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1. Introduction and main results

In the past decade, the existence and multiplicity of solutions for double phase
problems with different boundary value conditions have been widely investigated by
a number of authors. Related works dealing double phase problems can be found in
the works of Perera-Squassina [27], Papageorgiou-Radulescu-Repovs [25, 26], Cencelj-
Radulescu-Repovs [7], Zhang-Radulescu [33], Radulescu [28], Cao-Ge-Yuan [6], Wang-
Hou-Ge [30], Ge-Lv-Lu [17], Ge-Pucci [18], Liu-Dai [19, 20], Liu-Dai-Papageorgiou-
Winkert [21], Colasuonno-Squassina [8], Crespo Blanco-Gasinski-Harjulehto-Winkert
[11], Zeng-Radulescu-Winkert [32] and Liu-Papageorgiou [22]. For other regularity
results on double phase equations, we can refer to the papers of Baroni-Colombo-
Mingione [2, 3], Colombo-Mingione [9, 10], Byun-Lim [5], De Filippis-Mingione [12,
13, 14], Baasandorj-Byun-Oh [1] and Ok [24].

In this paper, we intend to show how Schaefer’s fixed point theorem are able to
solve a double phase problem involving nonlinearities with gradient. This kind of
research is rare and leaves much space for us to discuss. The tools we use allows us
to make simple assumptions, is also in contrast to other articles in this field.
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We consider the existence of nontrivial solution for the following problem in the
bounded smooth domain Ω ⊂ RN , N ≥ 2:{

− div(|∇u|p−2∇u+ µ(x)|∇u|q−2∇u) = f(x, u,∇u), in Ω,

u = 0, on ∂Ω,
(P )

where 1 < p < q < N and

q

p
< 1 +

1

N
, µ : Ω 7→ [0,+∞) is Lipschitz continuous, (1.1)

and f : Ω × R × R × RN 7→ R is a Carathéodory function satisfying suitable growth
conditions.

In Gasinski-Winkert [16] the authors proved the existence of at least one weak
solution for problem (P ) under the following hypotheses on the nonlinearity f(x, t):

(f1) There exists C > 0 and a function α ∈ L
r
r−1 (Ω) such that

|f(x, t, ξ)| ≤ C(α(x) + |t|r−1 + |ξ|p
r−1
r )

for a.a. x ∈ Ω, for all t ∈ R and for all ξ ∈ RN , where 1 < r < p∗ with the critical
exponent p∗ = Np

N−p ;

(f2) There are constants b1, b2 ≥ 0 with b1 + b2λ
−1
1,p < 1, and a function w ∈ L1(Ω)

such that

f(x, t, ξ)s ≤ b1|ξ|p + b2|t|p + w(x)

for a.a. x ∈ Ω, for all t ∈ R and for all ξ ∈ RN , where λ1,p is the first eigenvalue of
the following the p-Laplacian eigenvalue problem{

− div(|∇u|p−2∇u) = λ|u|p−2u, in Ω,

u = 0, on ∂Ω.

Later in [30], by using the topological degree theory, Wang, Hou and Ge established
the existence of at least one weak solution for (P ) under the following assumptions:

(f3) There are constants r ∈ (1, p), C > 0 and a function α ∈ L
r
r−1 (Ω) such that

|f(x, t, ξ)| ≤ C(α(x) + |t|r−1 + |ξ|p
r−1
r )

for a.a. x ∈ Ω, for all t ∈ R and for all ξ ∈ RN .
It is important to note that the condition (f1) means that the nonlinearity f has

subcritical growth condition, and the condition (f3) means sub-p linear growth. In
this paper, we consider the problem (P ) in the case when the nonlinearity f also
satisfies sub-p linear growth. To this end, we assume that f : Ω × R × R × RN 7→ R
is a Carathéodory function satisfies the following assumptions:

(Hf ) There are constants r ∈ (1, p), c > 0 and a function α ∈ L
p
p−1 (Ω) such that

|f(x, t, ξ)| ≤ α(x) + c(|t|r−1 + |ξ|r−1)

for a.a. x ∈ Ω, for all t ∈ R and all ξ ∈ RN ;
(Hc) There exists some λ ∈ [0, 1] such that

0 < c <
1

λp−1(Crr + Cr|Ω|
1
ν )
,
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where ν = pr
(p−r)(r−1) , CH is defined in Proposition 2.2(2) and Cr is the best constants

for the continuous embedding Lp(Ω) ↪→ Lr(Ω).
The aim of this paper is to prove the existence of at least nontrivial solution for (P )

extending and refining the results in [30, 16] by using Schaefer’s fixed point theorem.
Now, we state our main results.

