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Abstract. Under some conditions concerning the first eigenvalue corresponding to the relevant

linear operator, the existence of nontrivial solutions and positive solutions for nonlinear fourth-order
equation with Neumann boundary conditions{

y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) = λf(x, y(x)), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0

is obtained, where k1 and k2 are constants, f ∈ C([0, 1] × R,R). And we discuss the properties

of Green’s function in detail according to the different classification of k1 and k2, an example is

presented to illustrate the application of our main results. The main results are obtained by using
the topological method and the fixed point theory of superlinear operators.
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1. Introduction

In this paper, we aim to investigate the existence of nontrivial solutions and positive
solutions to the following nonlinear Euler-Bernoulli beam equation with Neumann
boundary conditions (for short NBVP){

y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) = λf(x, y(x)), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,

(1.1)

where k1 and k2 are constants, λ is a positive parameter, f ∈ C([0, 1] × R,R). One
function y ∈ C[0, 1] is called a positive solution of NBVP (1.1) if y is a solution of
NBVP (1.1) and y(x) > 0, x ∈ (0, 1). This problem is always used to describe the
sliding braces at both ends of an elastic beam.
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Boundary value problems of ordinary differential equations are of great importance
in both theory and application, many of which come from classical mechanics and elec-
tricity. For example, the equation of the elastic beam studied in this paper is derived
from the description of the deformation of the elastic beam in material mechanics.
In material mechanics, the boundary value problem of the fourth order differential
equation is used to describe the deformation of the elastic beam in the equilibrium
state. In particular, the elastic beam equation is also called the Euler-Bernoulli beam
equation. In the last decades, the equation in (1.1) with clamped beam boundary
condition

y(0) = y(1) = y′(0) = y′(1) = 0 (1.2)

has attracted the attention of many scholars, it describes the deformations of elastic
beams with both fixed end-point, see [4, 11, 15, 26, 31, 33] as well as the references
therein. In addition, the equation in (1.1) with Lidstone boundary condition

y(0) = y(1) = y′′(0) = y′′(1) = 0 (1.3)

also has received a lot of attention, since it models the stationary states of the deflec-
tion of an elastic beam with both hinged ends, see [5, 12, 17, 31] and the references
therein. In addition to the above mentioned common types of boundary conditions
for elastic beams, another type of boundary conditions have also been considered due
to the difference in the support forms of the elastic beams, namely, a simple support
and a sliding support boundary condition

y(0) = y′(1) = y′′(0) = y′′′(1) = 0. (1.4)

Besides, the elastic beams boundary value problem with local and nonlocal boundary
conditions have been obtained in [13, 25].

Some of nonlinear analysis tools have been used to investigate the existence of
solutions for the fourth-order elastic beam equation with boundary conditions (1.2)
and (1.3), such as, lower and upper solutions [4, 20, 21, 23], monotone iterative
technique [2, 5, 10, 22, 28], Krasnosel’skii fixed point theorem [8, 29, 31, 30], fixed-
point index [5, 13, 33], Leray-Schauder degree [1, 9] and bifurcation theory [6, 17, 18,
19, 24]. In particular, by using the bifurcation techniques, Ma [17] considered the
existence and multiplicity results of differential equation

y(4)(x) + ηy′′(x)− ζy(x) = λh(x)f(y(x)), x ∈ (0, 1) (1.5)

with boundary condition (1.3), where f ∈ C(R,R) satisfies yf(y) > 0 for all y 6= 0,

η ∈ (−∞,+∞), ζ ∈ [0,+∞) are constants and satisfy the key condition η
π2 + ζ

π4 < 1.
Now, the interesting question is whether we could give a more general condition on η
and ζ ?

In 2014, by using lower and upper solutions methods, Vrabel [23] discussed the
existence of solution the following beam equation

y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) = f(x, y(x)), x ∈ (0, 1) (1.6)

with hinged ends condition (1.3). Here, constants k1 and k2 satisfy the condition:

k1 < k2 < 0. (1.7)
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Now, if we take η = k1 +k2, ζ = −k1k2, then the left sides of equation (1.5) and (1.6)
are the same. However, it is easy to see that the condition (1.7) is more general than

the condition η
π2 + ζ

π4 < 1. Later, Ma et al. [20, 21] discussed the same problem (1.6)
with Lidstone boundary condition (1.3) under the restrictive condition

0 < k1 < k2 < π2 and k1 < 0 < k2 < π2, (1.8)

and obtained the existence of solution by using lower and upper methods. It is noted
that Vrabel [23], Ma et al. [20, 21] only obtained the positivity of Green’s function
under the condition (1.7) and (1.8). Naturally, the question is: could we obtain sign
properties of Green’s function when k1 and k2 change and the positive solution to
these kind of problem under the similar condition?

In particular, the existence and multiplicity of positive solutions for the elastic
beam equations have been studied extensively when the nonlinear term satisfies as-
suming condition (F) : f(x, y) ≥ 0,∀y ≥ 0. However there are only a few papers
concerned with the non-positone or semipositone elastic beam equations. For the
case of non-positone, in 2022, Wang et al. [24] discussed the global structure of posi-
tive solutions for NBVP (1.1) by global bifurcation theory under assumption condition
f(x, 0) < 0,∀x ∈ [0, 1]. Similar conclusion have been studied on Yan et al. [27], and
so on.

Yao [30] considered the existence of positive solutions of semipositone nonlinear
elastic beam equation y(4)(x) = f(x, y(x), y′′(x)), x ∈ [0, 1] with boundary condi-
tion (1.3) by using a special cone and the fixed point theorem of cone expansion-
compression type, where nonlinear term f(x, y) satisfies

f : [0, 1]×
[
− 5

384
X,+∞

)
×
(
−∞, 1

8
X

]
→ [−X,+∞)

is continuous, where X ≥ 0 is a constant. Ma [16] considered the existence and
multiplicity of positive solutions for nonlinear fourth order boundary value problem

y(4)(x) = λf(x, y(x), y′(x)), x ∈ [0, 1] (1.9)

with boundary condition (1.4) by using Guo-Krasnosel’skii fixed point theorem in
cones. They make the following assumptions:

(A1)f : [0, 1]× R+ × R+ → R is continuous and there exists constant X > 0 such
that f(x, y, p) ≥ −X, for (x, y, p) ∈ [0, 1]× R+ × R+;

