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1. INTRODUCTION

1.1. Notations. We begin the introduction by some standard notations that will be
used throughout the paper.

Let (X, d) be a R’-metric space, Y C X a nonempty subset of X and f:Y — X
an operator. In what follow we shall use the following notations:

Fr={xz €Y : f(x) =a} - the fixed points set of f.

P, (X) ={Y C X|Y is closed}

I(f)={ZCY: f(Z)C Z Z +# @} - the set of invariant subsets of f.

(MI); = UI(f)- the maximal invariant subset of f.

1.2. Non-self operators on L-spaces. In what follow we denote an L-space by

(X, £>) Let Y C X anonempty subset of X and f : Y — X an operator. Throughout
this paper we consider that Y € P (X).
(AB)s(z*) = {x € Y : f7(z) is defined for all n € N and f"(x) — =* € Fy}-the
attraction basin of the fixed point x* with respect to f.
(BA)f = U, (AB)f(x*)- the attraction basin of f.
z*EFy
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Following [3] we have:

Definition 1.1. An operator f:Y — X is said to be a Picard operator (PO) if

(i) Fy = {z}};

(ii) (MI); = (BA);.
Definition 1.2. An operator f : Y — X is said to be a weakly Picard operator
(WPO) if

(i) Fy # 0;

(i) (MI)f = (BA);.
Definition 1.3. For each WPO f :Y — X we define the operator f>° : (BA)f —
(BA); by f=(2) = lim_f"(a).
Remark 1.4. It is clear that f>°((BA)s) = Fy, so f* is a set retraction of (BA);
to Ff.

Remark 1.5. In terms of weakly Picard self operators the above definitions take the
following form:

fY—)X isa PO iff f‘(M[)f(MI)f—)(MI)j is a PO.

Remark 1.6. We have the above notions in each distance structures which induces
an L-space convergence (R'-metrics, s(Ry) metrics, K-metrics, partial metrics, dis-
located metrics, ...).

For other results on Picard and weakly Picard operators see [1], [2], [4], [5], [9],
0], [13]

1.3. Operators on R’'-metric spaces.
Definition 1.7. An operator f : X — X is an S-contraction if there exists S € R}"*™
such that:

(i) S is a convergent to zero matrix, i.e. S™ — 0 as n — o0;

(ii) d(f(x), f(y)) < Sd(x,y), for all z,y € X.
The following results, in R’*-metric spaces were well known.
Theorem 1.8. (Saturated Perov-Schrider Theorem) Let (X, d) be a complete RT -
metric space. We suppose that, f: X — X and S € R"*™ are such that:

(1) S is a matriz convergent to matriz 0;

(2) d(f(x), f(y)) < Sd(z,y), Y,y € X.
Then:

(i) Fy = Fp ={2z"}, Vn € N¥

dw,a*) < (I - 8)d(w, f(2)), Ve € X.
the fixed point equation, x = f(x) is Ulam-Hyers stable;

fixed point problem for f is well posed;
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(vi) if x, € X,n € N are such that
d(xpt1, f(zn)) = 0 as n — oo,
then for all x € X we have
d(xp,z") = 0 as n — oo,
i.e. f has the Ostrowski property.
For this result and other results on fixed point theory in a R’'-metric space see [7],
8], [12], [11].

The aim of this paper is to complement and extend the mentioned results in the
case of non-self operators.

2. METRIC CONDITIONS ON NON-SELF OPERATORS ON RT—METRICS AND FIXED
POINTS

Let (X, d) be a R’*-metric space, ¥ C X a nonempty subset and f : Y — X an
operator.

Definition 2.1. The operators f is an S-contraction if S € RY"™™ and f is such that

(i) S™ — 0 as n — oo, i.e. S is a matrix convergent to 0;
(ii) d(f(x), f(y)) < Sd(z,y), for all z,y € Y.

