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Abstract. In this paper, using the Right topology, we introduce three new properties in Banach

lattices: the so-called Right orthogonality, the Right WORTH property, and the non-strictly Right
Opial condition (and also positive versions of them). Moreover, Banach lattices in which these

three properties coincide with order continuity of the norm are characterized. As an application,

we give some sufficient conditions under which a Banach lattice has the Right fixed point property
(or, positive Right fixed point property). In particular, it is established that for a Banach space X

and a suitable Banach lattice F , a Banach lattice M⊂ K(X,F ) has the Right fixed point property

(resp. positive Right fixed point property) if each evaluation operator ψy∗ onM is a pseudo weakly
compact (resp. positive pseudo weakly compact) operator, where ψy∗ : M → X∗ is defined by

ψy∗ (T ) = T ∗y∗ for y∗ ∈ F ∗ and T ∈M.
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1. Introduction and Preliminaries

A Banach space X has the fixed point property (fpp) for nonexpansive mappings
if every non-expansive self-map T : C → C of each nonempty, bounded, closed and
convex subset C of X has a fixed point. When the same holds for every nonempty
weakly compact convex subset of X, we say that X has the weak fixed point property
(w-fpp). Each Banach space with the fpp has the w-fpp, but the converse is false in
general. In fact, c0 and `1 have the w-fpp but neither of these two spaces have the
fpp. A closed subspace M of L1[0, 1] has the fpp if and only if M is reflexive [12].
A Banach space X has weak normal structure if for each weakly compact convex
subset D there is an element u ∈ D such that supv∈D ‖u − v‖ <diam (D). Every
Banach space with the Schur property and every Banach space with the weak normal
structure have the w-fpp [2, 16, 22].

For each Hilbert space H, a closed subspaceM⊂ K(H) has the fpp if and only if
M is reflexive [7]. Also, for some closed subspace M ⊂ K(X,Y ) (the Banach space
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of all compact operators between two Banach spaces X and Y ), M∗ has the Schur
property if and only if all of the evaluation operators φx and ψy∗ onM are compact,
for x ∈ X, y∗ ∈ Y ∗ and T ∈M [19, 23] and these results are improved in the Banach
lattice setting in [5].

A Banach lattice E is called weak orthogonal if for each weakly null sequence (xn)
in E, ‖|xn| ∧ |x|‖ → 0 for all x ∈ E. A Banach lattice E has the WORTH property
(respectively, non-strictly Opial condition) if for each weakly null sequence (xn) in
E and x ∈ E, lim supn ‖xn − x‖ = lim supn ‖xn + x‖ (respectively, lim supn ‖xn‖ ≤
lim supn ‖xn + x‖) [10, 21, 9]. The disjoint (positive) versions of these three concepts
also is introduced in [14] and so the disjoint (positive) fpp is studied.

The norm of a Banach lattice is said to be uniformly monotone if for given ε > 0
there is a δ > 0 such that if x, y ≥ 0 with ‖y‖ = 1 and ‖x+ y‖ ≤ 1 + δ then ‖x‖ ≤ ε.
Each Banach lattice with uniformly monotone norm has order continuous norm (since
it does not contain any copy of c0).

In this article, we use the Right topology instead of weak topology to study the
Right fpp. Right topology on a Banach space X is a locally convex topology on X
which is obtained by restriction of the Mackey topology τ(X∗∗, X∗) to X (which is the
topology of uniform convergence on relatively σ(X∗, X∗∗) compact subsets of X∗).

In order to study the Right fpp, we need the following terminology and notation. If
A is a norm bounded subset of X such that for each weakly null sequence (x∗n) in X∗,
limn→∞ supa∈A |〈a, x∗n〉| = 0, then A is called a Dunford-Pettis set. Banach spaces in
which Dunford-Pettis sets are relatively compact are said to have the Dunford-Pettis
relatively compact property (DPrcP) [13].

A Banach space X has the Dunford-Pettis property if each relatively weakly com-
pact set in X is a Dunford-Pettis set. The reader is referred to [4, 3, 11] for the
definitions and a discussion on the Dunford-Pettis property.

A subset A of X∗ is a Right set if every Right null (i.e. weakly null and Dunford-
Pettis) sequence (xn) in X converges uniformly on A. An operator T : X → Y is
called pseudo weakly compact (pwc) if it carries Right null sequences in X into norm
null ones in Y [17].