(A2) There exists a subinterval [a, b] ⊂ (0, 1) with a < b such that

lim
p→+∞

f(x, y, p)

p
=∞

holds uniformly for (x, y) ∈ [a, b]× R+;
(A3)f(x, y, 0) > 0, (x, y) ∈ [0, 1]× R+;

and main results of paper [16] as follows:
Theorem A. Assume (A1) and (A2) hold. Then the problem (1.9) has at least one
positive solution if λ > 0 is small enough;
Theorem B. Assume (A1), (A2) and (A3) hold. Then the problem (1.9) has at least
two positive solutions if λ > 0 is small enough.
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It is worth pointing out that papers [16] and [30] only discussed the existence
and multiplicity of positive solutions for fourth-order equations under the simply
supported beam conditions (1.3) and (1.4), respectively. However, to the best of
our knowledge, a fourth-order equation with parameters under Neumann boundary
conditions in spite of its simple looking structure, is considered as a difficult problem
in the literature. Therefore, relatively little is known about problem (1.1). Motivated
by the above studies, the main purpose of this paper is to establish existence of
nontrivial solutions and positive solutions for nonlinear problem (1.1) with Neumann
boundary condition.

To sum up all the ideas mentioned in the introduction, we try to discuss the
existence of solutions for the nonlinear NBVP (1.1) under a more general condition,
like (1.7) and (1.8). Our method is also suitable for the problem (1.6),(1.7) and the
problem (1.6),(1.8). Throughout this paper, we use the following assumptions:

(H1) There exists a constant ζ > 0 satisfying

lim inf
y→+∞

f(x, y)

y
≥ ζ, ∀ x ∈ [0, 1];

(H2) There exists a constant η > 0 with 0 < η < ζ satisfying

lim sup
y→0

∣∣∣∣∣f(x, y)

y

∣∣∣∣∣ ≤ η, ∀ x ∈ [0, 1];

(H3) There exists a constant X > 0 such that

f(x, y) ≥ −X, ∀ x ∈ [0, 1], y(x) ∈ R;

(H4) f ∈ C([0, 1]× R,R) satisfying superlinear condition

lim
y→+∞

f(x, y)

y
=∞.

This paper is divided into five sections; From the previous discussion, we find that
the appearance of k1 and k2 lead to the absence of the positivity of Green’s function
in NBVP (1.1), which greatly increases the complexity of the calculation of Green’s
function. On this basis, in the second part of this paper, we discuss the properties
of Green’s function in detail according to the different classification of k1 and k2.
Including the cases of k1 ≤ k2 < 0, k1 < 0 < k2 ≤ π2/4 and 0 < k1 < k2 ≤ π2/4,
respectively. We introduce to the some preliminary results which we shall require.
Section 3 and Section 4 are devoted to establishing the existence results of nontrivial
solutions and positive solutions of NBVP (1.1) by the topological method and the
fixed point theory of superlinear operators, and we give an example to illustrate our
main results.
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2. Green’s function and its sign properties

Let X = C[0, 1] be a Banach space, with its usual normal ‖y‖ = max{|y(x)|, x ∈
[0, 1]} for all y ∈ X. In this section, we discuss the Green’s function for NBVP (1.1),
the main results came from papers of Wang et al. [24].

2.1 Green’s function and its sign properties in case k1 ≤ k2 < 0

From k1 ≤ k2 < 0, let k1 = −α2, k2 = −β2, where α and β are constants greater
than zero that satisfy α ≥ β. Then, the NBVP (1.1) is transformed into the following
boundary value problem{

y(4)(x)− (α2 + β2)y′′(x) + α2β2y(x) = f(x, y(x)), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0.

(2.1)

Define linear operator L : D(L)→ X as follows

Ly := y(4) − (α2 + β2)y′′ + α2β2y, y ∈ D(L),

where D(L) := {y ∈ C4[0, 1] : y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0}.
To get the Green’s function G(x, s) of Ly = 0, we define another linear operator

L1y := y′′ − α2y, D(L1) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0}.

It’s not difficult to calculate that the Green’s function of L1y = 0 is

G1(t, s) = −


cosh[α(1− t)] cosh(αs)

α sinhα
, 0 ≤ s ≤ t ≤ 1,

cosh[α(1− s)] cosh(αt)

α sinhα
, 0 ≤ t ≤ s ≤ 1.

Define linear operator

L2y := y′′ − β2y, D(L2) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0}.

Then the Green’s function of L2y = 0 is

G2(t, s) = −


cosh[β(1− t)] cosh(βs)

β sinhβ
, 0 ≤ s ≤ t ≤ 1,

cosh[β(1− s)] cosh(βt)

β sinhβ
, 0 ≤ t ≤ s ≤ 1.

It’s easy to verify that the Green’s function of Ly = L2 ◦ (L1y), and Ly = 0 is

G(x, s) :=

∫ 1

0

G2(x, t)G1(t, s)dt, (x, s) ∈ [0, 1]× [0, 1]. (2.2)

Notice that if α = β, then the characteristic equation µ4 − 2α2µ2 + α4 = 0 of (2.1)
has double roots µ1 = α, µ2 = −α. In this case, the expression of G(x, s) can not be
directly obtained from (2.2). Therefore, we divide two cases as follows:
Case 1. α = β > 0

In this case,

y(x) = C1 cosh(αx) + C2 sinh(αx) + C3x cosh(αx) + C4x sinh(αx)
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is the general solution of y(4)(x)−(α2+β2)y′′(x)+α2β2y(x) = 0. It’s easy to compute
that ϕ(x) = (αx cosh(αx)− sinh(αx))(2α3)−1 is the solution of initial value problem{

ϕ(4)(x)− 2α2ϕ′′(x) + α4ϕ(x) = 0, x ∈ [0, 1],
ϕ(0) = ϕ′(1) = ϕ′′(0) = 0, ϕ′′′(1) = 1.

From the theory of Green’s function, we can obtain the explicit expression of Green’s
function of (2.1) as follows

G(x, s) =



sinhα cosh[α(1− s)][cosh(αx)− αx sinh(αx)]

2α3 sinh2 α

+
α cosh(αx)[cosh(αs+ s sinhα sinh[α(1− s)]]

2α3 sinh2 α
, s ≤ x,

sinhα cosh[α(1− x)][cosh(αs)− αs sinh(αs)]

2α3 sinh2 α

+
α cosh(αs)[cosh(αx+ x sinhα sinh[α(1− x)]]

2α3 sinh2 α
, x ≤ s.

