(A) with ‖x− z‖ > ρ there is x0 ∈ D(A) with ‖x0 − z‖ < 1

2‖x− z‖ satisfying:

supy0∈A(x0)〈y0, J(x− x0)〉 > 0.

Taking m > ρ and x := xm, we get

supy0∈A(x0)〈y0, J(xm − x0)〉 > 0,

which contradicts (2.2). Hence the set A−1(0) is bounded.

Only if part. Suppose to the contrary, the coercivity condition (B′′) does not hold.
Then for any ρ > 0 and z ∈ X there is x ∈ D(A) with ‖x− z‖ > ρ such that for any
x̄ ∈ D(A) with ‖x̄− z‖ < 1

2‖x− z‖ we have

sup
ȳ∈A(x̄)

〈ȳ, J(x− x̄〉 ≤ 0.

Let ρ > 0 be arbitrary, and z ∈ A−1(0), which is non-empty by the assumption. Then
there is x ∈ D(A) with ‖x− z‖ > ρ (by the contrary assumption). Let x̄ = J2(x0) ∈
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D(A), where

x0 =
1

2
z +

1

2
x. (2.3)

We distinguish two cases:

(i) x̄− z and x0 − z are linearly dependent, i.e. x̄− z = λ(x0 − z), λ ∈ R.
(ii) x̄− z and x0 − z are linearly independent.

In the case (i), since ‖x̄ − z‖ = ‖J2(x0) − z‖ ≤ ‖x0 − z‖, then −1 ≤ λ ≤ 1. The
case λ = −1 does not occur. Because it follows that J2(x0) − z = z − x0. Since
1
2 (x0 − J2(x0)) ∈ A(J2(x0)) and 0 ∈ A(z), by the accretivity of A, we have:

〈x0 − J2(x0), J(J2(x0)− z)〉 ≥ 0.

By a simple computation, we get: J2(x0) = z ⇒ x0 = z. By (2.3), x = z ∈ A−1(0),
which contradicts with ‖x − z‖ > ρ > 0. If λ = 1, then x̄ = x0. In this case
x0 ∈ Fix(J2) = A−1(0), and ‖x0 − z‖ = 1

2‖x − z‖ > ρ
2 . This is a contradiction

with the boundedness of A−1(0), because ρ is arbitrary. The only remaining case is
−1 < λ < 1. In this case we have:

‖x̄− z‖ < ‖x0 − z‖ =
1

2
‖x− z‖. (2.4)

Now, we show that (2.4) is also concluded from the case (ii) . By the resolvent identity,
we have J1( 1

2x0 + 1
2J2(x0)) = J2(x0), therefore we have

‖x̄− z‖ = ‖J2(x0)− z‖ = ‖J1(
1

2
x0 +

1

2
J2(x0))− z‖.

As z ∈ Fix(J1) and by (1.1) we obtain

‖x̄− z‖ ≤ ‖1

2
(x0 − z) +

1

2
(J2(x0)− z)‖.

From the strict convexity of X and case (ii) it follows that

‖x̄− z‖ < 1

2
‖x0 − z‖+

1

2
‖J2(x0)− z‖ ≤ ‖x0 − z‖ =

1

2
‖x− z‖.

Hence in both cases, (i) and (ii), we conclude (2.4). Therefore the contrary assumption
follows

〈x0 − J2(x0), J(x− J2(x0))〉 ≤ sup
ȳ∈A(x̄)

〈ȳ, J(x− x̄)〉 ≤ 0. (2.5)

A simple computation implies that

‖x− J2(x0)‖2 ≤ ‖x− x0‖‖x− J2(x0)‖.

Since by (2.4), x 6= J2(x0) = x̄, from (2.3) we get: ‖x − x̄‖ ≤ 1
2‖x − z‖. So by the

triangle inequality, we obtain

‖x− z‖ − ‖x̄− z‖ ≤ ‖x− x̄‖ ≤ 1

2
‖x− z‖ ⇒ 1

2
‖x− z‖ ≤ ‖x̄− z‖,

which contradicts (2.4).
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3. Application to fixed point theory

As discussed in Subsection 1.2, coercivity conditions for an accretive operator can
be applied to prove the existence of a fixed point of nonexpansive mappings. The
following corollary can be extracted from Subsection 1.2 and Theorem 2.2.
Proof. From the assumption, we have

〈Tx− x̄, J(x− x̄)〉 ≤ ‖Tx− x̄‖‖x− x̄‖ ≤ ‖x− x̄‖2,
which implies that

〈x− Tx, J(x− x̄)〉 ≥ 0.

Then the coercivity condition (A′′) holds for the m-accretive operator I − T . Now
the result is concluded from Theorem 2.2.
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