The following general result will be introduced in our study: the Right orthogo-
nality, the non-strictly Right Opial condition, the Right WORTH property (and also
the disjoint version of them) in Banach lattices. As an application the connection
between three properties and the Right fpp (or, positive Right fpp) is established.
We will improve the results of [10, 25] and then we show that for each Banach space
X and a suitable Banach lattice F , a Banach lattice M ⊂ K(X,F ) has the Right
fpp (resp. positive Right fpp) if each evaluation operator ψy∗ onM is pseudo weakly
compact (resp. positive pseudo weakly compact).

We recall some definitions and notations from Banach lattice theory. Throughout
this article, X denotes the arbitrary Banach space, E denotes a Banach lattice and
E∗ refers to the dual of E, E+ = {x ∈ E : x ≥ 0} refers to the positive cone of E
and BE is the closed unit ball of E. A Banach lattice E is said to be σ–Dedekind
complete if every countable subset of E that is bounded above has a supremum. A
Banach lattice E has order continuous norm if for each (xα) with xα ↓ 0 in E, we have
‖xα‖ → 0, where the notation xα ↓ 0 means that (xα) is decreasing, its infimum exists
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and inf(xα) = 0. An element x ∈ E is discrete if x > 0 and |y| ≤ x implies y = tx
for some real number t. If every order interval [0, y] in E contains a discrete element,
then E is said to be a discrete Banach lattice. The spaces c0, `p, where 1 ≤ p < ∞
and Schur spaces are discrete with order continuous norm. A norm bounded subset A
of E is solid if |x| ≤ |y| for some y ∈ A implies that x ∈ A. Each solid vector subspace
of E is called an ideal. Also an ideal B of E is called a band if sup(A) ∈ B for every
subset A ⊂ B which has a supremum in E. A band B in a Banach lattice E is called a
projection band if E = B+B⊥, where B⊥ = {x ∈ E : |x|∧ |y| = 0, for some y ∈ B}.
E is called an AM-space if x ∧ y = 0 in E implies ‖x ∨ y‖ = max{‖x‖, ‖y‖} and E is
an AL-space if ‖x + y‖ = ‖x‖ + ‖y‖ holds for all x ∧ y = 0 in E+. A Banach lattice
E has the positive Schur property if each positive weakly null sequence in E is norm
null, or equivalently each disjoint positive weakly null sequence in E is norm null [24].
Note that all AL-spaces have the positive Schur property. Recall that a sequence (xn)
in a Banach lattice E is disjoint, if |xi| ∧ |xj | = 0 for each i 6= j. A Banach lattice
E has the weakly sequentially continuous lattice operations if for every weakly null

sequence (xn) in E, |xn|
w−→ 0. We refer the reader for undefined terminologies to the

classical references [3, 18].

2. Right fixed point property

Recently in [14] the authors introduced the disjoint (positive) version of the weak
orthogonality, the non-strictly Opial condition and the WORTH property in Banach
lattices and then considered Banach lattices in which these properties are equivalent.
In this section replacing the weak topology by the Right topology, we will use the
phrases ”Right orthogonality, non-strictly Right Opial and Right WORTH property”.
We recall a practical characterization of the weak orthogonality of [14] as follows:
Lemma 2.1 For a Banach lattice E, the following are equivalent:

(a) E is discrete with order continuous norm,
(b) E is a weak orthogonal Banach lattice.

If we replace weakly null sequences by Right null sequences, instead of ”weak
orthogonality”, we use the phrase ”Right orthogonality”. Recall that a sequence (xn)
in a Banach space X is Right null if and only if it is weakly null and Dunford-Pettis
[15, Proposition 1]. It is important to note that a Banach space X has the DPrcP if
and only if for each Right null sequence (xn) in E, ‖xn‖ → 0.
Definition 2.2 A Banach lattice E is called Right orthogonal if for each Right null
sequence (xn) in E, ‖|xn| ∧ |x|‖ → 0 for all x ∈ E.

