Fixed Point Theory, 26(2025), No. 1, 177-188 DOI: 10.24193/fpt-ro.2025.1.10 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

FIXED POINT RESULTS FOR NON-SELF OPERATORS ON \mathbb{R}^m_+ -METRIC SPACES

VERONICA ILEA*, ADELA NOVAC** AND DIANA OTROCOL**,***

*Babeş–Bolyai University, Department of Mathematics, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania E-mail: veronica.ilea@ubbcluj.ro

**Technical University of Cluj-Napoca, Department of Mathematics, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania E-mail: adela.novac@math.utcluj.ro, diana.otrocol@math.utcluj.ro

***Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O. Box. 68-1, 400110 Cluj-Napoca, Romania

Abstract. The purpose of this paper is to discuss some problems of the fixed point theory for non-self operators on \mathbb{R}^m_+ -metric spaces. The results complement and extend some known results given in the paper: A. Chis-Novac, R. Precup, I.A. Rus, Data dependence of fixed points for non-self generalized contractions, Fixed Point Theory, 10(2009), No. 1, 73–87.

Key Words and Phrases: \mathbb{R}^m_+ -metric spaces, fixed point, Picard operator, non-self operator, data dependence of the fixed point.

2020 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

1.1. Notations. We begin the introduction by some standard notations that will be used throughout the paper.

Let (X, d) be a \mathbb{R}^m_+ -metric space, $Y \subset X$ a nonempty subset of X and $f: Y \to X$ an operator. In what follow we shall use the following notations:

 $F_f = \{x \in Y : f(x) = x\}$ - the fixed points set of f.

 $P_{cl}(X) = \{Y \subset X | Y \text{ is closed}\}$

 $I(f) = \{ Z \subset Y : f(Z) \subset Z, Z \neq \emptyset \} \text{ - the set of invariant subsets of } f.$

 $(MI)_f = \bigcup I(f)$ - the maximal invariant subset of f.

1.2. Non-self operators on *L*-spaces. In what follow we denote an *L*-space by $(X, \stackrel{F}{\rightarrow})$. Let $Y \subset X$ a nonempty subset of X and $f : Y \to X$ an operator. Throughout this paper we consider that $Y \in P_{cl}(X)$.

 $(AB)_f(x^*) = \{x \in Y : f^n(x) \text{ is defined for all } n \in \mathbb{N} \text{ and } f^n(x) \to x^* \in F_f\}$ -the attraction basin of the fixed point x^* with respect to f.

 $(BA)_f = \underset{x^* \in F_f}{\cup} (AB)_f(x^*)$ - the attraction basin of f.

Following [3] we have:

Definition 1.1. An operator $f: Y \to X$ is said to be a Picard operator (PO) if (i) $F_f = \{x_f^*\};$

$$(ii) (MI)_f = (BA)_f.$$

Definition 1.2. An operator $f: Y \to X$ is said to be a weakly Picard operator (WPO) if

(i)
$$F_f \neq \emptyset;$$

(ii) $(MI)_f = (BA)_f$

Definition 1.3. For each WPO $f: Y \to X$ we define the operator $f^{\infty}: (BA)_f \to (BA)_f$ by $f^{\infty}(x) = \lim_{n \to \infty} f^n(x)$.

Remark 1.4. It is clear that $f^{\infty}((BA)_f) = F_f$, so f^{∞} is a set retraction of $(BA)_f$ to F_f .

Remark 1.5. In terms of weakly Picard self operators the above definitions take the following form:

 $f: Y \to X$ is a PO iff $f|_{(MI)_f}: (MI)_f \to (MI)_f$ is a PO.

Remark 1.6. We have the above notions in each distance structures which induces an *L*-space convergence (\mathbb{R}^m_+ -metrics, $s(\mathbb{R}_+)$ metrics, *K*-metrics, partial metrics, dislocated metrics, ...).

For other results on Picard and weakly Picard operators see [1], [2], [4], [5], [9], [10], [13].

1.3. Operators on \mathbb{R}^m_+ -metric spaces.

Definition 1.7. An operator $f: X \to X$ is an S-contraction if there exists $S \in \mathbb{R}^{m \times m}_+$ such that:

- (i) S is a convergent to zero matrix, i.e. $S^n \to 0$ as $n \to \infty$;
- (ii) $d(f(x), f(y)) \leq Sd(x, y)$, for all $x, y \in X$.