(2.3)

Case 2. α > β > 0
In this case, if 0 ≤ x ≤ s ≤ 1, then

G(x, s) =
1

α2 − β2

[cosh(βx) cosh[β(1− s)]
β sinhβ

− cosh(αx) cosh[α(1− s)]
α sinhα

]
.

By a similar calculation, when 0 ≤ s ≤ x ≤ 1,

G(x, s) =
1

α2 − β2

[cosh[β(1− x)] cosh(βs)

β sinhβ
− cosh[α(1− x)] cosh(αs)

α sinhα

]
.

Thus the concrete expression of Green’s function of problem (2.1) is

G(x, s) =



1

α2 − β2

[cosh[β(1− s)] cosh(βx)

β sinhβ

−cosh[α(1− s)] cosh(αx)

α sinhα

]
, 0 ≤ x ≤ s ≤ 1,

1

α2 − β2

[cosh[β(1− x)] cosh(βs)

β sinhβ

−cosh[α(1− x)] cosh(αs)

α sinhα

]
, 0 ≤ s ≤ x ≤ 1.

(2.4)

Theorem 2.1 [24] If α, β ∈ (0,+∞) with α ≥ β, then the Green’s function of problem
(2.1) satisfies G(x, s) > 0, (x, s) ∈ [0, 1]× [0, 1].
Proof. According to literature [14], we knowGi(t, s) < 0, i = 1, 2, (t, s) ∈ [0, 1]×[0, 1],
and from (2.2), we can get G(x, s) > 0, (x, s) ∈ [0, 1]× [0, 1].

2.2 Green’s function and its sign properties in case k1 < 0 < k2 ≤ π2/4

From k1 < 0 < k2 ≤ π2/4, let k1 = −α2, k2 = β2 and α ∈ (0,+∞), β ∈ (0, π/2],
Then the NBVP (1.1) can be written as the following boundary value problem{

y(4)(x) + (β2 − α2)y′′(x)− α2β2y(x) = f(x, y(x)), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0.

(2.5)
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Define linear operator L : D(L)→ X as follows

Ly := y(4) + (β2 − α2)y′′ − α2β2y, y ∈ D(L),

where D(L) := {y ∈ C4[0, 1] : y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0}.
To get the Green’s function G̃(x, s) of the operator Ly = 0, define linear operator

L1y := y′′ − α2y, D(L1) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0}.

It’s not difficult to calculate G1(t, s) is the Green’s function of L1y = 0.
Define a linear operator

L3y := y′′ + β2y, D(L3) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0},

then the Green’s function of L3y = 0 is

G3(t, s) =


cos[β(1− t)] cos(βs)

β sinβ
, 0 ≤ s ≤ t ≤ 1,

cos[β(1− s)] cos(βt)

β sinβ
, 0 ≤ t ≤ s ≤ 1.

Obviously, if α > 0, then G1(t, s) < 0, (t, s) ∈ [0, 1] × [0, 1]. If 0 < β < π/2, then
G3(t, s) > 0; If β = π/2, then G3(t, s) ≥ 0. Especially, G3(t, s) = 0 with t = s = 0 or
t = s = 1.

Hence, Ly = L3 ◦ (L1y), the Green’s function of Ly = 0 is

G̃(x, s) :=

∫ 1

0

G3(x, t)G1(t, s)dt, (x, s) ∈ [0, 1]× [0, 1]. (2.6)

Moreover, if 0 ≤ x ≤ s ≤ 1, then

−G̃(x, s) =
1

α2 + β2

[cos(βx) cos[β(1− s)]
β sinβ

+
cosh(αx) cosh[α(1− s)]

α sinhα

]
.

By a similar calculation, if 0 ≤ s ≤ x ≤ 1, then we can get

−G̃(x, s) =
1

α2 + β2

[cos[β(1− x)] cos(βs)

β sinβ
+

cosh[α(1− x)] cosh(αs)

α sinhα

]
.

Thus, the concrete expression of Green’s function of problem (2.5) is

−G̃(x, s) =



1

α2 + β2

[cos[β(1− s)] cos(βx)

β sinβ

+
cosh[α(1− s)] cosh(αx)

α sinhα

]
, 0 ≤ x ≤ s ≤ 1,

1

α2 + β2

[cos[β(1− x)] cos(βs)

β sinβ

+
cosh[α(1− x)] cosh(αs)

α sinhα

]
, 0 ≤ s ≤ x ≤ 1.

(2.7)

The properties of Green’s function G̃(x, s) are given as follows:

Theorem 2.2 [24] If α ∈ (0,+∞), β ∈ (0, π/2], then G̃(x, s) < 0, (x, s) ∈ [0, 1] ×
[0, 1].
Proof. When α ∈ (0,+∞), β ∈ (0, π/2], it can be obtained directly from literature
[14] that G1(t, s) < 0, G3(t, s) > 0, (t, s) ∈ [0, 1] × [0, 1]. Combining (2.3), we know
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G̃(x, s) < 0, (x, s) ∈ [0, 1]× [0, 1]. When α ∈ (0,+∞), β = π/2, we can get G1(t, s) <
0 and G3(x, t) ≥ 0.

In particular, G3(x, t) = 0 if and only if x = t = 0 or x = t = 1. Therefore, if
x = 0, combining this with (2.7), we can obtain

−G̃(0, s) =
1

α2 + β2

[cos[β(1− s)]
β sinβ

+
cosh[α(1− s)]

α sinhα

]
, 0 ≤ s ≤ 1.

Because x sinx is increasing on x ∈ (0, π/2), cosx is decreasing, so cosx/(x sinx)−1

is a decreasing function, however, cosx/(x sinx)−1 is positive on x ∈ (0, π/2). Ap-
parently, sinhx and coshx are increasing and positive on x ∈ (0,+∞). Therefore,

−G̃(0, s) > 0, s ∈ [0, 1], then we can get G̃(0, s) < 0, s ∈ [0, 1]; If x = 1,

−G̃(1, s) =
1

α2 + β2

[cos(βs)

β sinβ
+

cosh(αs)

α sinhα

]
, 0 ≤ s ≤ 1.

Similar to reachable G̃(1, s) < 0, s ∈ [0, 1]. To sum up, G̃(x, s) < 0, (x, s) ∈
[0, 1]× [0, 1].

