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1. Introduction

1.1. Notations. We begin the introduction by some standard notations that will be
used throughout the paper.

Let (X, d) be a Rm
+ -metric space, Y ⊂ X a nonempty subset of X and f : Y → X

an operator. In what follow we shall use the following notations:
Ff = {x ∈ Y : f(x) = x} - the fixed points set of f.
Pcl(X) = {Y ⊂ X|Y is closed}
I(f) = {Z ⊂ Y : f(Z) ⊂ Z,Z 6= ∅} - the set of invariant subsets of f.
(MI)f = ∪I(f)- the maximal invariant subset of f.

1.2. Non-self operators on L-spaces. In what follow we denote an L-space by

(X,
F→). Let Y ⊂ X a nonempty subset of X and f : Y → X an operator. Throughout

this paper we consider that Y ∈ Pcl(X).
(AB)f (x∗) = {x ∈ Y : fn(x) is defined for all n ∈ N and fn(x) → x∗ ∈ Ff}-the

attraction basin of the fixed point x∗ with respect to f.
(BA)f = ∪

x∗∈Ff

(AB)f (x∗)- the attraction basin of f.
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Following [3] we have:

Definition 1.1. An operator f : Y → X is said to be a Picard operator (PO) if
(i) Ff = {x∗f};
(ii) (MI)f = (BA)f .

Definition 1.2. An operator f : Y → X is said to be a weakly Picard operator
(WPO) if

(i) Ff 6= ∅;
(ii) (MI)f = (BA)f .

Definition 1.3. For each WPO f : Y → X we define the operator f∞ : (BA)f →
(BA)f by f∞(x) = lim

n→∞
fn(x).

Remark 1.4. It is clear that f∞((BA)f ) = Ff , so f∞ is a set retraction of (BA)f
to Ff .

Remark 1.5. In terms of weakly Picard self operators the above definitions take the
following form:

f : Y → X is a PO iff f |(MI)f : (MI)f → (MI)f is a PO.

Remark 1.6. We have the above notions in each distance structures which induces
an L-space convergence (Rm

+ -metrics, s(R+) metrics, K-metrics, partial metrics, dis-
located metrics, ...).

For other results on Picard and weakly Picard operators see [1], [2], [4], [5], [9],
[10], [13].

1.3. Operators on Rm
+ -metric spaces.

Definition 1.7. An operator f : X → X is an S-contraction if there exists S ∈ Rm×m
+

such that:

(i) S is a convergent to zero matrix, i.e. Sn → 0 as n→∞;
(ii) d(f(x), f(y)) ≤ Sd(x, y), for all x, y ∈ X.

The following results, in Rm
+ -metric spaces were well known.

Theorem 1.8. (Saturated Perov-Schröder Theorem) Let (X, d) be a complete Rm
+ -

metric space. We suppose that, f : X → X and S ∈ Rm×m
+ are such that:

(1) S is a matrix convergent to matrix 0;
(2) d(f(x), f(y)) ≤ Sd(x, y), ∀x, y ∈ X.

Then:

(i) Ff = Ffn = {x∗}, ∀n ∈ N∗;
(ii) f is Picard mapping, i.e., fn(x)→ x∗ as n→∞, ∀x ∈ X;

(iii) d(x, x∗) ≤ (I − S)−1d(x, f(x)), ∀x ∈ X.
(iv) the fixed point equation, x = f(x) is Ulam-Hyers stable;
(v) if xn ∈ X, d(xn, f(xn)) → 0 as n → ∞, then, xn → x∗ as n → ∞, i.e. the

fixed point problem for f is well posed;
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(vi) if xn ∈ X,n ∈ N are such that

d(xn+1, f(xn))→ 0 as n→∞,
then for all x ∈ X we have

d(xn, x
∗)→ 0 as n→∞,

i.e. f has the Ostrowski property.

For this result and other results on fixed point theory in a Rm
+ -metric space see [7],

[8], [12], [11].
The aim of this paper is to complement and extend the mentioned results in the

case of non-self operators.

2. Metric conditions on non-self operators on Rm
+ -metrics and fixed

points

Let (X, d) be a Rm
+ -metric space, Y ⊂ X a nonempty subset and f : Y → X an

operator.