The following results, in \mathbb{R}^m_+ -metric spaces were well known.

Theorem 1.8. (Saturated Perov-Schröder Theorem) Let (X, d) be a complete \mathbb{R}^m_+ metric space. We suppose that, $f: X \to X$ and $S \in \mathbb{R}^{m \times m}_+$ are such that:

- (1) S is a matrix convergent to matrix 0;
- (2) $d(f(x), f(y)) \leq Sd(x, y), \ \forall x, y \in X.$

Then:

(i) $F_f = F_{f^n} = \{x^*\}, \ \forall n \in \mathbb{N}^*;$

- (ii) f is Picard mapping, i.e., $f^n(x) \to x^*$ as $n \to \infty$, $\forall x \in X$;
- (iii) $d(x, x^*) \le (I S)^{-1} d(x, f(x)), \quad \forall x \in X.$
- (iv) the fixed point equation, x = f(x) is Ulam-Hyers stable;
- (v) if $x_n \in X$, $d(x_n, f(x_n)) \to 0$ as $n \to \infty$, then, $x_n \to x^*$ as $n \to \infty$, i.e. the fixed point problem for f is well posed;

(vi) if $x_n \in X, n \in \mathbb{N}$ are such that

$$d(x_{n+1}, f(x_n)) \to 0 \text{ as } n \to \infty$$

then for all $x \in X$ we have

$$d(x_n, x^*) \to 0 \text{ as } n \to \infty,$$

i.e. f has the Ostrowski property.

For this result and other results on fixed point theory in a \mathbb{R}^m_+ -metric space see [7], [8], [12], [11].

The aim of this paper is to complement and extend the mentioned results in the case of non-self operators.

2. Metric conditions on non-self operators on $\mathbb{R}^m_+\text{-metrics}$ and fixed points

Let (X, d) be a \mathbb{R}^m_+ -metric space, $Y \subset X$ a nonempty subset and $f: Y \to X$ an operator.

Definition 2.1. The operators f is an S-contraction if $S \in \mathbb{R}^{m \times m}_+$ and f is such that

(i)
$$S^n \to 0$$
 as $n \to \infty$, i.e. S is a matrix convergent to 0;

(ii) $d(f(x), f(y)) \leq Sd(x, y)$, for all $x, y \in Y$.

Definition 2.2. The operator f is a graphic S-contraction if $S \in \mathbb{R}^{m \times m}_+$ is convergent to 0 and

$$d(f(x), f^2(x)) \le Sd(x, f(x)), \forall x \in Y.$$

Definition 2.3. The operator f is a quasi S-contraction if $F_f = \{x^*\}, S \in \mathbb{R}^{m \times m}_+$ is convergent to 0 and

$$d(f(x), x^*) \le Sd(x, x^*), \forall x \in Y.$$

Definition 2.4. The operator f satisfies a retraction-displacement condition if $F_f = \{x^*\}$ and there exists an increasing function $\psi : \mathbb{R}^m_+ \to \mathbb{R}^m_+, \psi(0) = 0$, and is continuous in 0, such that

$$d(x, x^*) \le \psi\left(d(x, f(x))\right), \forall x \in Y.$$

Definition 2.5. Let ψ defined as in Definition 2.4. By definition, f is ψ -PO if f is PO with respect to \xrightarrow{d} , and

$$d(x, x^*) \le \psi \left(d(x, f(x)) \right), \forall x \in (MI)_f.$$

In the terms of the above metric conditions we have the following results.

Theorem 2.6. Let (X,d) be an \mathbb{R}^m_+ -metric space, $Y \subset X$ a nonempty subset and $f: Y \to X$ be a S-contraction with $F_f = \{x^*\}$. Then:

(i)
$$d(x, x^*) \le (I - S)^{-1} d(x, f(x)), \forall x \in Y$$
:

(ii) if $g: Y \to X$ is such that $d(f(x), g(x)) \le \eta, \forall x \in Y$, for some $\eta \in (\mathbb{R}^*_+)^m$, then

$$d(y^*, x^*) \le (I - S)^{-1}\eta, \ \forall y^* \in F_q;$$

(iii) if $y \in Y$ is such that

$$d(y, f(y)) \le \varepsilon,$$

for some $\varepsilon \in (\mathbb{R}^*_+)^m$, then

$$d(y, x^*) \le (I - S)^{-1}\varepsilon,$$

i.e., the equation x = f(x) is Ulam-Hyers stable;

- (iv) $x_n \in Y, n \in \mathbb{N}, d(x_n, f(x_n)) \to 0 \text{ as } n \to \infty \text{ implies that } x_n \to x^* \text{ as } n \to \infty,$ *i.e.* the fixed point problem for f is well posed.
- (v) $x_n \in Y$, $n \in \mathbb{N}$, $d(x_{n+1}, f(x_n)) \to 0$ as $n \to \infty$ implies that $x_n \to x^*$ as $n \to \infty$, *i.e.* f has the Ostrowski property.