Remark 2.3 It is worth noting that we get G̃(x, s) < 0 with the case of k1 < 0 <
k2 ≤ π2/4. At this point, if the problem we are studying (1.1) is transformed into the
following form{

y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) + λf(x, y(x)) = 0, x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,

(2.8)

then the results obtained in this paper still held true for the above problems.

2.3 Green’s function and its sign properties in case 0 < k1 < k2 ≤ π2/4

From 0 < k1 < k2 ≤ π2/4, let k1 = α2, k2 = β2 and 0 < α < β ≤ π/2, then the
NBVP (1.1) can be written as the following boundary value problem{

y(4)(x) + (α2 + β2)y′′(x) + α2β2y(x) = f(x, y(x)), x ∈ (0, 1),
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0.

(2.9)

Define linear operators L : D(L)→ X

Ly := y(4) + (α2 + β2)y′′ + α2β2y, y ∈ D(L),

where

D(L) := {y ∈ C4[0, 1] : y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0}.
To get the Green’s function G(x, s) of the operator Ly = 0, define another linear

operator

L4y := y′′ + α2y, D(L4) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0}.

It’s not difficult to calculate the Green’s function of L4y = 0 is

G4(t, s) =


cos[α(1− t)] cos(αs)

α sinα
, 0 ≤ s ≤ t ≤ 1,

cos[α(1− s)] cos(αt)

α sinhα
, 0 ≤ t ≤ s ≤ 1.
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Define the linear operator

L3y := y′′ + β2y, D(L3) := {y ∈ C2[0, 1] : y′(0) = y′(1) = 0}.

G3(t, s) is the Green’s function of L3y = 0.
It is easy to verify Ly = L3 ◦ (L4y), then the Green’s function of Ly = 0 is

G(x, s) :=

∫ 1

0

G3(x, t)G4(t, s)dt, (x, s) ∈ [0, 1]× [0, 1]. (2.10)

Notice that if α = β, then the characteristic equation µ4 + 2α2µ2 +α4 = 0 of (2.5)
has double roots µ1 = αi, µ2 = −αi. In this case, the expression of G(x, s) can not
be directly obtained from (2.6).

Therefore, we divide two cases as follows:
Case 3. α = β < π/2

In this case, y(x) = C1 cos(αx) + C2 sin(αx) + C3x cos(αx) + C4x sin(αx) is the
general solution of y(4)(x) + (α2 + β2)y′′(x) + α2β2y(x) = 0. It is easy to compute
that ϕ(x) = (sin(αx)− αx cos(αx))/(2α3)−1 is the solution of initial value problem{

ϕ(4)(x) + 2α2ϕ′′(x) + α4ϕ(x) = 0, x ∈ [0, 1],
ϕ(0) = ϕ′(1) = ϕ′′(0) = 0, ϕ′′′(1) = 1.

Then, we can obtain the concrete expression of Green’s function of problem (2.5) as
follows

G(x, s) =



sinα cos[α(1− s)][cos(αx) + αx sin(αx)]

2α3 sin2 α

+
α cos(αx)[cos(αs− s sinα sin[α(1− s)]]

2α3 sin2 α
, s ≤ x,

sinα cos[α(1− x)][cos(αs) + αs sin(αs)]

2α3 sin2 α

+
α cos(αs)[cos(αx− x sinα sin[α(1− x)]]

2α3 sin2 α
, x ≤ s.

(2.11)

In particular, if α = β = π/2, then t = s = 0 or t = s = 1, G(x, s) contains zero.
Case 4. 0 < α < β < π/2

In this case, if 0 ≤ x ≤ s ≤ 1, then

G(x, s) =
1

β2 − α2

[cos(αx) cos[α(1− s)]
α sinα

− cos(βx) cos[β(1− s)]
β sinβ

]
.

Similarly, if 0 ≤ s ≤ x ≤ 1, then

G(x, s) =
1

β2 − α2

[cos[α(1− x)] cos(αs)

α sinα
− cos[β(1− x)] cos(βs)

β sinβ

]
.
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So the concrete expression of Green’s function of problem (2.5) is

G(x, s) =



1

β2 − α2

[cos[α(1− s)] cos(αx)

α sinα

−cos[β(1− s)] cos(βx)

β sinβ

]
, 0 ≤ x ≤ s ≤ 1,

1

β2 − α2

[cos[α(1− x)] cos(αs)

α sinα

−cos[β(1− x)] cos(βs)

β sinβ

]
, 0 ≤ s ≤ x ≤ 1.

(2.12)

The properties of Green’s function G(x, s) are given as follows:
Theorem 2.4 [24] If 0 < α < β ≤ π/2, then G(x, s) > 0, (x, s) ∈ [0, 1]× [0, 1].
Proof. According to literature [14], we know that Gi(t, s) > 0, i = 3, 4, (t, s) ∈
[0, 1]× [0, 1]. Combining (2.6), we can obtain G(x, s) > 0, (x, s) ∈ [0, 1]× [0, 1].

If 0 < α < β = π/2, then we can get G4(t, s) > 0 and G3(x, t) ≥ 0. Especially,
G3(x, t) = 0 if and only if x = t = 0 or x = t = 1. Therefore, when x = 0, by
combining (2.12), we can obtain

G(0, s) =
1

β2 − α2

[cos[α(1− s)]
α sinα

− cos[β(1− s)]
β sinβ

]
, 0 ≤ s ≤ 1.

Because x sinx is increasing on x ∈ (0, π/2), cosx is decreasing, so cosx/(x sinx)−1

is a decreasing function. Therefore G(0, s) > 0, s ∈ [0, 1]; When x = 1,

G(1, s) =
1

β2 − α2

[cos(αs)

α sinα
− cos(βs)

β sinβ

]
, 0 ≤ s ≤ 1.

Similarly, we can get G(1, s) > 0, s ∈ [0, 1]. To sum up, G(x, s) > 0, (x, s) ∈
[0, 1]× [0, 1].
Remark 2.5 [24] It should be noted that in the three cases discussed in this section,
if the parameter k1 = 0 or k2 = 0, the operator Ly has eigenvalue λ0 = 0 and
Ly = 0 has nontrivial solution y ≡ C (C 6= 0). Therefore, according to the Fredholm
alternative theorem, there is no solution to the problem (1.1), so the parameters in
this paper meet the requirement that k1k2 6= 0 are always valid. In particular, the
parameter k1 = k2 = π2/4, if t = s = 0 or t = s = 1, then G(x, s) contains zero.