It is easily seen that if a Banach lattice E is weak orthogonal, then E is Right
orthogonal, but the converse is false.
Proposition 2.3 Each non-discrete reflexive Banach lattice E is Right orthogonal,
but it is not weak orthogonal.
Proof. From [20] each reflexive space has the DPrcP; that is, each weakly null and
Dunford-Pettis sequence in it is norm null. Then by [15, Proposition 1] each Right
null sequence in E is norm null and so E is Right orthogonal. On the other hand, E
is non-discrete and so it is not weak orthogonal.
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For instance, each Lp[0, 1] (1 < p < ∞) is Right orthogonal, but it is not weak
orthogonal. It should be noted that L1[0, 1] is not Right orthogonal. In fact, the
Rademacher sequences (rn) in L1[0, 1] are weakly null and Dunford-Pettis (by the
Dunford-Pettis property) and so they are Right null, but ‖rn‖ = 1 for all n. Note
that reflexive Banach lattices have order continuous norm.

We say the lattice operations in a Banach lattice E are Right weakly sequentially
continuous if for every Right null sequence (xn) in E, (|xn|) is weakly null. Clearly
each discrete Banach lattice with order continuous norm has the Right weakly sequen-
tially continuous lattice operations. All spaces Lp[0, 1] for all 1 < p < ∞ have the
Right weakly sequentially continuous lattice operations, but none of them have the
weakly sequentially continuous lattice operations. We may then characterize Right
orthogonal Banach lattices as follows:
Theorem 2.4 Let E be a Banach lattice. Then the following are equivalent:

(a) E is Right orthogonal,
(b) E has order continuous norm and Right weakly sequentially continuous lattice

operations.

Proof. (a)⇒ (b). Let (xn) be an order-bounded disjoint sequence in E+. It is enough
to show ‖xn‖ → 0. Note that there is an element e ∈ E+ such that (xn) ⊂ [0, e]. By
[3, P. 185] and [4, Theorem 2.5], the sequence (xn) is weakly null and Dunford-Pettis;
that is, (xn) is Right null. By the Right orthogonality, ‖|xn| ∧ |x|‖ → 0 for all x ∈ E.
Thus ‖|xn| ∧ e‖ = ‖|xn|‖ = ‖xn‖ → 0 and so E has order continuous norm. Next, we
show that for each Right null sequence (xn) in E, the sequence (|xn|) is weakly null
in E. Since E is Right orthogonal, ‖|xn| ∧ |x|‖ → 0 for all x ∈ E. From [3, Theorem
13.6], for each f ∈ E∗+ there is an element u ∈ E+ such that f(|xn| − u)+ → 0 for all
n. Hence

f(|xn|) = f(|xn| − u)+ + f(|xn| ∧ |x|)→ 0.

Thus E has the Right weakly sequentially continuous lattice operations.
(b) ⇒ (a). Let (xn) be a Right null sequence in E. We show that ‖|xn| ∧ |x|‖ → 0
for all x ∈ E. Let yn := |xn| ∧ |x|. Since E has Right weakly sequentially continuous
lattice operations, then positive sequences (|xn|) and so (yn) are weakly null. If
‖yn‖9 0, then by [18, Corollary 2.3.5], there is a disjoint positive subsequence (ynk

)
with ‖ynk

‖ 9 0 which is a contradiction (since (ynk
) is an order bounded disjoint

sequence in E, by the order continuity of the norm on E it must be norm null).
The following result is easily derived from the theorem:

Corollary 2.5 For a Banach lattice E, the following are equivalent:

(a) E is a discrete Right orthogonal Banach lattice,
(b) E is a weak orthogonal Banach lattice.

We are now ready to discuss the Right fixed point property for Banach lattices:
Definition 2.6 A Banach lattice E has the Right fixed point property or R-fpp if every
non-expansive self-map T : K → K of each nonempty, convex and Right compact
subset K of E has a fixed point.

It is easily verified that a norm bounded subset A of a Banach space X is Right
compact if and only if A is relatively weakly compact and Dunford-Pettis. Hence each
Banach space with the w-fpp has the R-fpp, but the converse is not true. All Banach
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spaces with the DPrcP, such as reflexive spaces, have the R-fpp.
Also, a Banach space X has the Dunford-Pettis property if and only if each relatively
weakly compact set in X is Right compact [17, Proposition 3.15].

It follows easily from the definition that in each Banach space with the Dunford-
Pettis property, w-fpp and R-fpp are the same.
Using the fact that a Banach space X has the Schur property if and only if X has
the Dunford-Pettis property and contains no copy of `1, it follows that: no infinite
dimensional reflexive Banach space can have the Dunford-Pettis property. In [21],
it is proved that each weak orthogonal Banach lattice has the w-fpp. By the same
techniques we can show that each Right orthogonal Banach lattice has the R-fpp.
Definition 2.7 Let E be a Banach lattice. Then:

(a) E has the Right WORTH property if for each Right null sequence (xn) in E
and x ∈ E, lim supn ‖xn − x‖ = lim supn ‖xn + x‖.