Theorem 1.1. Under assumptions (Hf ) and (Hc), then problem (P ) admits a non-

trivial solution u ∈W 1,H
0 (Ω).

This paper is divided into three sections. In Section 2, we will introduce some tools
which we need to prove our main result in the last section. In Section 3, we give the
proof of Theorem 1.1.

2. Preliminaries

Firstly, let us summary the most important results on the Musielak-Orlicz-Sobolev

space W 1,H
0 (Ω) and the basic properties of the double-phase operator. For more

details, we orient the reader to [8, 23, 4, 15] and references therein. We also recall
Schaefer’s fixed point theorems [29].

In the entire paper, we always assume that Ω ⊂ RN is an open bounded subset
with smooth boundary ∂Ω, and assumption (1.1) holds.

Now, we consider the function H : Ω× [0,+∞)→ [0,+∞) defined by

H(x, t) = tp + µ(x)tq, ∀(x, t) ∈ Ω× [0,+∞).

We define the following Musielak-Orlicz space

LH(Ω) =
{
u|u : Ω→ R is measurable and

∫
Ω

H(x, |u|)dx < +∞
}
,

endowed with the Luxemburg norm

|u|H = inf
{
λ > 0 :

∫
Ω

H(x, |u
λ
|)dx ≤ 1

}
.

We also defined the the corresponding Musielak-Orlicz-Sobolev space

W 1,H(Ω) = {u ∈ LH(Ω) : |∇u| ∈ LH(Ω)},
which is endowed with the norm ‖u‖ = |u|H + |∇u|H .

We also define W 1,H
0 (Ω) as the subspace of W 1,H(Ω) which is the closure of C∞0 (Ω)

with respect to the norm ‖ · ‖. According to the previous definitions, we known that

LH(Ω), W 1,H
0 (Ω) and W 1,H(Ω) are separable reflexive Banach spaces (see [8]).

Later we need to use the modular and its properties, which is a mapping ρH :
LH(Ω)→ R defined by

ρH(u) =

∫
Ω

(|u|p + µ(x)|u|q)dx.

Proposition 2.1. ( [19, Proposition 2.1]) For all u, v ∈ LH(Ω), we have
(i) |u|H < 1(resp = 1;> 1)⇔ ρH(u) < 1(resp = 1;> 1).
(ii) |u|H ≥ 1⇒ |u|pH ≤ ρH(u) ≤ |u|qH .
(iii) |u|H ≤ 1⇒ |u|qH ≤ ρH(u) ≤ |u|pH .
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Based on the proof of Liu-Dai [8, Proposition 2.15, Proposition 2.18] we have the

following the embedding result for the space W 1,H
0 (Ω).

Proposition 2.2. (1) Assume that ϑ ∈ [1, p∗). Then the embedding from W 1,H
0 (Ω)

to Lϑ(Ω) is continuous and compact.
(2) Assume that hypotheses (1.1) is true. Then there is a constant CH > 0 such

that

|u|H ≤ CH |∇u|H , ∀u ∈W 1,H
0 (Ω).

According to Proposition 2.2(1), there exists cϑ > 0 such that

|u|ϑ ≤ cϑ‖u‖, ∀u ∈W 1,H
0 (Ω),

where |u|s denotes the usual norm in Lϑ(Ω) for all 1 ≤ ϑ < p∗. Moreover, the

space W 1,H
0 (Ω) has a norm | · | given by ‖u‖ = |∇u|H for all u ∈ W 1,H

0 (Ω), which is
equivalent to ‖ · ‖.