2.4 Preliminaries

Based on the sign of Green’s function of NBVP (1.1), without loss of generality,
we discuss the case of 0 < k1 < k2 ≤ π2/4.

Obviously, y(x) is a solution of the problem{
y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) = h(x), x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0,

then

y(x) =

∫ 1

0

G(x, s)h(s)ds, x ∈ [0, 1],

where G(x, s) is given by (2.12).
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From Theorem 2.4, there exist 0 < m < M such that

m = min
x,s∈[0,1]

G(x, s), M = max
x,s∈[0,1]

G(x, s).

Besides, by (2.12) we have
(G1) G(x, s) = G(s, x), 0 ≤ x, s ≤ 1;
(G2) There exist nonnegative function g(x) ∈ C[0, 1] such that

G(x, s) ≥ g(x)G(τ, s), 0 ≤ x, s, τ ≤ 1.

Consider 4-dimensional Banach space

E = {y ∈ C4[0, 1] : y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0}

with the norm ‖y‖ = max
0≤x≤1

|y(x)| for all y ∈ E and the cone P in E given by

P =
{
y ∈ E, y(x) ≥ 0, y(x) ≥ σ‖y‖, σ = mM−1

}
.

For u, v ∈ E, we write u ≤ v if u(x) ≤ v(x) for any x ∈ [0, 1]. For any r > 0, let
Br = {y ∈ E : ‖y‖ < r} and ∂Br = {y ∈ E : ‖y‖ = r}. We denote θ is the zero
element in E.
Lemma 2.6 Define operators A,K : E → E, by

(Ay)(x) =

∫ 1

0

G(x, s)f(s, y(s))ds, y ∈ E, x ∈ [0, 1]; (2.13)

(Ky)(x) =

∫ 1

0

G(x, s)y(s)ds, y ∈ E, x ∈ [0, 1]; (2.14)

Then K(P ) ⊂ P, A(P ) ⊂ P and K : E → E, A : E → E are completely continuous.
Proof. By the definitions of m and M , it follows that

Ay(x) =

∫ 1

0

G(x, s)f(s, y(s))ds ≥ m
∫ 1

0

f(s, y(s))ds, x ∈ [0, 1],

Ay(x) =

∫ 1

0

G(x, s)f(s, y(s))ds ≤M
∫ 1

0

f(s, y(s))ds, x ∈ [0, 1].

Accordingly,

Ay(x) ≥ σ max
x∈[0,1]

Ay(x) = σ‖Ay‖,

where σ = mM−1. So A(P ) ⊂ P , by using the Arzelà-Ascoli theorem, A is a com-
pletely continuous operator. By using similar method it yields that K(P ) ⊂ P and
K : E → E is completely continuous.

It is evident that y ∈ P is a fixed point of the operator λA if and only if y is a
solution of NBVP (1.1). K defined by (2.14) is an important operator in our later
discussion. We present some properties of it as follows.
Lemma 2.7 Suppose that the linear operator K is defined by (2.14). Then the spectral
radius r(K) > 0, and there exist ξ ∈ E with ξ > 0 on [0,1] such that

Kξ = r(K)ξ and

∫ 1

0

ξ(s)ds = r−1(K).
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Moreover, λ1 = r−1(K) is the first positive eigenvalue of the linear NBVP (1.1) and∫ 1

0

(Ky)(s)ξ(s)ds =
1

λ1

∫ 1

0

y(s)ξ(s)ds, ∀ y ∈ E. (2.15)

Proof. Define the cone

P0 = {y ∈ E : y(x) ≥ 0,∀ x ∈ [0, 1]}.
Then the cone P0 is normal and has nonempty interiors int P0. It is clear that P0

is also a total cone of E, that is, E = P0 − P0, which means that the set P0 − P0 =
{u − v : u, v ∈ P0} is dense in E. It follows from Lemma 2.6 that K is strongly
positive, that is,

K(y) ∈ intP0 for y ∈ P0\{θ}.
Obviously, K(P0) ⊆ P0. By the Krein-Rutman theorem ([7], Theorem 19.3; [32],
Theorem 7.C), the spectral radius r(K) > 0 and there exists ξ0 ∈ E with ξ0 > 0 on
[0,1] such that Kξ0 = r(K)ξ0. Let

ξ =
ξ0

r(K)
∫ 1

0
ξ0(s)ds

.

Obviously, ξ > 0 on [0,1], Kξ = r(K)ξ and
∫ 1

0
ξ(s)ds = r−1(K).

Notice that Kξ = r(K)ξ is equivalent to the following NBVP ξ(4)(x) + (k1 + k2)ξ′′(x) + k1k2ξ(x) =
1

r(K)
ξ(x), x ∈ [0, 1],

ξ′(0) = ξ′(1) = ξ′′′(0) = ξ′′′(1) = 0,

we can obtain that λ1 = r−1(K) is an eigenvalue of the linear NBVP (1.1). From the
strong positivity of K, we know that there exist η ∈ P0 and a constant c > 0 such
that cKη ≥ η on [0,1]. Then λ1 is the first positive eigenvalue of the linear problem
NBVP (1.1). Since ξ′(0) = ξ′(1) = ξ′′′(0) = ξ′′′(1) = 0, we have

λ1

∫ 1

0

(Ky)(s)ξ(s)ds =

∫ 1

0

(Ky)(s){ξ(4)(s) + (k1 + k2)ξ′′(s) + k1k2ξ(s)}ds

=

∫ 1

0

ξ(s)(Ky)(4)(s)ds+ (k1 + k2)

∫ 1

0

ξ(s)(Ky)′′(s)ds+ k1k2

∫ 1

0

ξ(s)(Ky)(s)ds

=

∫ 1

0

y(s)ξ(s)ds.