Definition 2.1. The operators f is an S-contraction if S ∈ Rm×m
+ and f is such that

(i) Sn → 0 as n→∞, i.e. S is a matrix convergent to 0;
(ii) d(f(x), f(y)) ≤ Sd(x, y), for all x, y ∈ Y .

Definition 2.2. The operator f is a graphic S-contraction if S ∈ Rm×m
+ is convergent

to 0 and

d(f(x), f2(x)) ≤ Sd(x, f(x)),∀x ∈ Y.

Definition 2.3. The operator f is a quasi S-contraction if Ff = {x∗}, S ∈ Rm×m
+ is

convergent to 0 and

d(f(x), x∗) ≤ Sd(x, x∗),∀x ∈ Y.

Definition 2.4. The operator f satisfies a retraction-displacement condition if
Ff = {x∗} and there exists an increasing function ψ : Rm

+ → Rm
+ , ψ(0) = 0, and

is continuous in 0, such that

d(x, x∗) ≤ ψ (d(x, f(x))) ,∀x ∈ Y.

Definition 2.5. Let ψ defined as in Definition 2.4. By definition, f is ψ-PO if f is

PO with respect to
d→, and

d(x, x∗) ≤ ψ (d(x, f(x))) ,∀x ∈ (MI)f .

In the terms of the above metric conditions we have the following results.

Theorem 2.6. Let (X, d) be an Rm
+ -metric space, Y ⊂ X a nonempty subset and

f : Y → X be a S-contraction with Ff = {x∗}. Then:

(i) d(x, x∗) ≤ (I − S)−1d(x, f(x)),∀x ∈ Y ;

(ii) if g : Y → X is such that d(f(x), g(x)) ≤ η,∀x ∈ Y, for some η ∈
(
R∗+

)m
,

then

d(y∗, x∗) ≤ (I − S)−1η, ∀y∗ ∈ Fg;
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(iii) if y ∈ Y is such that
d(y, f(y)) ≤ ε,

for some ε ∈
(
R∗+

)m
, then

d(y, x∗) ≤ (I − S)−1ε,

i.e., the equation x = f(x) is Ulam-Hyers stable;
(iv) xn ∈ Y, n ∈ N, d(xn, f(xn))→ 0 as n→∞ implies that xn → x∗as n→∞,

i.e. the fixed point problem for f is well posed.
(v) xn ∈ Y, n ∈ N, d(xn+1, f(xn)) → 0 as n → ∞ implies that xn → x∗as

n→∞, i.e. f has the Ostrowski property.

Proof. (i) We have for x ∈ Y,
d(x, x∗) ≤ d(x, f(x)) + d(f(x), x∗) ≤ d(x, f(x)) + Sd(x, x∗).

From this it follows
(I − S)d(x, x∗) ≤ d(x, f(x)).

Since S is a matrix convergent to 0, there exists (I−S)−1 and (I−S)−1 ≥ 0, i.e., the
corresponding function, (I−S)−1 : Rm×m

+ → Rm
+ , η 7→ (I−S)−1η is increasing, with

value 0 at 0 and continuous. So we have (i), a retraction-displacement condition.
(ii) From (i),

d(y∗, x∗) ≤ (I − S)−1d(y∗, f(y∗)) = (I − S)−1d(g(y∗), f(y∗))

≤ (I − S)−1η.

(iii) From (i),

d(y, x∗) ≤ (I − S)−1d(y, f(y)) ≤ (I − S)−1ε.

(iv) The proof follows directly from (i).
(v) Since f : Y → X is an S-contraction with Ff = {x∗} it follows that, f is a

quasi S-contraction. So, we have,

d(xn+1, x
∗) ≤

≤ d(xn+1, f(xn)) + d(f(xn), x∗) ≤
≤ d(xn+1, f(xn)) + Sd(xn, x

∗) ≤
≤ d(xn+1, f(xn)) + Sd(xn, f(xn−1)) + S2d(xn−1, x

∗) ≤
≤ . . . ≤
≤ d(xn+1, f(xn)) + Sd(xn, f(xn−1)) + . . .+ Snd(x1, f(x0)) + Sn+1d(x0, x

∗).