Proof. (i) We have for $x \in Y$,

$$d(x,x^*) \le d(x,f(x)) + d(f(x),x^*) \le d(x,f(x)) + Sd(x,x^*).$$

From this it follows

$$(I-S)d(x,x^*) \le d(x,f(x)).$$

Since S is a matrix convergent to 0, there exists $(I-S)^{-1}$ and $(I-S)^{-1} \ge 0$, i.e., the corresponding function, $(I-S)^{-1} : \mathbb{R}^{m \times m}_{+} \to \mathbb{R}^{m}_{+}, \eta \mapsto (I-S)^{-1}\eta$ is increasing, with value 0 at 0 and continuous. So we have (i), a retraction-displacement condition.

(ii) From (i),

$$d(y^*, x^*) \le (I - S)^{-1} d(y^*, f(y^*)) = (I - S)^{-1} d(g(y^*), f(y^*))$$

$$\le (I - S)^{-1} \eta.$$

(iii) From (i),

$$d(y, x^*) \le (I - S)^{-1} d(y, f(y)) \le (I - S)^{-1} \varepsilon.$$

(iv) The proof follows directly from (i).

(v) Since $f: Y \to X$ is an S-contraction with $F_f = \{x^*\}$ it follows that, f is a quasi S-contraction. So, we have,

$$\begin{aligned} &d(x_{n+1}, x^*) \leq \\ &\leq d(x_{n+1}, f(x_n)) + d(f(x_n), x^*) \leq \\ &\leq d(x_{n+1}, f(x_n)) + Sd(x_n, x^*) \leq \\ &\leq d(x_{n+1}, f(x_n)) + Sd(x_n, f(x_{n-1})) + S^2 d(x_{n-1}, x^*) \leq \\ &\leq \dots \leq \\ &\leq d(x_{n+1}, f(x_n)) + Sd(x_n, f(x_{n-1})) + \dots + S^n d(x_1, f(x_0)) + S^{n+1} d(x_0, x^*). \end{aligned}$$

So, $d(x_{n+1}, x^*) \to 0$ as $n \to \infty$, by a Cauchy-Toeplitz lemma (see [14]).

Theorem 2.7. Let (X,d) be an \mathbb{R}^m_+ -metric space, $Y \subset X$ a nonempty subset and $f: Y \to X$ be an operator such that,

$$d(f(x), f(y)) \le Pd(x, f(x)) + Qd(y, f(y)) + Rd(x, y),$$
(2.1)

for all $x, y \in Y$, where $P, Q, R \in \mathbb{R}^{m \times m}_+$. We suppose that, $F_f = \{x^*\}$ and $(I-R)^{-1} \ge 0$. Then we have that:

(i) $d(x, x^*) \leq Cd(x, f(x)), \ \forall x \in Y, \ where \ C := (I - R)^{-1}(I + P);$

(ii) if $g: Y \to X$ is such that $d(f(x), g(x)) \le \eta, \forall x \in Y$, for some $\eta \in \left(\mathbb{R}^*_+\right)^m$, then

$$d(y^*, x^*) \le C\eta, \ \forall y^* \in F_g;$$

 $d(y, f(y)) \le \varepsilon,$

(iii) if $y \in Y$ is such that

for

some
$$\varepsilon \in \left(\mathbb{R}^*_+\right)^m$$
, then

$$d(y, x^*) \le C\varepsilon,$$

i.e., the equation x = f(x) is Ulam-Hyers stable;

(iv) $x_n \in Y, n \in \mathbb{N}, d(x_n, f(x_n)) \to 0 \text{ as } n \to \infty \text{ implies that } x_n \to x^* \text{ as } n \to \infty,$ *i.e.* the fixed point problem for f is well posed.