(b) E has the non-strictly Right Opial condition if for each Right null sequence
(xn) in E and x ∈ E we have lim supn ‖xn‖ ≤ lim supn ‖xn + x‖.

It is clear that each Banach lattice with the WORTH property (resp. non-strictly
Opial condition) has the Right WORTH (resp. non-strictly Right Opial condition)
property too, but the converse is not true. In fact, all reflexive spaces Lp[0, 1] (1 <
p <∞) have the Right WORTH property (resp. non-strictly Right Opial condition)
but only L2[0, 1] has the WORTH property (resp. non-strictly Opial condition).

In the following theorem a connection between the Right orthogonality, Right
WORTH property and non-strictly Right Opial condition is discussed:
Theorem 2.8 Let E be a Banach lattice. Then for the following assertions:

(a) E is Right orthogonal,
(b) E has the Right WORTH property,
(c) E has the non-strictly Right Opial condition.

the implications (a)⇒ (b)⇒ (c) are valid.
Proof. (a)⇒ (b). Let (xn) be a Right null sequence in E. Then,

||xn + x| − |xn − x|| = 2(|xn| ∧ |x|)
for all x ∈ E and so by the Right orthogonality, we have

‖|xn + x| − |xn − x|‖ = 2(‖|xn| ∧ |x|‖)→ 0.

Thus E has the Right WORTH property.
(b) ⇒ (c). Let (xn) be a Right null sequence in E. Then, by the Right WORTH
property, we have

lim sup
n
‖xn − x‖ = lim sup

n
‖xn + x‖

for all x ∈ E. Hence,

lim sup
n
‖xn‖ ≤

1

2
(lim sup

n
‖xn − x‖+ lim sup

n
‖xn + x‖) = lim sup

n
‖xn + x‖

and so E has the non-strictly Right Opial condition.

The following conditions on the underlying Banach lattices ensures that the three
concepts in the Theorem 2.8 to be equivalent.
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Theorem 2.9 For each σ-Dedekind complete Banach lattice E with the Right weakly
sequentially continuous lattice operations, the following are equivalent:

(a) E is Right orthogonal,
(b) E has Right WORTH property,
(c) E has the non-strictly Right Opial condition.

Proof. (a)⇒ (b)⇒ (c). It follows from Theorems 2.8.
(c) ⇒ (a). If E has the non-strictly Right Opial condition, then E does not contain
a copy of `∞. Indeed, Banach lattice `∞ does not have the non-strictly Right Opial
condition. In fact, the standard unit basis (en) in `∞ is a weakly null and Dunford-
Pettis (Right null) sequence and ‖en‖ = 1 for all n. Also, one can find an element
x ∈ `∞ with 1 = lim supn ‖en‖ > lim supn ‖en + x‖. Also, E is σ-Dedekind complete
and then E has order continuous norm. Since E has the Right weakly sequentially
continuous lattice operations, then it is Right orthogonal.

It is known that a Banach space X has the Dunford-Pettis property if and only
if every relatively weakly compact set in X is Dunford-Pettis. By [17, Proposition
3.15] on a Banach lattice E with the Dunford-Pettis property two topologies weak
and Right coincide sequentially and so each weakly null sequence (xn) in E is Right
null.

Note that all AL-spaces and AM-spaces have the Dunford-Pettis property and we
may therefore conclude that:
Theorem 2.10 For a Banach lattice E we have:

(a) If E is an AL-space, then E has the w-fpp if and only if E contains no
isometric copy of L1[0, 1].

(b) If E is a σ-Dedekind complete AM-space, then E has the w-fpp if and only if
E is weak orthogonal.

Proof. (a). It follows from [8, Corollary 6.3]. In fact, an abstract Lp-space, 1 ≤ p ≤ ∞
(whenever its norm is p-additive) has the w-fpp if and only if E contains no isometric
copy of L1[0, 1]. For p = 1, we use the fact that any abstract AL-space either (i)
contains a copy of L1[0, 1] or (ii) is discrete. In the later case, E has the w-fpp. Note
that L1[0, 1] is a non-discrete Banach lattice with order continuous norm.
(b). If E is weak orthogonal, then E has the w-fpp. For the converse, since E the the
w-fpp, by [8, Theorem 6.1] it has no isometric copy of L1[0, 1]. Hence, E has no norm
copy of `∞ and so it has order continuous norm. Therefore, E is order isometric to
c0(Γ) for some index set Γ, and then it is weak orthogonal.