In addition, we consider the double-phase operator L : W 1,H
0 (Ω) → (W 1,H

0 (Ω))∗

defined by

〈L(u), v〉 =

∫
Ω

(|∇u|p−2∇u · ∇v + µ(x)|∇u|q−2∇u · ∇v)dx,

for all u, v ∈ W 1,H
0 (Ω), where 〈·, ·〉 is the duality pairing between W 1,H

0 (Ω) and its

dual space (W 1,H
0 (Ω))∗. The next result summarizes the properties of the operator

L. It can be found, for example, in Liu-Dai [19, Proposition 3.1].

Proposition 2.3. Let E = W 1,H
0 (Ω) and L : E → E∗ be as above. Then L is

bounded, continuous, monotone (hence maximal monotone), and of type (S+).

Let us recall the following classical Schaefer’s fixed point theorem we will use later.

Theorem 2.4. [29] Let X be a normed space, and T : X → X be a continuous map-
ping which maps bounded sets into relatively compact sets. Then one of the following
statements holds:

(i) the equation u = T (u) has a solution, or
(ii) the set B = {x ∈ X : u = λT (u) : 0 < λ < 1} is unbounded.

3. Proof of the main results

Firstly, we will prove the key lemma of this paper.

Lemma 3.1. Let assumption (Hf ) be satisfied. Then we define the operator S : E →
E∗ by

〈Su, v〉 =

∫
Ω

f(x, u,∇u)vdx, ∀u, v ∈ E, (3.1)

which is compact.

Proof. First, we define the operator φ : E → L
p
p−1 (Ω) given by

φu = f(x, u,∇u), ∀u ∈ E.
Next, we prove that φ is bounded and continuous.
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Let us verify that φ is bounded. By the virtue of assumptions of H(f), one has

|φu|
p
p−1
p
p−1

=

∫
Ω

|f(x, u(x),∇u(x))|
p
p−1 dx ≤ C(|α|

p
p−1
p
p−1

+ |u|ττ + |∇u|ττ ), (3.2)

where τ = p(r−1)
p−1 < p. From the continuous embedding E ↪→ Lr(Ω) (1 < τ < p < p∗)

we have

|φu|
p
p−1
p
p−1
≤C(|α|

p
p−1
p
p−1

+ ‖u‖τ + ‖u‖τ ). (3.3)

This shows that φ is bounded on E.
Next, we will prove that φ is continuous. Let un → u in E. Then it is obvious that

un → u in Lp(Ω) and ∇un → ∇u in (Lp(Ω))N . Hence there exists a subsequence of
{unk}∞k=1 of {un}∞n=1 and measurable functions g ∈ Lp(Ω) and h ∈ (Lp(Ω))N such
that

unk(x)→ u(x) and ∇unk(x)→ ∇u(x), a.e. x ∈ Ω, as k → +∞;

|unk(x)| ≤ g(x) and |∇unk(x)| ≤ |h(x)|, a.e. x ∈ Ω and all k ∈ N.
(3.4)

Since f satisfies the Carathéodory condition. So we obtain that

f(x, unk(x),∇unk(x))→ f(x, u,∇u(x)), a.e. x ∈ Ω, as k → +∞. (3.5)

Moreover by (3.4), we know that

|f(x, unk(x),∇unk(x))| ≤ C
(
α(x) + |u(x)|r−1 + |∇u(x)|r−1

)
, (3.6)

for a.e. x ∈ Ω and all k ∈ N . Therefore, note that α + |u|r−1 + |∇u|r−1 ∈ L
p
p−1 (Ω),

from (3.5), (3.6), and the Dominated Convergence Theorem, it follows that∫
Ω

|f(x, unk(x),∇unk(x))− f(x, u,∇u(x))|
p
p−1 dx→ 0, as k → +∞,

from which it follows that

|φunk − φu| p
p−1
→ 0, as k → +∞.

Then it follows that φun converges to φu in L
p
p−1 (Ω).

Finally, we will prove that the S : E → E∗ is compact. In fact, by compact

imbedding of i : E → Lp(Ω), the adjoint operator i∗ : L
p
p−1 (Ω)→ E∗ is also compact.