Then (2.15) holds.
The proof of the main theorems are based on the Leray-Schauder theorem. The

following three well-known theorem in [3, 9] are needed in our argument.
Lemma 2.8 [3] Let Ω ⊂ E be a bounded open set, θ ∈ Ω, and A : Ω→ E a completely
continuous operator. If Ax 6= µx, x ∈ ∂Ω, µ ≥ 1, then deg(I −A,Ω, θ) = 1.
Lemma 2.9 [3] Let Ω ⊂ E be a bounded open set and A : Ω → E a completely
continuous operator. If there exists y0 ∈ E\{θ} such that y − Ay 6= µy0, y ∈ ∂Ω,
µ ≥ 0, then deg(I −A,Ω, θ) = 0.
Lemma 2.10 [9] Let Ω ⊂ E be a bounded open set, θ ∈ Ω, and A : Ω → E a
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completely continuous operator with Aθ = θ. Suppose that the Frechet derivative A′θ
of A at θ exists and I is not an eigenvalue of A′θ. Then there exists r0 > 0 such that
for any 0 < r < r0, deg(I−A, Tr, θ) = deg(I−A′θ, Tr, θ) = (−1)κ, where κ is the sum
of algebraic multiplicities for all eigenvalues of eigenvalues of A′θ lying in the interval
(0,1) and Tr = {x ∈ E|‖x‖ < r}.

3. Nontrivial solutions

In this section, we give the existence of nontrivial solutions for NBVP (1.1), and
the main results as follows:
Theorem 3.1 Suppose that (H1)-(H3) hold. Then for any

λ ∈
(
λ1
ζ
,
λ1
η

)
,

NBVP (1.1) has at least one nontrivial solution, where λ1 = r−1(K) and K is given
by (2.14).
Proof. Let (Fy)(x) = f(x, y(x)) for all y ∈ E, then by (2.14), A = KF . Applying the
Arzelà-Ascoli theorem and a standard argument, we can prove that (λA) : E → E is
a completely continuous operator. It is known to all that the nonzero fixed points of
the operator λA are the nontrivial solutions of the NBVP (1.1).

Now we show that there exists R0 > 0, such that for any R > R0,

y − λAy 6= µy∗, ∀ µ ≥ 0, y ∈ ∂TR, (3.1)

where y∗ is the positive eigenfunction of K corresponding to its first eigenvalue λ1 =
r−1(K), TR = {y ∈ C[0, 1]|‖y‖ < R} is a bounded open subset of E.

If (3.1) is not true, then there exists µ0 > 0 (if µ0 = 0, then Theorem 3.1 holds)
and y0 ∈ ∂TR such that

y0 − λAy0 = µ0y
∗. (3.2)

By conditions (H1) and (H2), there exists constant a > 0, r0 > 0 and

0 < ε < min

{
ζλ− λ1

λ
,
ηλ− λ1

λ

}
such that

f(x, y) ≥ (ζ − ε)y − a, x ∈ [0, 1], y ≥ 0, (3.3)

|f(x, y)| ≤ (η + ε)|y|, x ∈ [0, 1], y ≤ r0. (3.4)

It follows from (H3) that

f(x, y) ≥ −X ≥ (ζ − ε)y −X, x ∈ [0, 1], y ≤ 0. (3.5)

Take w = max{X, a}, then by (3.3) and (3.5), we have

f(x, y) ≥ (ζ − ε)y − w, x ∈ [0, 1], y ∈ R. (3.6)

Let ζ1 = ζ − ε, then

λAy = λKFy ≥ λζ1Ky − y1, ∀y ∈ E, (3.7)
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where y1 =
∫ 1

0
G(x, s)λwds. Take

δ = mλ1

∫ 1

0

y∗(s)ds > 0.

By (2.14) and the definition of m we have

y∗(x) = λ1Ky
∗(x) = λ1

∫ 1

0

G(x, s)y∗(s)ds

≥ mλ1
∫ 1

0

y∗(s)ds = δ.

Let

P1 =

{
y ∈ P

∣∣∣∣∣
∫ 1

0

y∗(x)y(x)dx ≥ σλ−11 δ‖y‖

}
.

For any y ∈ P , we have∫ 1

0

y∗(x)(λKy)(x)dx =

∫ 1

0

y∗(x)

{∫ 1

0

G(x, s)λy(s)ds

}
dx

=

∫ 1

0

λy(s)

{∫ 1

0

G(s, x)y∗(x)dx

}
ds

=

∫ 1

0

λy(s)Ky∗(s)ds

≥ σλ−11 δ

∫ 1

0

G(x, s)λy(s)ds

= σλ−11 δ(λKy)(x).

And so ∫ 1

0

y∗(x)(λKy)(x)dx ≥ σλ−11 δ‖λKy‖,

i.e. (λK)(P ) ⊂ P1. Since Fy0 + w ∈ P,

(λK)(Fy0 + w) ∈ P1 and µ0y
∗ = µ0λ1Ky

∗ ∈ P1.

By (3.2) we have

y0 + λKw = λAy0 + µ0y
∗ + λKw = λK(Fy0 + w) + µ0y

∗ ∈ P1.

Thus ∫ 1

0

y ∗ (x)(y0 + λKw)(x)dx ≥ σλ−11 δ‖y0 + λKw‖

≥ σλ−11 δ‖y0‖ − σλ−11 δ‖λKw‖.
(3.8)



SEMIPOSITONE EULER-BERNOULLI BEAM EQUATIONS 169

Take ε0 = ζ1λr(K)− 1 > 0. By (3.7) we have∫ 1

0

y∗(x)(λAy0)(x)dx ≥
∫ 1

0

y∗(x)ζ1(λKy0)(x)dx−
∫ 1

0

y∗(x)y1(x)dx

= ζ1λr(K)

∫ 1

0

y∗(x)y0(x)dx−
∫ 1

0

y∗(x)y1(x)dx

=

∫ 1

0

y∗(x)y0(x)dx+ ε0

∫ 1

0

y∗(x)(y0 + λKw)(x)dx

− ε0
∫ 1

0

y∗(x)(λKw)(x)dx−
∫ 1

0

y∗(x)y1(x)dx.

Take

R0 =
λ1
ε0σδ

{
ε0λ
−1
1 δ‖λKw‖+ ε0

∫ 1

0

y ∗ (x)(λKw)(x)dx

}
+
λ1
ε0δ

∫ 1

0

y∗(x)y1(x)dx.

For any ‖y0‖ = R > R0, by (3.8) we have∫ 1

0

y∗(x)(λAy0 − y0)(x)dx ≥ε0[σλ−11 δ‖y0‖ − σλ−11 δ‖λKw‖]

−ε0
∫ 1

0

y∗(x)(λKw)(x)dx−
∫ 1

0

y∗(x)y1(x)dx

>ε0σλ
−1
1 δR0 − ε0σλ−11 δ‖λKw‖

−ε0
∫ 1

0

y∗(x)(λKw)(x)dx−
∫ 1

0

y∗(x)y1(x)dx = 0.