So, d(xn+1, x
∗)→ 0 as n→∞, by a Cauchy-Toeplitz lemma (see [14]). �

Theorem 2.7. Let (X, d) be an Rm
+ -metric space, Y ⊂ X a nonempty subset and

f : Y → X be an operator such that,

d(f(x), f(y)) ≤ Pd(x, f(x)) +Qd(y, f(y)) +Rd(x, y), (2.1)

for all x, y ∈ Y, where P,Q,R ∈ Rm×m
+ . We suppose that, Ff = {x∗} and (I−R)−1 ≥

0. Then we have that:

(i) d(x, x∗) ≤ Cd(x, f(x)), ∀x ∈ Y , where C := (I −R)−1(I + P );
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(ii) if g : Y → X is such that d(f(x), g(x)) ≤ η,∀x ∈ Y, for some η ∈
(
R∗+

)m
,

then

d(y∗, x∗) ≤ Cη, ∀y∗ ∈ Fg;

(iii) if y ∈ Y is such that

d(y, f(y)) ≤ ε,
for some ε ∈

(
R∗+

)m
, then

d(y, x∗) ≤ Cε,

i.e., the equation x = f(x) is Ulam-Hyers stable;
(iv) xn ∈ Y, n ∈ N, d(xn, f(xn))→ 0 as n→∞ implies that xn → x∗as n→∞,

i.e. the fixed point problem for f is well posed.

Proof. (i) We have for x ∈ Y,

d(x, x∗) ≤ d(x, f(x)) + d(f(x), x∗) ≤ d(x, f(x)) + d(f(x), f(x∗))

≤ d(x, f(x)) + Pd(x, f(x)) +Qd(x∗, f(x∗)) +Rd(x, x∗).

From this it follows

(I −R)d(x, x∗) ≤ (I + P )d(x, f(x)),∀x ∈ Y.

So, d(x, x∗) ≤ (I −R)−1(I + P )d(x, f(x)).
(ii) By applying (i) to y∗ ∈ Fg

d(y∗, x∗) ≤ (I −R)−1(I + P )d(y∗, f(y∗))

= (I −R)−1(I + P )d(g(y∗), f(y∗))

≤ (I −R)−1(I + P )η,∀y∗ ∈ Fg.

(iii) We apply again (i) and obtain

d(y, x∗) ≤ (I −R)−1(I + P )d(y, f(y)) = (I −R)−1(I + P )ε,∀y ∈ Y.

(iv) Let

d(xn, x
∗) ≤ d(xn, f(xn)) + d(f(xn), f(x∗))

≤ d(xn, f(xn)) + Pd(xn, f(xn)) +Qd(x∗, f(x∗)) +Rd(xn, x
∗).

We have

(I −R)d(xn, x
∗) ≤ (I + P )d(xn, f(xn)),

so, this implies that xn → x∗as n → ∞, i.e. the fixed point problem for f is well
posed. �

Theorem 2.8. Let (X, d) be an Rm
+ -metric space, Y ⊂ X a nonempty subset and

f : Y → X be an operator such that (2.1) holds, for all x, y ∈ Y, where P,Q,R ∈ Rm
+ .

We suppose that, (I −P )−1 ≥ 0 and the matrix (I −P )−1(P +R) is convergent to 0.
Then we have that:

(i) d(f(x), x∗) ≤ (I−P )−1(P+R)d(x, x∗), ∀x ∈ Y , i.e., f is a quasi contraction;
(ii) xn ∈ Y, n ∈ N, d(xn+1, f(xn)) → 0 as n → ∞ implies that xn → x∗ as

n→∞.
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Proof. (i)

d(f(x), x∗) = d(f(x), f(x∗)) ≤ Pd(x, f(x)) +Qd(x∗, f(x∗)) +Rd(x, x∗)

≤ P [d(x, x∗) + d(x∗, f(x))] +Rd(x, x∗).

(I − P )d(f(x), x∗) ≤ (P +R)d(x, x∗).

Thus, follows the conclusion.
(ii) Let

d(xn+1, x
∗) ≤ d(xn+1, f(xn)) + d(f(xn), x∗)

≤ d(xn+1, f(xn)) + (I − P )−1(P +R)d(xn, x
∗).

We have

d(xn+1, x
∗) ≤ (I − P )−1(P +R)d(xn, x

∗)

≤ (I − P )−1(P +R) [d(xn, f(xn−1)) + d(f(xn−1, x
∗))]

≤
[
(I − P )−1(P +R)

]2
d(xn−1, x

∗)

≤ . . .