Therefore, it follows that S = i∗◦φ : E → E∗ is compact. That finishes the proof. �

Now we will prove the main result of this paper.
Proof of Theorem 1.1. Because of the definition of the operator L and Lemma 3.1,
we have that u ∈ E is a weak solution of (P ) if and only if

Lu = Su⇔ u = L−1Su. (3.7)

We define the operator T : E → E∗ as follows:

T (u) = L−1Su.

Then it is not difficult to see that a solution of the problem (P ) is a fixed point of
the operator T . Hence, in view of Theorem 2.4, it suffices to show that,

(T1) T is well defined;
(T2) T is compact;
(T3) The set B = {u ∈ E : u = λT (u) : 0 < λ < 1} is bounded.
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Verification of (T1). In view of Lemma 3.1 and Proposition 2.3, it is standard to

check that the operator T can be considered as follows: T : E
S−→ E∗

L−1

−→ E. So, T
is well-defined.

Verification of (T2). In fact, let {un} be a bounded sequence in the reflexive space
E. Then, there exist u0 and a subsequence which we also denote {un} such that
un converges weakly to u0 in E. By the compactness of S (see Lemma 3.1), we
have S(un) → S(u0) in E∗. Moreover, the operator L is bounded, continuous, and
strictly monotone (see Proposition 2.3), so it is from Minty-Browder Theorem (see
[31, Theorem 26A]) that the inverse operator L−1 is bounded and continuous. Hence
we get L−1S(un)→ L−1S(u0), which implies that T (un) converges strongly to T (u0).

Verification of (T3). Indeed, let v ∈ B, then it only remains to show that there
exists M > 0 such that |∇u|H ≤M . We distinguish between two cases:

(i) if |∇u|H ≤ 1, then B is bounded.
(ii) if |∇u|H > 1, then from modular’s properties, we deduce that λ 6= 0 and

u = λT (u) = λL−1S(u). Thus, from (Hf ), Proposition 2.1, the Hölder inequality and
the Young inequality, we obtain

1

λp
|∇u|pH ≤

∫
Ω

(|∇(
u

λ
)|p + µ(x)|∇(

u

λ
)|q)dx

=〈L(
u

λ
),
u

λ
〉 = 〈S(u),

u

λ
〉

=
1

λ

∫
Ω

f(x, u,∇u)udx

≤ 1

λ

∫
Ω

(|α(x)u(x)|+ |u(x)|r + |∇u(x)|
r−1

|u|)dx

≤ 1

λ

(
|α| p

p−1
|u|p + c|u|rr + c

∣∣|∇u|r−1
∣∣
p
r−1

|u|r|1|ν
)

=
1

λ

(
|α| p

p−1
|u|p + c|u|rr + c|Ω| 1ν |∇u|r−1

p |u|r
)

≤ 1

λ

(
|α| p

p−1
|u|p + c|u|rr + c|Ω| 1ν |∇u|r−1

H |u|r
)
.

where ν = pr
(p−r)(r−1) > 1 because 1 < r < p. Then from the Poincare’s inequality

and the continuous embedding E ↪→ Lr(Ω), it follows that

|∇u|pH ≤λ
p−1
(
Cp|α| p

p−1
|∇u|H + cCrr |∇u|rH + c|Ω| 1νCr|∇u|rH

)
≤λp−1

(
Cp|α| p

p−1
|∇u|H + cCrr |∇u|

p
H + c|Ω| 1νCr|∇u|pH

)
and consequently,(

1− λp−1
(
cCrr + c|Ω| 1νCr

))
|∇u|p−1

H ≤λp−1Cp|α| p
p−1

.

By virtue of (Hc),

1− λp−1
(
cCrr + c|Ω| 1νCr

)
> 0.



EXISTENCE RESULTS FOR A DOUBLE PHASE PROBLEMS 153

Furthermore, we deduce

|∇u|p−1
H ≤

λp−1Cp|α| p
p−1(

1− λp−1
(
cCrr + c|Ω| 1νCr

)) ,
and so |∇u|H is bounded. This shows that {u|u ∈ B} is bounded.

Using Schaefer’s fixed point theorem (see Theorem 2.4), we conclude that the
operator T has a fixed point u which is the solution of the given problem (P ). The
proof is complete. �
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