The following result is easily proved.
Corollary 2.11 For a Banach lattice E with the Dunford-Pettis property, the follow-
ing are valid:

(b) E is weak orthogonal if and only if E is Right orthogonal.
(b) E has the WORTH property if and only if E has the Right WORTH property.
(c) E has the non-strictly Right Opial condition if and only if E has the non-

strictly Opial condition.

The previous results provide some conditions for a Banach lattice under which
the non-strictly Right Opial condition implies the R-fpp. In fact, each σ-Dedekind
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complete Banach lattice with the non-strictly Right Opial condition and Right weakly
sequentially continuous lattice operations is Right orthogonal and so it has the R-fpp.
Definition 2.12 A Banach space X has Right normal structure if for each Right
compact convex subset D of X there is an element u ∈ D such that supv∈D ‖u−v‖ <
diam(D).

It is clear that weak normal structure implies Right normal structure but the
converse is not true. Also note that c0 does not have Right normal structure. In
fact, the unit vector basis (en) of c0 is weakly null and Dunford-Pettis (Right null).
Hence the set {en : n ∈ N} is a relatively weakly compact and Dunford-Pettis (Right
compact) set in c0 and so, by the Krein-Smulian Theorem K = c̄o({en : n ∈ N}),
the closed convex hull of {en : n ∈ N}, is a Right compact convex subset of c0 and
limn ‖x− en‖ = diam(K) = 1, for all x ∈ K.

Two properties Right normal structure and Right orthogonality are different, but
we show that under some conditions there is a connection between them.
Theorem 2.13 Let E be a Banach lattice. The following assertions hold:

(a) If E has the Right weakly sequentially continuous lattice operations and Right
normal structure, then E is Right orthogonal.

(b) If E is Right orthogonal with uniformly monotone norm, then E has the Right
normal structure.

Proof. (a). Since c0 does not have Right normal structure, then E does not contain
any copy of c0 and so it has order continuous norm. From Theorem 2.4 each Banach
lattice with Right weakly sequentially continuous lattice operations and order contin-
uous norm, is Right orthogonal.
(b). If E is Right orthogonal, then it has order continuous norm and the Right
weakly sequentially continuous lattice operations. On the other hand E has a uni-
formly monotone norm and so it has the Right normal structure. There is a similar
result in [10].
Corollary 2.14 Let E be a discrete Banach lattice with uniformly monotone norm.
The following assertions hold:

(a) E is weak orthogonal.
(b) E has a weak normal structure.
(c) E has a Right normal structure.
(d) E is Right orthogonal.

There is another version of Opial conditions, the so-called uniformly Opial condi-
tion. All Opials condition, non-strict Opial condition and uniformly Opial condition
have an important role for the fpp in Banach spaces. A Banach space E has uniformly
Opial’s condition if for each c > 0 there is an r > 0 such that 1+r ≤ lim infn ‖xn+x‖
for each x ∈ X with ‖x‖ ≥ c and each weakly null sequence (xn) in X such that
lim infn ‖xn‖ ≥ 1. In general, uniformly Opial’s condition implies the Opial’s condi-
tion and so the non-strictly Opial’s condition.

Note that each Banach lattice with uniformly monotone norm has order continu-
ous norm. So we can improve [10, Theorem 3.5]: each discrete Banach lattice with
uniformly monotone norm satisfies uniform Opial’s condition.
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If we use the Right null sequence instead of weakly null ones in the definition
of uniformly Opial’s condition, then we have the uniformly Right Opial’s condition.
Moreover, we can prove that each Banach lattice with uniformly monotone norm
and Right weakly sequentially continuous lattice operations, has the uniformly Right
Opial’s condition.

3. positive Right fixed point property

Using the positive weakly null sequences instead of weakly null ones, the positive
versions of weak orthogonality, WORTH property and non-strictly Opial condition
are studied in [14]. Here we also discuss the positive versions of three concepts that
were previously introduced and consider their applications to study of the positive
R-fpp.