≤
[
(I − P )−1(P +R)

]n+1
d(x0, x

∗),

so, this implies that xn+1 → x∗ as n→∞. �

By similar proofs as above we have the following results.

Theorem 2.9. Let (X, d) be an Rm
+ -metric space and Y ⊂ X a nonempty subset.

We suppose that f : Y → X is a ψ-PO with Ff = {x∗}. Then we have that:

(i) if g : Y → X is such that d(f(x), g(x)) ≤ η,∀x ∈ Y, for some η ∈
(
R∗+

)m
,

then
d(y∗, x∗) ≤ ψ(η), ∀y∗ ∈ Fg ∩ (MI)f ;

(ii) if y ∈ Y ∩ (MI)f is such that

d(y, f(y)) ≤ ε,
for some ε ∈

(
R∗+

)m
, then

d(y, x∗) ≤ ψ(ε),

i.e., the equation x = f(x) is Ulam-Hyers stable;
(iii) xn ∈ (MI)f , n ∈ N, d(xn, f(xn)) → 0 as n → ∞ implies that xn → x∗as

n→∞, i.e. the fixed point problem for f is well posed.

Proof. (i)

d(y∗, x∗) ≤ ψ(d(y∗, f(y∗))) = ψ(d(f(y∗), g(y∗)))

≤ ψ(η).

(ii)
d(y, x∗) ≤ ψ(d(y, f(y))) ≤ ψ(ε).

(iii)
d(xn, x

∗) ≤ ψ(d(xn, f(xn))) →
n→∞

ψ(0) = 0.
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So xn → x∗as n→∞. �

Theorem 2.10. Let (X, d) be an Rm
+ -metric space and Y ⊂ X a nonempty subset.

We suppose that f : Y → X is a quasi S-contraction. Then the following implication
holds:

xn ∈ Y, n ∈ N, d(xn+1, f(xn))→ 0 as n→∞ implies that xn → x∗ as n→∞.

Proof. The conclusion follows from Theorem 2.8. �

Remark 2.11. The Theorem 2.7 and Theorem 2.8, in the case P := α ∈ R+, Q :=
β ∈ R+, R := γ ∈ R+, take the following form:

Theorem 2.12. Let (X, d) be an R+-metric space, Y ⊂ X a nonempty subset and
f : Y → X be an operator such that,

d(f(x), f(y)) ≤ αd(x, f(x)) + βd(y, f(y)) + γd(x, y), (2.2)

for all x, y ∈ Y, where α, β, γ ∈ R+. We suppose that, Ff = {x∗f} and γ < 1. Then
we have that:

(i) d(x, x∗) ≤ Cd(x, f(x)), ∀x ∈ Y , where C :=
1 + α

1− γ
;

(ii) if g : Y → X is such that d(f(x), g(x)) ≤ η,∀x ∈ Y, for some η ∈ R∗+, then

d(y∗, x∗) ≤ Cη, ∀y∗ ∈ Fg;

(iii) if y ∈ Y is such that

d(y, f(y)) ≤ ε,

for some ε ∈ R∗+, then

d(y, x∗) ≤ Cε,

i.e., the equation x = f(x) is Ulam-Hyers stable;
(iv) xn ∈ Y, n ∈ N, d(xn, f(xn))→ 0 as n→∞ implies that xn → x∗as n→∞,

i.e. the fixed point problem for f is well posed.

Theorem 2.13. Let (X, d) be an R+-metric space, Y ⊂ X a nonempty subset and
f : Y → X be an operator such that,

d(f(x), f(y)) ≤ αd(x, f(x)) + βd(y, f(y)) + γd(x, y), (2.3)

for all x, y ∈ Y, where α, β, γ ∈ R+. We suppose that α < 1. Then we have that:

(i) d(f(x), x∗) ≤ α+ γ

1− α
d(x, x∗), ∀x ∈ Y , i.e., f is a quasicontraction;

(ii) xn ∈ Y, n ∈ N, d(xn+1, f(xn)) → 0 as n → ∞ implies that xn → x∗as
n→∞.
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3. Fibre non-self contraction principle

In this section we obtain the fibre contraction principle for non-self operators in
Rm

+ -metric space.