Proof. (i) We have for $x \in Y$,

$$\begin{split} d(x,x^*) &\leq d(x,f(x)) + d(f(x),x^*) \leq d(x,f(x)) + d(f(x),f(x^*)) \\ &\leq d(x,f(x)) + Pd(x,f(x)) + Qd(x^*,f(x^*)) + Rd(x,x^*). \end{split}$$

From this it follows

$$(I-R)d(x,x^*) \le (I+P)d(x,f(x)), \forall x \in Y.$$

So, $d(x, x^*) \leq (I - R)^{-1}(I + P)d(x, f(x)).$ (ii) By applying (i) to $y^* \in F_q$

$$\begin{split} d(y^*,x^*) &\leq (I-R)^{-1}(I+P)d(y^*,f(y^*)) \\ &= (I-R)^{-1}(I+P)d(g(y^*),f(y^*)) \\ &\leq (I-R)^{-1}(I+P)\eta, \forall y^* \in F_g. \end{split}$$

(iii) We apply again (i) and obtain

$$d(y, x^*) \le (I - R)^{-1} (I + P) d(y, f(y)) = (I - R)^{-1} (I + P)\varepsilon, \forall y \in Y.$$

(iv) Let

$$d(x_n, x^*) \le d(x_n, f(x_n)) + d(f(x_n), f(x^*))$$

$$\le d(x_n, f(x_n)) + Pd(x_n, f(x_n)) + Qd(x^*, f(x^*)) + Rd(x_n, x^*).$$

We have

$$(I-R)d(x_n, x^*) \le (I+P)d(x_n, f(x_n)),$$

so, this implies that $x_n \to x^*$ as $n \to \infty$, i.e. the fixed point problem for f is well posed.

Theorem 2.8. Let (X, d) be an \mathbb{R}^m_+ -metric space, $Y \subset X$ a nonempty subset and $f: Y \to X$ be an operator such that (2.1) holds, for all $x, y \in Y$, where $P, Q, R \in \mathbb{R}^m_+$. We suppose that, $(I-P)^{-1} \ge 0$ and the matrix $(I-P)^{-1}(P+R)$ is convergent to 0. Then we have that:

(i) d(f(x), x*) ≤ (I-P)⁻¹(P+R)d(x, x*), ∀x ∈ Y, i.e., f is a quasi contraction;
(ii) x_n ∈ Y, n ∈ N, d(x_{n+1}, f(x_n)) → 0 as n → ∞ implies that x_n → x* as n → ∞.

Proof. (i)

$$\begin{aligned} d(f(x), x^*) &= d(f(x), f(x^*)) \le Pd(x, f(x)) + Qd(x^*, f(x^*)) + Rd(x, x^*) \\ &\le P[d(x, x^*) + d(x^*, f(x))] + Rd(x, x^*). \\ (I - P)d(f(x), x^*) \le (P + R)d(x, x^*). \end{aligned}$$

Thus, follows the conclusion.

(ii) Let

$$d(x_{n+1}, x^*) \le d(x_{n+1}, f(x_n)) + d(f(x_n), x^*)$$

$$\le d(x_{n+1}, f(x_n)) + (I - P)^{-1}(P + R)d(x_n, x^*).$$

We have

$$d(x_{n+1}, x^*) \leq (I - P)^{-1} (P + R) d(x_n, x^*)$$

$$\leq (I - P)^{-1} (P + R) [d(x_n, f(x_{n-1})) + d(f(x_{n-1}, x^*))]$$

$$\leq [(I - P)^{-1} (P + R)]^2 d(x_{n-1}, x^*)$$

$$\leq \dots$$

$$\leq [(I - P)^{-1} (P + R)]^{n+1} d(x_0, x^*),$$

so, this implies that $x_{n+1} \to x^*$ as $n \to \infty$.

By similar proofs as above we have the following results.

Theorem 2.9. Let (X,d) be an \mathbb{R}^m_+ -metric space and $Y \subset X$ a nonempty subset. We suppose that $f: Y \to X$ is a ψ -PO with $F_f = \{x^*\}$. Then we have that:

(i) if $g: Y \to X$ is such that $d(f(x), g(x)) \leq \eta, \forall x \in Y$, for some $\eta \in \left(\mathbb{R}^*_+\right)^m$, then

$$d(y^*, x^*) \le \psi(\eta), \ \forall y^* \in F_g \cap (MI)_f;$$

(ii) if $y \in Y \cap (MI)_f$ is such that

$$d(y, f(y)) \le \varepsilon,$$

for some $\varepsilon \in \left(\mathbb{R}^*_+\right)^m$, then

$$d(y, x^*) \le \psi(\varepsilon),$$

i.e., the equation x = f(x) is Ulam-Hyers stable;

(iii) $x_n \in (MI)_f$, $n \in \mathbb{N}$, $d(x_n, f(x_n)) \to 0$ as $n \to \infty$ implies that $x_n \to x^*$ as $n \to \infty$, *i.e.* the fixed point problem for f is well posed.