Definition 2.2. The operator f is a graphic S-contraction if S € R"*™ is convergent

to 0 and
d(f(z), f*(x)) < Sd(z, f(x)),Vz € Y.
Definition 2.3. The operator f is a quasi S-contraction if Fy = {z*}, S € R7"*™ is

convergent to 0 and
d(f(z),z") < Sd(z,z"),Vx € Y.
Definition 2.4. The operator f satisfies a retraction-displacement condition if

Fy = {2*} and there exists an increasing function ¢ : R — R",+(0) = 0, and
is continuous in 0, such that

d(z,z*) < ¢ (d(z, f(x))),YVx € Y.

Definition 2.5. Let ¢ defined as in Definition 2.4. By definition, f is ¥-PO if f is
. d
PO with respect to —, and

d(z,z") <o (d(z, f(z))) Yo € (MI)y.
In the terms of the above metric conditions we have the following results.

Theorem 2.6. Let (X,d) be an R7-metric space, Y C X a nonempty subset and
f:Y = X be a S-contraction with Fy = {x*}. Then:
(i) d(a,a”) < (I §)d(x, f(2)), ¥z € V;
(ii)) if g : Y — X is such that d(f(z),g(x)) < n,Vx € Y, for some n € (]Rj_)m,
then
d(y*, ") < (I = 8)"'n, Vy* € Fy;
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(iii) ify € Y is such that
d(y, f(y)) <e,
for some ¢ € (Ri)m , then
d(y,a*) < (I-8)""e,

i.e., the equation x = f(x) is Ulam-Hyers stable;

(iv) 2, €Y, n €N, d(ay, f(zn)) = 0 as n — oo implies that x,, — x*as n — oo,
i.e. the fized point problem for f is well posed.

(v) zn €Y, n € N, d(xpt1, f(zn)) — 0 as n — oo implies that x, — x*as
n — 00, i.e. f has the Ostrowski property.

Proof. (i) We have for x € Y,
d(z, ") < d(z, f(z)) + d(f(x),2") < d(z, f(z)) + Sd(z, z¥).
From this it follows
Since S is a matrix convergent to 0, there exists (I —S)~! and (I —S)~! >0, i.e., the
corresponding function, (I —S)~*!: RPX™ — R, n— (I —S)~ 'y is increasing, with
value 0 at 0 and continuous. So we have (i), a retraction-displacement condition.
(ii) From (i),
d(y*,«*) < (I - S)"td(y*, f(y*)) = (I = $)""d(g(y"), f(y"))
<=9
(iil) From (4),
d(y,z") < (I - 8)'d(y, f(y)) < (I - 8)e.
(iv) The proof follows directly from (i).

(v) Since f : Y — X is an S-contraction with F; = {z*} it follows that, f is a
quasi S-contraction. So, we have,

d(xpt1,2") <
S d(@nt1, fon)) + d(f(2n), 27) <
< d(p41, f(n)) + Sd(z, 27) <
< d(@ni1, f(2n)) + Sd(xp, f(xn_1)) + S%d(x,_1,2%) <
< d(@ni1, f(2n)) + Sd(xp, f(xn_1)) 4 ...+ S™d(z1, f(z0)) + S d(z0, z%).
So, d(zp41,2*) = 0 as n — oo, by a Cauchy-Toeplitz lemma (see [14]). O

Theorem 2.7. Let (X,d) be an R7'-metric space, Y C X a nonempty subset and
f:Y = X be an operator such that,

A(f (@), (9)) < P, f(2)) + Qa(y, f () + R, p), (21)
for allz,y € Y, where P,Q, R € R"™™. We suppose that, Fy = {z*} and (I-R)™" >
0. Then we have that:

(i) d(z,z*) < Cd(z, f(z)), Yz €Y, where C := (I — R)~(I + P);
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(ii)) if g : Y — X is such that d(f(z),g(x)) < n,Vx € Y, for some n € (]Rj_)m,
then
d(y*,a") < Cn, Vy* € Fy;
(ii) ify € Y is such that
d(y, f(y)) <e,
for some ¢ € (Rj)m , then
d(y,z*) < Ce,

i.e., the equation x = f(x) is Ulam-Hyers stable;
(iv) zn, €Y, n €N, d(an, f(xn)) = 0 as n — oo implies that x,, — x*as n — oo,
i.e. the fized point problem for f is well posed.