Theorem 3.1. Let (X, d) be an Rm
+ -metric space, Y ⊂ X a nonempty set and (Y1, d)

a complete metric space. Let g : Y → X, h(x, ·) : Y1 → Y1 and f : Y × Y1 → X × Y1,
f(x, y) = (g(x), h(x, y)). We suppose that:

(i) g is a PO;
(ii) there exists S a convergent to zero matrix such that

d(h(x, y), h(x, z)) ≤ Sd(y, z),

for all x ∈ (AB)g and y, z ∈ Y1;
(iii) f is continuous.
Then f is a PO.

Proof. First of all we remark that (MI)f = (MI)g × Y1 and (MI)g = (AB)g. Let
x0 ∈ (AB)g and y0 ∈ Y1. Define xn+1 = g(xn), yn+1 = h(xn, yn) for n ∈ N. It is clear
that xn → x∗ ∈ Fg as n→∞. Since h(x∗, ·) is an S-contraction, Fh(x∗,·) = {y∗}. Let
us prove that yn → y∗. We have

d(yn+1, y
∗) = d(h(xn, yn), y∗)

≤ d(h(xn, yn), h(xn, y
∗)) + d(h(xn, y

∗), y∗)

≤ Sd(yn, y
∗) + d(h(xn, y

∗), y∗)

...

≤ Sn+1d(y0, y
∗) + Snd(h(x0, y

∗), y∗)+

...+ Sd(h(xn−1, y
∗), y∗) + d(h(xn, y

∗), y∗).

Then d(yn+1, y
∗)→ 0, by a Cauchy-Toeplitz lemma (see [14]), so f is a PO. �

The above result is very useful to study of the differentiability of solutions of
operator equations with respect to a parameter. For example, let us consider the
following equation

x(t, λ) = F (t, x(t, λ), λ), t ∈ [a, b], λ ∈ J ⊂ R (3.1)

and F : [a, b]× Rm
+ × J → Rm

+ . We suppose that:
(H1) J ⊂ R is a compact interval.
(H2) F ∈ C([a, b]× Rm

+ × J,Rm
+ ).

(H3) F (t, ·, ·) ∈ C1(Rm
+ × J) for every t ∈ [a, b].

(H4)

(∣∣∣∣∂Fj

∂ui
(t, u, λ)

∣∣∣∣)m

i,j=1

≤ S, S convergent to zero, for every t ∈ [a, b], u ∈ Rm
+ ,

αi ∈ R, λ ∈ J, i = 1,m.
(H5) equation (3.1) has at least one solution.
Then we have:

Theorem 3.2. Under the conditions (H1)-(H5) the equation (3.1) has in C([a, b]×
J,Rm

+ ) a unique solution x∗ and x∗(t, ·) ∈ C1(J) for every t ∈ [a, b].
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Proof. Let X = C([a, b] × J,Rm
+ ) with norm ‖.‖C and let B : C([a, b] × J,Rm

+ ) →
C([a, b]× J,Rm

+ ) be defined by B(x)(t, λ) = F (t, x(t, λ), λ).
From conditions (H4) and (H5) it follows that FB = {x∗}. Let Y = {x ∈ C([a, b]×

J,Rm
+ ) : B(x)(t, λ) ∈ Rm

+ , ∀t ∈ [a, b], λ ∈ J}. It is clear that x∗ ∈ Y, B(Y ) ⊂ Y and

B : Y → Y is a PO. Let x0 ∈ Y be such that there exists
∂x0i
∂λ

and
∂x0i
∂λ
∈ C([a, b]×J).

Let us suppose that there exists
∂x∗i
∂λ

. Then we have that

∂x∗i (t, λ)

∂λ
=
∂Fi(t, x

∗(t, λ), λ)

∂xi
· ∂x

∗
i (t, λ)

∂λ
+
∂Fi(t, x

∗(t, λ), λ)

∂λ
, i = 1,m.

This relation suggests us to consider the following operators:

Ci : Y × C([a, b]× J)→ C([a, b]× J)

defined by

Ci(x, y)(t, λ) =
∂Fi(t, x(t, λ), λ)

∂xi
· y(t, λ) +

∂Fi(t, x(t, λ), λ)

∂λ

and

A : Y × C([a, b]× J)→ Y × C([a, b]× J)

with

A(x, y) = (B(x), C(x, y)).