Proof. (i)

$$\begin{split} d(y^*, x^*) &\leq \psi(d(y^*, f(y^*))) = \psi(d(f(y^*), g(y^*))) \\ &\leq \psi(\eta). \end{split}$$

(ii)

$$d(y, x^*) \le \psi(d(y, f(y))) \le \psi(\varepsilon).$$

$$d(x_n, x^*) \le \psi(d(x_n, f(x_n))) \underset{n \to \infty}{\to} \psi(0) = 0.$$

So $x_n \to x^*$ as $n \to \infty$.

Theorem 2.10. Let (X,d) be an \mathbb{R}^m_+ -metric space and $Y \subset X$ a nonempty subset. We suppose that $f: Y \to X$ is a quasi S-contraction. Then the following implication holds:

$$x_n \in Y, n \in \mathbb{N}, d(x_{n+1}, f(x_n)) \to 0 \text{ as } n \to \infty \text{ implies that } x_n \to x^* \text{ as } n \to \infty.$$

Proof. The conclusion follows from Theorem 2.8.

Remark 2.11. The Theorem 2.7 and Theorem 2.8, in the case $P := \alpha \in \mathbb{R}_+$, Q := $\beta \in \mathbb{R}_+, R := \gamma \in \mathbb{R}_+,$ take the following form:

Theorem 2.12. Let (X, d) be an \mathbb{R}_+ -metric space, $Y \subset X$ a nonempty subset and $f: Y \to X$ be an operator such that,

$$d(f(x), f(y)) \le \alpha d(x, f(x)) + \beta d(y, f(y)) + \gamma d(x, y),$$

$$(2.2)$$

for all $x, y \in Y$, where $\alpha, \beta, \gamma \in \mathbb{R}_+$. We suppose that, $F_f = \{x_f^*\}$ and $\gamma < 1$. Then we have that:

- (i) $d(x, x^*) \leq Cd(x, f(x)), \ \forall x \in Y, \ where \ C := \frac{1+\alpha}{1-\gamma};$
- (ii) if $g: Y \to X$ is such that $d(f(x), g(x)) \leq \eta, \forall x \in Y$, for some $\eta \in \mathbb{R}^*_+$, then

$$d(y^*, x^*) \le C\eta, \ \forall y^* \in F_q;$$

(iii) if $y \in Y$ is such that

$$d(y, f(y)) \le \varepsilon,$$

for some $\varepsilon \in \mathbb{R}^*_+$, then

$$d(y, x^*) \le C\varepsilon,$$

i.e., the equation x = f(x) is Ulam-Hyers stable;

(iv) $x_n \in Y, n \in \mathbb{N}, d(x_n, f(x_n)) \to 0 \text{ as } n \to \infty \text{ implies that } x_n \to x^* \text{ as } n \to \infty,$ i.e. the fixed point problem for f is well posed.

Theorem 2.13. Let (X, d) be an \mathbb{R}_+ -metric space, $Y \subset X$ a nonempty subset and $f: Y \to X$ be an operator such that,

$$d(f(x), f(y)) \le \alpha d(x, f(x)) + \beta d(y, f(y)) + \gamma d(x, y),$$

$$(2.3)$$

for all $x, y \in Y$, where $\alpha, \beta, \gamma \in \mathbb{R}_+$. We suppose that $\alpha < 1$. Then we have that:

- (i) $d(f(x), x^*) \leq \frac{\alpha + \gamma}{1 \alpha} d(x, x^*), \ \forall x \in Y, i.e., f \text{ is a quasicontraction;}$ (ii) $x_n \in Y, \ n \in \mathbb{N}, \ d(x_{n+1}, f(x_n)) \to 0 \text{ as } n \to \infty \text{ implies that } x_n \to x^* as$ $n \to \infty$.