But we see from (3.2) that∫ 1

0

y∗(x)(y0 − λAy0)(x)dx =

∫ 1

0

y∗(x)µ0y
∗(x)dx ≥ 0,

which is a contradiction. So (3.1) is true. By Lemma 2.9 we have

deg(I − λA, TR, θ) = 0. (3.9)

Next we show that

(λA)y 6= µy, y ∈ ∂Tr, µ ≥ 1, (3.10)

where 0 < r < min{r0, R0}. Assume on the contrary that exist y0 ∈ ∂Tr and µ0 ≥ 1
such that (λA)y0 = µ0y0. Since λA has no fixed point on ∂Tr, we have µ0 > 1. Let
K1 = λ(η + ε)K, then r(K1) < 1. By (3.4), we have

|λAy0| ≤ (η + ε)λK1|y0| = K1|y0|,

then µ0|y0| ≤ K1|y0|, and therefore

µn0 |y0| ≤ Kn
1 |y0|. (3.11)
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Let D = {ξ|ξ ≥ |y0|}. It follows from (3.11) that {µ−n0 Kn
1 |y0| |n = 1, 2, · · · } ⊂ D.

And θ ∈ Tr implies that d = d(θ,D) > 0. Then one can have that

‖Kn
1 ‖ ≥

1

‖y0‖
‖Kn

1 y0‖ ≥
d

‖y0‖
µn0 , n = 1, 2, · · · ,

which shows

r(K1) = lim
n→∞

(‖Kn
1 ‖)1/n ≥ lim

n→∞

(
d

‖y0‖
µn0

)1/n

= µ0 > 1.

This contradicts r(K1) < 1. So (3.10) holds. By Lemma 2.8, we have

deg(I − λA, Tr, θ) = 1. (3.12)

By (3.9) and (3.12), we have

deg(I − λA, TR\Tr, θ) = deg(I − λA, TR, θ)− deg(I − λA, Tr, θ) = −1.

Then λA has at least one fixed point in TR\Tr. This means that NBVP (1.1) has at
least one nontrivial solution.
Remark 3.2 For any ζ > 0 and η = 0, the proof of Theorem 3.1 is valid. Then for
any λ > 0, NBVP (1.1) has at least one nontrivial solution.
Theorem 3.3 Suppose that (H1) and (H2) hold. Assume there exists a constant
X∗ > 0 such that

f(x, y) ≥ −X
∗

C
, ∀ x ∈ [0, 1], y ≥ −λ1X

∗

η
,

then for any

λ ∈
(
λ1
ζ
,
λ1
η

)
NBVP (1.1) has at least one nontrivial solution, where C = max

x∈[0,1]

∫ 1

0
G(x, s)ds.

Proof. Let

f1(x, y) =


f(x, y(x)), ∀ y ≥ −λ1X

∗

η
, x ∈ [0, 1],

f

(
x,−λ1X

∗

η

)
, ∀ y < −λ1X

∗

η
, x ∈ [0, 1],

and

(A1y)(x) =

∫ 1

0

G(x, s)f1(s, y(s))ds.

Then all conditions of Theorem 3.1 hold for f1. By Theorem 3.1, λA1 has at least
one nonzero fixed point ξ∗(x), and

ξ∗(x) = λ

∫ 1

0

G(x, s)f1(s, ξ∗(s))ds ≥ −λX
∗

C

∫ 1

0

G(x, s)ds ≥ −λ1X
∗

η
.

Thus

ξ∗(x) = λ

∫ 1

0

G(x, s)f1(s, ξ∗(s))ds = λ

∫ 1

0

G(x, s)f(s, ξ∗(s))ds = λAξ∗(x).
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This indicates ξ∗(x) is a nontrivial solution of NBVP (1.1).
Theorem 3.4 Suppose that (H1) and (H3) hold. Let f(x, 0) ≡ 0, ∀ x ∈ [0, 1] and

lim
y→∞

f(x, y)

y
= φ. (3.13)

Then for any

λ ∈
(
λ1
ζ
,+∞

)
and λ 6= λ1

φ
,

NBVP (1.1) has at least one nontrivial solution.
Proof. From the proof of Theorem 3.1, if (H1) and (H3) hold, then there exists R0 > 0
such that for any R > R0 and λ > λ1ζ

−1 (3.9) holds.
Since f(x, 0) ≡ 0, ∀ x ∈ [0, 1], Aθ = θ. By (3.13) we have that the Frechet

derivative A′θ of A at θ exists and

(A′θy)(x) =

∫ 1

0

G(x, s)φy(s)ds.

Notice that λ 6= λ1φ
−1, then 1 is not an eigenvalue of λA′θ. By Lemma 2.10 there

exists r0 > 0, for any 0 < r < min{r0, R0},
deg(I − λA, Tr, θ) = deg(I − λA′θ, Tr, θ) = (−1)κ 6= 0, (3.14)

where κ is the sum of algebraic multiplicities for all eigenvalues of λA′θ lying in the
interval (0, 1).

By (3.9) and (3.14) λA has at least one nonzero fixed point. Thus NBVP (1.1) has
at least one nontrivial solution.

4. Positive solutions

In many realistic problems, the positive solution is more significant. In this section
we will study this question.
Theorem 4.1 Suppose that (H4) holds. Then there exists λ∗ > 0 such that for any
0 < λ < λ∗ NBVP (1.1) has at least one positive solution.
Proof. Let D = [0, 1], D0 = [x1, x2] ⊂ (0, 1) ⊂ D, and constant

γ = min
x1≤x≤x2

g(x) > 0.

By (H4), there exist X1 > 0 and R1 > 0 such that

f(x, y) ≥ −X1, ∀ x ∈ [0, 1], y ≥ 0,

f(x, y) ≥ −γ−1NX1, ∀ x ∈ [x1, x2], y ≥ R1, (4.1)

where N > [1− (x2 − x1)](x2 − x1)−1 is a natural number. Let

f2(x, y) =

{
f(x, y(x)), y ≥ 0,
f(x,−y(x)), y < 0.