From Theorem 3.1 we have that A is a PO. This implies that the sequences xn+1 =
B(xn), yn+1 = C(xn, yn) are convergent, xn → x∗, yn → y∗ and x∗ = B(x∗),
y∗ = C(x∗, y∗).

Let us take y0i =
∂x0i
∂λ

. Then yi,n =
∂xi,n
∂λ

. So

xn → x∗ as n→∞, with respect to the norm ‖·‖C
and

∂xi,n
∂λ

→ y∗i as n→∞.

These imply that y∗ ∈ C1([a, b]× J,Rm
+ ) and y∗i =

∂x∗i
∂λ

, i = 1,m. �

For other results regarding fibre contractions, see [6], [15], [16].

4. Data dependence in terms of ψ-PO

Let (X, d) be a Rm
+ -metric space, Y ⊂ X a nonempty subset of X and f, g : Y → X

two operators.

Theorem 4.1. Assume that the following conditions are satisfied:
(i) f is ψ-PO with Ff = {x∗};
(ii) Fg ⊂ (BA)f ;
(iii) there exists η ∈ Rm

+ such that

d(f(x), g(x)) ≤ η, for all x ∈ Y.
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Then

d(x∗, y∗) ≤ ψ(η), ∀y∗ ∈ Fg.

Proof. Let y∗ ∈ Fg, y
∗ ∈ (BA)(x∗). Then

d(y∗, x∗) ≤ ψ(d(y∗, f(y∗))) = ψ(d(g(y∗), f(y∗))) ≤ ψ(η). �

Another result in the case of strict ϕ-contractions is the following.

Theorem 4.2. Assume that the following conditions are satisfied:
(i) f is a strict ϕ-contraction with Ff = {x∗f};
(ii) Fg 6= ∅;
(iii) there exists η ∈ Rm

+ such that

d(f(x), g(x)) ≤ η, for all x ∈ Y.

Then

d(x∗g, x
∗
f ) ≤ ψϕ(η), for all x∗g ∈ Fg.

Proof. Let x∗g ∈ Fg. We have

d(x∗g, x
∗
f ) ≤ d(x∗g, f(x∗g)) + d(f(x∗g), x∗f )

= d(g(x∗g), f(x∗g)) + d(f(x∗g), f(x∗f ))

≤ η + ϕ(d(x∗g, x
∗
f )).

Hence

d(x∗g, x
∗
f )− ϕ(d(x∗g, x

∗
f )) ≤ η.

Then

d(x∗g, x
∗
f ) ≤ ψϕ(η). �

We also have the following result:

Theorem 4.3. Assume that the following conditions are satisfied:
(i) there exist P,Q ∈ Rm×m

+ , P convergent to 0 matrix, such that

d(f(x), f(y)) ≤ Pd(x, y) +Q[d(x, f(x)) + d(y, f(y))]

for all x, y ∈ X, and let Ff = {x∗f};
(ii) Fg 6= ∅;
(iii) there exists η ∈ Rm

+ such that

d(f(x), g(x)) ≤ η, for all x ∈ Y.

Then

d(x∗g, x
∗
f ) ≤ (I − P )−1(I +Q)η, for all x∗g ∈ Fg. (4.1)
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Proof. Let x∗g ∈ Fg. We have

d(x∗g, x
∗
f ) ≤ d(x∗g, f(x∗g)) + d(f(x∗g), x∗f )

= d(g(x∗g), f(x∗g)) + d(f(x∗g), f(x∗f ))

≤ η + Pd(x∗g, x
∗
f ) +Q

[
d(x∗g, f(x∗g)) + d(x∗f , f(x∗f ))

]
= η + Pd(x∗g, x

∗
f ) +Qd(x∗g, f(x∗g))

= η + Pd(x∗g, x
∗
f ) +Qd(g(x∗g), f(x∗g))

≤ η +Qη + Pd(x∗g, x
∗
f ).

Then
(I − P ) d(x∗g, x

∗
f ) ≤ (I +Q) η,

so
d(x∗g, x

∗
f ) ≤ (I − P )

−1
(I +Q) η, for all x∗g ∈ Fg. �
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