3. FIBRE NON-SELF CONTRACTION PRINCIPLE

In this section we obtain the fibre contraction principle for non-self operators in \mathbb{R}^m_+ -metric space.

Theorem 3.1. Let (X, d) be an \mathbb{R}^m_+ -metric space, $Y \subset X$ a nonempty set and (Y_1, d) a complete metric space. Let $g: Y \to X$, $h(x, \cdot): Y_1 \to Y_1$ and $f: Y \times Y_1 \to X \times Y_1$, f(x, y) = (g(x), h(x, y)). We suppose that:

(i) g is a PO;

(ii) there exists S a convergent to zero matrix such that

$$d(h(x, y), h(x, z)) \le Sd(y, z),$$

for all $x \in (AB)_g$ and $y, z \in Y_1$; (iii) f is continuous. Then f is a PO.

Proof. First of all we remark that $(MI)_f = (MI)_g \times Y_1$ and $(MI)_g = (AB)_g$. Let $x_0 \in (AB)_g$ and $y_0 \in Y_1$. Define $x_{n+1} = g(x_n), y_{n+1} = h(x_n, y_n)$ for $n \in \mathbb{N}$. It is clear that $x_n \to x^* \in F_g$ as $n \to \infty$. Since $h(x^*, \cdot)$ is an S-contraction, $F_{h(x^*, \cdot)} = \{y^*\}$. Let us prove that $y_n \to y^*$. We have

$$d(y_{n+1}, y^*) = d(h(x_n, y_n), y^*)$$

$$\leq d(h(x_n, y_n), h(x_n, y^*)) + d(h(x_n, y^*), y^*)$$

$$\leq Sd(y_n, y^*) + d(h(x_n, y^*), y^*)$$

...

$$\leq S^{n+1}d(y_0, y^*) + S^n d(h(x_0, y^*), y^*) +$$

... + $Sd(h(x_{n-1}, y^*), y^*) + d(h(x_n, y^*), y^*).$

Then $d(y_{n+1}, y^*) \to 0$, by a Cauchy-Toeplitz lemma (see [14]), so f is a PO.

The above result is very useful to study of the differentiability of solutions of operator equations with respect to a parameter. For example, let us consider the following equation

$$x(t,\lambda) = F(t,x(t,\lambda),\lambda), \ t \in [a,b], \ \lambda \in J \subset \mathbb{R}$$

$$(3.1)$$

and $F: [a, b] \times \mathbb{R}^m_+ \times J \to \mathbb{R}^m_+$. We suppose that:

(H1) $J \subset \mathbb{R}$ is a compact interval. (H2) $F \in C([a, b] \times \mathbb{R}^m_+ \times J, \mathbb{R}^m_+)$. (H3) $F(t, \cdot, \cdot) \in C^1(\mathbb{R}^m_+ \times J)$ for every $t \in [a, b]$. (H4) $\left(\left| \frac{\partial F_j}{\partial u_i}(t, u, \lambda) \right| \right)_{i,j=1}^m \leq S, S$ convergent to zero, for every $t \in [a, b], u \in \mathbb{R}^m_+$, $\alpha_i \in \mathbb{R}, \ \lambda \in J, \ i = \overline{1, m}$.

(H5) equation (3.1) has at least one solution. Then we have:

Theorem 3.2. Under the conditions (H1)-(H5) the equation (3.1) has in $C([a, b] \times J, \mathbb{R}^m_+)$ a unique solution x^* and $x^*(t, \cdot) \in C^1(J)$ for every $t \in [a, b]$.

Proof. Let $X = C([a, b] \times J, \mathbb{R}^m_+)$ with norm $\|.\|_C$ and let $B : C([a, b] \times J, \mathbb{R}^m_+) \to C([a, b] \times J, \mathbb{R}^m_+)$ be defined by $B(x)(t, \lambda) = F(t, x(t, \lambda), \lambda)$.