Proof. (i) We have for x € Y,
d(z,z%) <d(z, f(z)) +d(f(z),2") < d(z, f(z)) + d(f(z), f(z7))
<d(z, f(z)) + Pd(z, f(z)) + Qd(z™", f(z)) + Rd(x, z").
From this it follows
(I — R)d(z,z") < (I + P)d(z, f(x)),Vz €Y.
So, d(z,xz*) < (I — R)~Y(I + P)d(z, f(z)).
(ii) By applying (i) to y* € F,
d(y*,«*) < (I - R)™'(I + P)d(y", f(y"))
= (I = R)~'(I+ P)d(g(y"), f(y"))
<(I—-R)"YI+ P),vVy* €F,.
(iii) We apply again (i) and obtain
d(y,a*) < (I = R)™(I + P)d(y, f(y)) = (I = R)™ (I + P)e, ¥y € Y.
(iv) Let
d(xn, f(zn)) +d(f(zn), f(z7))
d

(@n, f(@n)) + Pd(zn, f(zn)) + Qd(z”, f(z")) + Rd(zn, z).
We have

(I = R)d(n, ") < (I + P)d(zn, f(xn)),

so, this implies that =, — x*as n — oo, i.e. the fixed point problem for f is well
posed. O

Theorem 2.8. Let (X,d) be an R7*-metric space, Y C X a nonempty subset and
f:Y = X be an operator such that (2.1) holds, for all x,y € Y, where P,Q, R € R,
We suppose that, (I — P)~1 > 0 and the matriz (I — P)~1(P + R) is convergent to 0.
Then we have that:

(i) d(f(x),z*) < (I-P)"Y(P+R)d(x,z%), Vx €Y, i.e., f is a quasi contraction;

(ii) zp, € Y, n € N, d(@pn11, f(zn)) = 0 as n — oo implies that x, — z* as
n — oo.
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Proof. (i)
d(f(z),z") = d(f(z), f(z7)) < Pd(z, f(x)) + Qd(z", f(+7)) + Rd(z,z")
< Pld(z,z*) + d(z*, f(z))] + Rd(z, z*).
(I - P)d(f(x),z") < (P+ R)d(z,z").

Thus, follows the conclusion.

(ii) Let
d(@pi1,27) < d(Tnya, f(2n)) +d(f(2n), 27)
< d(xpi1, f(2n)) + (I — P) Y (P + R)d(z,,z").
We have
A@ns1,2%) < (I = P) (P + R)d(@n, 0"

<(I=P)"Y(P+R)[d(zn, f(xn-1)) + d(f(zn-1,2"))]
<[(I=P)" Y (P+R) d(x,_1,2")
<...
<[P (P+R)]" dlwo, 2",

so, this implies that x,, 11 — =™ as n — oo. O

By similar proofs as above we have the following results.
Theorem 2.9. Let (X,d) be an R -metric space and Y C X a nonempty subset.
We suppose that f:Y — X is a ¢-PO with Fy = {x*}. Then we have that:
(i) if g : Y — X is such that d(f(z),g9(x)) < n,Va € Y, for some n € (Ri)m,
then
d(y™,z") <(n), Vy* € Fgn (MI)y;
(ii) fy e Y N (MI)y is such that
d(y, f(y)) <e,
for some € € (Rj_)m , then
d(y,z") < ¥(e),
i.e., the equation x = f(x) is Ulam-Hyers stable;
(ill) zn, € MI)f, n € N, d(zy, f(zn)) = 0 as n — oo implies that x, — x*as
n — 00, i.e. the fized point problem for f is well posed.

Proof. (i)

(i)
(iii)
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So x, — x*as n — oo. O

Theorem 2.10. Let (X,d) be an R'-metric space and Y C X a nonempty subset.
We suppose that f 1Y — X is a quasi S-contraction. Then the following implication
holds:

xn €Y, n €N, d@ni1, f(zn)) = 0 as n — oo implies that z,, — x* as n — oo.