We consider our results using the positive Right null sequences:
Definition 3.1 Let E be a Banach lattice. Then:

(a) E is positive Right orthogonal if for each positive Right null sequence (xn) in
E and x ∈ E, ‖|xn| ∧ |x|‖ → 0,

(b) E is positive Right WORTH property if for each positive Right null sequence
(xn) in E and x ∈ E, we have lim supn ‖xn − x‖ = lim supn ‖xn + x‖,

(c) E is positive non-strictly Right Opial condition if for each positive Right null
sequence (xn) in E and x ∈ E, we have lim supn ‖xn‖ ≤ lim supn ‖xn + x‖.

If we replace positive Right null sequences in Definition 3.1 by disjoint Right null
sequences, instead of ”positive Right orthogonal, positive Right WORTH property
and positive Right Opial condition”, we use the phrase ”disjoint Right orthogonal,
disjoint Right WORTH property and disjoint Right Opial condition”.

Recall that a Banach lattice E has the positive DPrcP if each Right null sequence
in E with the positive terms in E is norm null or equivalently, each disjoint Right
null sequence in E is norm null. It is easily verified that each Banach lattice with the
positive DPrcP is positive Right orthogonal. For instance, L1[0, 1]⊕ L2[0, 1] has the
positive DPrcP, but it does not have the DPrcP and so it is positive Right orthogonal
but not Right orthogonal. Note that in discrete Banach lattices, DPrcP and positive
DPrcP are the same. The reader is referred to [6] for information on the positive
DPrcP.

The following characterization is proved similar to [14, Theorem 2.2] and it shows
that a Banach lattice E is positive Right orthogonal if and only if E is disjoint Right
orthogonal.
Proposition 3.2 For a Banach lattice E, the following are equivalent:

(a) E has order continuous norm,
(b) E is a positive Right orthogonal Banach lattice,
(c) E is a disjoint Right orthogonal Banach lattice.

In the rest of this article we can replace ”positive” with ”disjoint”. Each Right
orthogonal Banach lattice is positive Right orthogonal, but the converse is false. The
converse holds for each Banach lattice E with Right weakly sequentially continuous
lattice operations.
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It is easily verified that each Banach lattice with the Right WORTH property has
the positive Right WORTH property too, but the converse is not true. In fact, L1[0, 1]
has the positive Right WORTH property but not the Right WORTH property. Also,
L1[0, 1] has the positive non-strictly Right Opial condition but not the non-strictly
Right Opial condition.
Theorem 3.3 For each σ-Dedekind complete Banach lattice E, the following are
equivalent:

(a) E is positive Right orthogonal,
(b) E has the positive Right WORTH property,
(c) E has the positive non-strictly Right Opial condition.

Proof. (a)⇒ (b)⇒ (c). It is proved similar to Theorem 2.8.
(c) ⇒ (a). If E has the positive non-strictly Right Opial condition, then E contains
no copy of `∞. Since E is σ-Dedekind complete, E has order continuous norm. Hence
E is positive Right orthogonal.

Using the above results the following can be derived:
Corollary 3.4 For a Banach lattice E, the following are valid:

(a) If E has the Right weakly sequentially continuous lattice operations, then E
is positive Right orthogonal if and only if E is Right orthogonal.

(b) If E is discrete σ-Dedekind complete, then E has the positive Right WORTH
property if and only if E has the Right WORTH property.

(c) If E is discrete σ-Dedekind complete, then E has the positive non-strictly
Right Opial condition if and only if E has the non-strictly Right Opial condi-
tion.

Following the discussion in section 2 in connection with so called R-fpp, we now
introduce the notion of positive R-fpp:
Definition 3.5 A Banach lattice E has the positive R-fpp if every non-expansive
self-map T : K → K of each nonempty, convex and Right compact with the positive
terms subset K of E has a fixed point.

Each Right orthogonal Banach lattice has the R-fpp and by the same techniques we
can show that each positive Right orthogonal Banach lattice has the positive R-fpp.
On the other hand, each Banach lattice with the R-fpp has the positive R-fpp, but
the converse is false. In fact, L1[0, 1] has the positive Schur property and so it is a
positive Right orthogonal Banach lattice. Then L1[0, 1] has the positive R-fpp, but
only reflexive subspaces of L1[0, 1] have the R-fpp. Note that all AL-spaces have the
positive Schur property and so they have the positive R-fpp.

4. Right fpp for some operator spaces

This section leads to the extension and improvement of results in [25] for the R-fpp
and the positive R-fpp of a Banach lattice M of compact operators between suitable
Banach lattices.