From conditions (H4) and (H5) it follows that $F_B = \{x^*\}$. Let $Y = \{x \in C([a, b] \times J, \mathbb{R}^m_+) : B(x)(t, \lambda) \in \mathbb{R}^m_+, \forall t \in [a, b], \lambda \in J\}$. It is clear that $x^* \in Y, B(Y) \subset Y$ and $B: Y \to Y$ is a PO. Let $x^0 \in Y$ be such that there exists $\frac{\partial x_i^0}{\partial \lambda}$ and $\frac{\partial x_i^0}{\partial \lambda} \in C([a, b] \times J)$. Let us suppose that there exists $\frac{\partial x_i^*}{\partial \lambda}$. Then we have that

$$\frac{\partial x_i^*(t,\lambda)}{\partial \lambda} = \frac{\partial F_i(t,x^*(t,\lambda),\lambda)}{\partial x_i} \cdot \frac{\partial x_i^*(t,\lambda)}{\partial \lambda} + \frac{\partial F_i(t,x^*(t,\lambda),\lambda)}{\partial \lambda}, \ i = \overline{1,m}$$

This relation suggests us to consider the following operators:

$$C_i: Y \times C([a,b] \times J) \to C([a,b] \times J)$$

defined by

$$C_i(x,y)(t,\lambda) = \frac{\partial F_i(t,x(t,\lambda),\lambda)}{\partial x_i} \cdot y(t,\lambda) + \frac{\partial F_i(t,x(t,\lambda),\lambda)}{\partial \lambda}$$

and

$$A:Y\times C([a,b]\times J)\to Y\times C([a,b]\times J)$$

with

$$A(x,y) = (B(x), C(x,y)).$$

From Theorem 3.1 we have that A is a PO. This implies that the sequences $x_{n+1} = B(x_n)$, $y_{n+1} = C(x_n, y_n)$ are convergent, $x_n \to x^*$, $y_n \to y^*$ and $x^* = B(x^*)$, $y^* = C(x^*, y^*)$.

Let us take
$$y_i^0 = \frac{\partial x_i^0}{\partial \lambda}$$
. Then $y_{i,n} = \frac{\partial x_{i,n}}{\partial \lambda}$. So

 $x_n \to x^*$ as $n \to \infty$, with respect to the norm $\|\cdot\|_C$

and

$$\frac{\partial x_{i,n}}{\partial \lambda} \to y_i^* \quad \text{as } n \to \infty.$$

These imply that $y^* \in C^1([a, b] \times J, \mathbb{R}^m_+)$ and $y^*_i = \frac{\partial x^*_i}{\partial \lambda}, \ i = \overline{1, m}$.

For other results regarding fibre contractions, see [6], [15], [16].

4. Data dependence in terms of ψ -PO

Let (X, d) be a \mathbb{R}^m_+ -metric space, $Y \subset X$ a nonempty subset of X and $f, g: Y \to X$ two operators.

Theorem 4.1. Assume that the following conditions are satisfied:

(i)
$$f$$
 is ψ -PO with $F_f = \{x^*\}$;
(ii) $F_g \subset (BA)_f$;
(iii) there exists $\eta \in \mathbb{R}^m_+$ such that

$$d(f(x), g(x)) \le \eta$$
, for all $x \in Y$.

Then

$$d(x^*, y^*) \le \psi(\eta), \ \forall y^* \in F_g.$$

Proof. Let $y^* \in F_g$, $y^* \in (BA)(x^*)$. Then

$$d(y^*, x^*) \le \psi(d(y^*, f(y^*))) = \psi(d(g(y^*), f(y^*))) \le \psi(\eta).$$

Another result in the case of strict φ -contractions is the following.

Theorem 4.2. Assume that the following conditions are satisfied:

(i) f is a strict φ -contraction with $F_f = \{x_f^*\};$

(ii) $F_g \neq \emptyset$;

(iii) there exists $\eta \in \mathbb{R}^m_+$ such that

$$d(f(x), g(x)) \le \eta$$
, for all $x \in Y$.

Then

$$d(x_g^*, x_f^*) \le \psi_{\varphi}(\eta), \text{ for all } x_g^* \in F_g.$$

Proof. Let $x_g^* \in F_g$. We have

$$\begin{aligned} d(x_g^*, x_f^*) &\leq d(x_g^*, f(x_g^*)) + d(f(x_g^*), x_f^*) \\ &= d(g(x_g^*), f(x_g^*)) + d(f(x_g^*), f(x_f^*)) \\ &\leq \eta + \varphi(d(x_g^*, x_f^*)). \end{aligned}$$

Hence

$$d(x_g^*, x_f^*) - \varphi(d(x_g^*, x_f^*)) \le \eta.$$

Then

$$d(x_g^*, x_f^*) \le \psi_{\varphi}(\eta).$$

We also have the following result:

Theorem 4.3. Assume that the following conditions are satisfied: (i) there exist $P, Q \in \mathbb{R}^{m \times m}_+$, P convergent to 0 matrix, such that

$$d(f(x), f(y)) \le Pd(x, y) + Q[d(x, f(x)) + d(y, f(y))]$$

for all $x, y \in X$, and let $F_f = \{x_f^*\};$

(ii) $F_g \neq \emptyset$;

(iii) there exists $\eta \in \mathbb{R}^m_+$ such that

$$d(f(x), g(x)) \le \eta$$
, for all $x \in Y$.