Then
f2(x, y) ≥ −X1, ∀ x ∈ [0, 1], y ∈ R. (4.2)

Let

(A2y)(x) =

∫ 1

0

G(x, s)f2(s, y(s))ds.
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Obviously, A2 : E → E is a completely continuous operator.
From Remark 3.2 and the proof of Theorem 3.1, there exists R0 > 0, for any

R > R0,

deg(I − λA2, TR, θ) = 0, ∀ λ > 0. (4.3)

Take 0 < r < R0. Let

m1 = max
x∈[0,1],|y|<r

|f2(x, y)|, M = max
0≤x,s≤1

G(x, s), λ = r(m1M)−1.

For any 0 < λ < λ, y ∈ ∂Tr, we have

‖λA2y‖ = max
x∈[0,1]

∣∣∣∣∫ 1

0

λG(x, s)f2(s, y(s))ds

∣∣∣∣ < λMm1 = r = ‖y‖.

Thus

deg(I − λA2, Tr, θ) = 1, ∀ 0 < λ < λ. (4.4)

From (4.3) and (4.4) we have that for any 0 < λ < λ, there exists yλ ∈ C[0, 1] with
‖yλ‖ > r such that yλ = λA2yλ. Now we show

lim
λ→0+,yλ=λA2yλ,‖yλ‖>r

‖yλ‖ = +∞. (4.5)

In fact, if (4.5) doesn’t hold, then there exist λn > 0, yλn ∈ C[0, 1] such that λn → 0,
r < ‖yλn‖ < c (c > 0 is a constant), and

yλn = λnA2yλn . (4.6)

Since A2 is completely continuous, then {yλn} has a subsequence (assume without
loss of generality that it is {yλn}) converging to y∗ ∈ C[0, 1]. Let n→∞ in (4.6), we
have y∗ = θ, which is a contradiction of ‖yλn‖ > r > 0. Then (4.5) holds.

Next we show that there exists R = R(λ) > 0 such that if 0 < λ0 < λ, ‖y0‖ ≥ R
and y0 = λ0Ay0, then y0(x) ≥ 0. Take

R = R(λ) = max{2γ−1R1, 2γ
−1λX1M, 2λX1M}. (4.7)

Assume that 0 < λ0 ≤ λ, ‖y0‖ ≥ R and y0 = λ0Ay0. Take any x ∈ [x1, x2], by (G2)
we have that for any τ ∈ [0, 1],

y0(x) = λ0

∫ 1

0

G(x, s)[f2(s, y0(s)) +X1]ds− λ0
∫ 1

0

X1G(x, s)ds

≥ λ0γ
∫ 1

0

G(τ, s)f2(s, y0(s))ds− λX1M

= γy0(τ)− λX1M.

(4.8)

On account of the continuity of y0, there exists x∗ ∈ [0, 1] such that y0(x∗) = ‖y0‖.
Take τ = x∗ in (4.8), by (4.7) we have

y0(x) ≥ γ‖y0‖ − λX1M ≥ γR− λX1M =
1

2
γR+

1

2
γR− λX1M ≥

1

2
γR ≥ R1.

Thus y0(x) ≥ R1, for any x ∈ [x1, x2]. By (4.1) we have

f2(s, y0(s)) ≥ γ−1NX1, ∀ s ∈ D0 = [x1, x2]. (4.9)
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It follows from (G1) and (G2) that for any s ∈ [x1, x2] and x, τ ∈ [0, 1]

G(x, s) = G(s, x) ≥ γG(τ, x) = γG(x, τ). (4.10)

Take Di ⊂ D(i = 1, 2, · · · , N) such that mesDi = mesD0,
N⋃
i=1

Di ⊃ D\D0. By (4.9)

and (4.10) we have that for any x ∈ D, s ∈ D0, τ ∈ Di(i = 1, 2, · · · , N),

1

N
G(x, s)f2(s, y0(s)) ≥ X1G(x, τ). (4.11)

Notice that mesDi = mesD0(i = 1, 2, · · · , N), then

1

N

∫
D0

G(x, s)f2(d, y0(s))ds ≥
∫
Di

X1G(x, τ)dτ, i = 1, 2, · · · , N.

Thus ∫
D0

G(x, s)f2(s, y0(s))ds ≥
N∑
i=1

∫
Di

X1G(x, τ)dτ

≥
∫
D\D0

X1G(x, τ)dτ =

∫
D\D0

X1G(x, s)ds.

(4.12)

By (4.12) and (4.1) we have that for any x ∈ [0, 1],

y0(x) = λ0

∫
D0

G(x, s)f2(s, y0(s))ds+ λ0

∫
D\D0

G(x, s)f2(s, y0(s))ds ≥ 0.

For R in (4.7), by (4.5), there exists λ∗ > λ such that if 0 < λ ≤ λ∗, ‖yλ‖ ≥ r and
yλ = λA2yλ, then ‖yλ‖ ≥ R, thus yλ(x) ≥ 0. By the definitions of A2 and f2 we have

yλ(x) = λ

∫ 1

0

G(x, s)f2(s, yλ(s))ds+ λ

∫ 1

0

G(x, s)f(s, yλ(s))ds = λA2yλ(x).

So yλ(x) is a positive solution of NBVP (1.1).
Remark 4.2 In Theorem 4.1 we obtain the existence of positive solutions for the
semipositone boundary value problem (1.1) without that assuming (F) holds.
Remark 4.3 Since we only study the existence of positive solutions for the boundary
value problem (1.1), which is irrelevant to the value of f(x, y) when y ≤ 0, we only
suppose that f(x, y) is bounded below when y ≥ 0. The nonlinear term f(x, y) may
be unbounded from below when y ≤ 0.
Example 4.4 Consider the fourth-order Neumann boundary value problem{

y(4)(x) + 5
8y
′′(x) + 3

16y(x) = λ[(x1/2 + 1)y3 − y1/3], x ∈ [0, 1],
y′(0) = y′(1) = y′′′(0) = y′′′(1) = 0.

(4.13)

In this example, f(x, y) = (x1/2 + 1)y3 − y1/3, then

lim
y→+∞

f(x, y)

y
= lim
y→+∞

(√
x+ 1)y2 − 1

y2/3

)
= +∞,

which means that (H4) holds. By Theorem 4.1 there exists λ∗ > 0 such that for
any 0 < λ < λ∗ NBVP (4.13) has at least one positive solution. In particular, the
nonlinear term f doesn’t satisfy condition (F) and (H3), but the existence of positive
solutions of NBVP (4.13) is obtained by using our result.
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