Proof. The conclusion follows from Theorem 2.8. (|

Remark 2.11. The Theorem 2.7 and Theorem 2.8, in the case P :=a € Ry, @Q :=
B e€RL, R :=~ € R4, take the following form:

Theorem 2.12. Let (X,d) be an Ry-metric space, Y C X a nonempty subset and
f:Y = X be an operator such that,

d(f(x), f(y)) < ad(a, f(x)) + Bd(y, f(y)) +~d(z,y), (2.2)

for all z,y € Y, where o, 8,7 € R. We suppose that, Fy = {m}} and v < 1. Then
we have that:
1+a

(i) d(z,2*) < Cd(z, f(x)), Yx €Y, where C := 1T
-
(i) if g: Y — X is such that d(f(x),g(x)) < n,Va €Y, for somen € R, then
d(y*,«") < Cn, Vy* € Fy;
(iil) if y € Y is such that
d(y, f(y)) <&,
for some e € RY., then
d(y, ") < Ce,

i.e., the equation x = f(x) is Ulam-Hyers stable;
(iv) 2p €Y, n €N, d(xy,, f(xn)) = 0 as n — oo implies that x,, — x*as n — oo,
i.e. the fized point problem for f is well posed.

Theorem 2.13. Let (X,d) be an Ry-metric space, Y C X a nonempty subset and
f:Y = X be an operator such that,

d(f(z), f(y)) < ad(z, f(z)) + Bd(y, f(y)) +vd(z,y), (2.3)
for all x,y € Y, where a, 8,7 € Ry.. We suppose that o < 1. Then we have that:

(i) d(f(z),z*) < %ﬂd(%m*), Ve €Y, i.e., f is a quasicontraction;
—

(ii) z, € Y, n € N, d(zpy1, f(xn)) — 0 as n — oo implies that x, — x*as
n — oo.
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3. FIBRE NON-SELF CONTRACTION PRINCIPLE

In this section we obtain the fibre contraction principle for non-self operators in
R’-metric space.

Theorem 3.1. Let (X,d) be an RY'-metric space, Y C X a nonempty set and (Y1,d)

a complete metric space. Let g: Y — X, h(z,"): Y1 =Yy and f: Y xY; - X x 17,
flz,y) = (g9(x), h(z,y)). We suppose that:

(i) g is a PO;

(ii) there exists S a convergent to zero matriz such that

d(h(z,y), h(z,2)) < Sd(y, z),

for all x € (AB), and y,z € Yi;

(iii) f 4s continuous.

Then f is a PO.
Proof. First of all we remark that (MI); = (MI), x Y7 and (M), = (AB),. Let
xo € (AB)4 and yo € Y7. Define z,41 = g(z5), Ynt1 = h(Tn,yn) for n € N. It is clear
that x, — 2* € Iy as n — oo. Since h(z*,-) is an S-contraction, Fj,(,+.) = {y*}. Let
us prove that y, — y*. We have

d(yn-‘rlvy*) = d(h(l‘n,yn),y*)
< d(h(@n, yn), M@0, y")) + d(M(n, y"), y")
< 8d(yn, y*) + d(h(@n, y*), y")

< 85" d(yo,y*) + S™d(h(wo, y"), ¥ )+
o+ Sd(h(zp—1,9"),y") + d(h(zn, y"), y").
Then d(yn+1,y*) — 0, by a Cauchy-Toeplitz lemma (see [14]), so f is a PO. O
The above result is very useful to study of the differentiability of solutions of

operator equations with respect to a parameter. For example, let us consider the
following equation

2(t,\) = F(t,z(t,\),\), t€[a,b], \e JCR (3.1)

and F': [a,b] x R* x J — R’". We suppose that:
(H1) J C R is a compact mterval
(H2) F € C([a,b] x R™ x J,R™).
(H3) F(t,-,-) € Cl(Rm x J) for every t € [a,b].
(H4)

H4 <’ 5 ( u )\)D < S, S convergent to zero, for every t € [a,b], u € R,
u; .
¢ i,5=1
a; R, e J i=1,m.
(H5) equation (3.1) has at least one solution.
Then we have:

Theorem 3.2. Under the conditions (H1)-(H5) the equation (3.1) has in C([a,b] X
J,RT) a unique solution z* and z*(t,-) € C*(J) for every t € [a, b].
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Proof. Let X = C([a,b] x J,R7") with norm |.|| and let B : C([a,b] x J,RT) —
C([a,b] x J,R7) be defined by B(x)(t,\) = F(t,z(t, \), \).