Then

$$d(x_g^*, x_f^*) \le (I - P)^{-1} (I + Q) \eta, \text{ for all } x_g^* \in F_g.$$
(4.1)

Proof. Let $x_q^* \in F_g$. We have

$$\begin{aligned} d(x_g^*, x_f^*) &\leq d(x_g^*, f(x_g^*)) + d(f(x_g^*), x_f^*) \\ &= d(g(x_g^*), f(x_g^*)) + d(f(x_g^*), f(x_f^*)) \\ &\leq \eta + Pd(x_g^*, x_f^*) + Q\left[d(x_g^*, f(x_g^*)) + d(x_f^*, f(x_f^*))\right] \\ &= \eta + Pd(x_g^*, x_f^*) + Qd(x_g^*, f(x_g^*)) \\ &= \eta + Pd(x_g^*, x_f^*) + Qd(g(x_g^*), f(x_g^*)) \\ &\leq \eta + Q\eta + Pd(x_g^*, x_f^*). \end{aligned}$$

Then

$$(I-P) d(x_q^*, x_f^*) \le (I+Q) \eta,$$

 \mathbf{SO}

$$d(x_g^*, x_f^*) \le (I - P)^{-1} (I + Q) \eta$$
, for all $x_g^* \in F_g$.

References

- V. Berinde, S. Maruster, I.A. Rus, Saturated contraction principles for non-self operators, generalizations and applications, Filomat, 31(11)(2017), 3391-3406.
- [2] V. Berinde, A. Petruşel, I.A. Rus, Remarks on the terminology of the mappings in fixed point iterative methods in metric space, Fixed Point Theory, 24(2023), no. 2, 525–540.
- [3] A. Chiş-Novac, R. Precup, I.A. Rus, Data dependence of fixed points for non-self generalized contractions, Fixed Point Theory, 10(2009), no. 1, 73–87.
- M. Frigon, Fixed point and continuation results for contractions and Gauge spaces, Banach Center Publications, 77(2007), 89-114.
- [5] V. Ilea, A. Novac, D. Otrocol, Fixed point results for weakly Picard non-self operators on \mathbb{R}^m_+ -metric spaces, sent for publication.
- [6] V. Ilea, D. Otrocol, I.A. Rus, M.A. Şerban, Applications of fibre contraction principle to some classes of functional integral equations, Fixed Point Theory, 23(2022), no. 1, 279-292.
- [7] J.M. Ortega, W.C. Reinboldt, On a class of approximative iterative processes, Arch. Rat. Mech. Anal., 23(1967), 352-365.
- [8] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
- [9] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58(2003), no. 1, 191-219.
- [10] I.A. Rus, Metric space with fixed point property with respect to contractions, Stud. Univ. Babeş-Bolyai Math., 51(2006), no. 3, 115-121.
- [11] I.A. Rus, The theory of a metrical fixed point theorem: Theoretical and applicative relevances, Fixed Point Theory, 9(2008), no. 2, 541-559.
- [12] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeş-Bolyai Math. 61(2016), no. 3, 343–358.
- [13] I.A. Rus, A. Petruşel, M.A. Şerban, Weakly Picard operators: Equivalent definitions, applications and open problems, Fixed Point Theory, 7(2006), no. 1, 3-22.
- [14] I.A. Rus, M.A. Şerban, Some generalizations of a Cauchy lemma and applications, Topics in Mathematics, Computer Science and Philosophy, Presa Universitară Clujeană, 2008, 173-181.
- [15] M.A. Şerban, Fibre contraction theorem in generalized metric spaces, Automat. Comput. Appl. Math., 16(2007), no. 1, 139-144.
- [16] M.A. Şerban, Saturated fibre contraction principle, Fixed Point Theory, 18(2017), no. 2, 729– 740.

Received: June 2, 2024; Accepted: November 11, 2024.

VERONICA ILEA, ADELA NOVAC AND DIANA OTROCOL