From conditions (H4) and (H5) it follows that Fip = {z*}. Let Y = {« € C([a, ] x
JRT) : B(x)(t,\) € R, Vt € [a,b], A € J}. It is clear that 2* € Y, B(Y) C Y and

0z9 z?
o B\ 7\ ([a, b] x J).
Let us suppose that there exists ax)\i . Then we have that
ox;(t,A)  OF;(t,x*(t, )\),)\) oz (t, \) n OF;(t, (t,)\),)\)7 =T,

on Ox; oA O\
This relation suggests us to consider the following operators:

Ci:Y x C([a,b] x J) — C([a, b] x J)

defined by
8Fi t,l‘t,)\,/\ 8Fl t,xt,)\,)\
Cila)(t, ) = IOy ) OREELALY
and
A:Y x C([a,b] x J) =Y x C([a,b] x J)
with

A(z,y) = (B(z), C(z,y)).
From Theorem 3.1 we have that A is a PO. This implies that the sequences 11 =
B(xy), Yn+1 = C(xn,yn) are convergent, x, — z*, y, — y* and z* = B(z*),
y* = C(x*,y*).

Let us take y) =

0

i 3a:i7n

. Then y; , = . So

OA OA
Ty, — ¢* as n — 0o, with respect to the norm |||
and
81‘1‘7” - « N
oasn — oo.
8A yl
0
These imply that y* € C*'([a,b] x J,R}) and y; = ;;\ i =1,m. O

For other results regarding fibre contractions, see [6], [15], [16].

4. DATA DEPENDENCE IN TERMS OF ¢-PO

Let (X, d) be a R'-metric space, Y C X a nonempty subset of X and f,g:Y — X
two operators.

Theorem 4.1. Assume that the following conditions are satisfied:
() f is Y-PO with Fy = {z*};
(i) F, € (BA); ;
(ili) there exists n € R such that

d(f(z),g(x)) <n, forall xz €Y.
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Then
d(z*,y*) <¥(n), Yy* € F,.

Proof. Let y* € Fy, y* € (BA)(z*). Then

d(y*,x") <(d(y™, f(y*))) = »(d(g9(y"), f(¥7))) < ¥(n).

Another result in the case of strict p-contractions is the following.

Theorem 4.2. Assume that the following conditions are satisfied:
(i) f is a strict p-contraction with Fy = {x} };
(i) Fy # 0;
(ili) there exists n € R such that
d(f(z),g(x)) <n, forallz €Y.

Then
d(zy,7%7) < y(n), for all zj, € Fy.

Proof. Let z; € Fy. We have

Hence

Then
d(zg,23) < Pp(n).

We also have the following result:

Theorem 4.3. Assume that the following conditions are satisfied:
(i) there exist P,Q € R"™*™, P convergent to 0 matriz, such that

d(f(x), f(y)) < Pd(z,y) + Qld(x, f(x)) + d(y, f(y))]

for all z,y € X, and let Fy = {x;},
(i) Fy # 0;
(ili) there exists n € R such that
d(f(x),g(x) <n, for all v €Y.

Then
d(z},x3) < (I —P)""(I+Q)n, for all x} € F,.

(4.1)
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Proof. Let z; € F;. We have

d(wg, 2%) < d(xy, f(zg)) +d(f(zg), xF)

= d(g(zy), f(xy)) + d(f (), f(xF))

< n+ Pd(zg,x3) + Q [d(zy, f(xy)) + d(z}, f(z}))]
=1+ Pd(zy, 2%) + Qd(xy, f(zy))

=1+ Pd(zy, 27) + Qd(g(xy), f(x))

Then
(I = P)d(zy,z}) < (I+Q)n,
SO
d(al,z3) < (I—P) (I +Q)n, for all ) € F,. O
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