From [25] if X is a Banach space with the shrinking finite dimensional Schauder
decomposition and Y is a c0 or `p-direct sum of finite dimensional Banach spaces, it is
proved that the complete continuity of all evaluation operators on a closed subspace
M ⊂ K(X,Y ) is a sufficient condition for the w-fpp of M. The reader should note
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that two lemmas 2.3 and 2.5 of [25] also hold without any conditions on X (for our
detailed discussion the reader is referred to [19, Lemma 3.2]).

Based on our discussion and by the same arguments in [5, 25, 14], we can assume
that X is an arbitrary Banach space and then improve [25, Theorem 2.6 ] for R-fpp
(or the positive R-fpp) for a suitable Banach lattice of some compact operator spaces
from a Banach space into a Banach lattice as follows: First observe that:
Definition 4.1 An operator T : E → X is called pseudo weakly compact (briefly,
pwc) (resp. positive pwc) if for every Right null (resp. positive Right null) sequence
(xn) in E, ‖Txn‖ → 0.

It is clear that each pwc operator is positive pwc, but the converse is not true.
In fact, the identity operator on each Banach lattice with the positive DPrcP and
without the DPrcP such as L1[0, 1] is positive pwc, but it is not pwc. To continue, we
need two following lemmas. For the first lemma, we may use Remark 2.3 in [1] in a
similar fashion to prove that:
Lemma 4.2 Let X and Y be two Banach spaces and M ⊂ L(X,Y ) be a closed
subspace. If all evaluation operators ψy∗ are pwc (resp. positive pwc), then, the
operator K → TK from M into L(X,Y ) is pwc (resp. positive pwc) for all compact
operators T ∈ K(Y ).

For the second lemma (which can be proved by the same arguments in [5, 25])
we recall some notations. Let F be a discrete Banach lattice with complete disjoint
systems consisting of discrete elements {ui}i∈I . Then W =

∑
i∈I Iui

is a projection

band and F = W + W⊥. Also, every x ∈ E can be written as x = x1 + x2; where
x1 ∈ W and x2 ∈ W⊥. The projection PW : E → E defined by PW (x) = x1 is the
band projection onto W . It is clear that ‖PW ‖ = 1.
Lemma 4.3 Let X be a Banach space, F be a discrete Banach lattice with order con-
tinuous norm and M ⊂ K(X,F ) be a Banach lattice. Then the following assertions
hold:

(a) If K1,K2, ...Kn ∈ K(X,F ) and ε > 0, then there is a finite dimensional
projection band W ⊂ F such that ‖PW⊥Ki‖ ≤ ε for all i = 1, 2, ...n.

(b) If all of the evaluation operators ψy∗ are pwc (resp. positive pwc), (Kn)
is a Right null (resp. positive Right null) sequence in M, then there is
a subsequence (Kni) of (Kn) and a sequence (Ui) of K(X,F ) such that
limi→∞ ‖Ui −Kni

‖ = 0

Now, we give some sufficient conditions for the R-fpp (respectively positive R-
fpp) of a Banach lattice M of some compact operators from a Banach space X into
a Banach lattice F with respect to pwc-ness (respectively positive pwc-ness) of all
evaluation operators. The reader should note that following the same arguments as
in the proof of Theorem 3.5 of [14] we can conclude the following theorem.
Theorem 4.4 Let X be a Banach space, F be an AM-space with order continuous
norm and M ⊂ K(X,F ) be a Banach lattice. If all of the evaluation operators ψy∗

are pwc (resp. positive pwc), then M has the R-fpp (resp. positive R-fpp).
The reader should note that if T : X → Y is an operator between two Banach

spaces such that one of them has the DPrcP (such as reflexive spaces or discrete KB-
spaces), then T is pwc. Recall that E is called a KB-space if every increasing norm
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bounded sequence of E+ is norm convergent. Similarly, if T : E → F is an operator
between two Banach lattices such that one of them has the positive DPrcP (such as
L1[0, 1]), then each the operator T is positive pwc.

We conclude our paper review with some examples. At first, using the fact that
a Banach lattice E is an AM-space with order continuous norm if and only if E is
lattice isometric to c0(Ω), where Ω is a nonempty set, it follows that:
Example 4.5 Let X be a reflexive Banach space and F be an AM-space with order
continuous norm. Then each Banach lattice M ⊂ K(X,F ) has the R-fpp. For
instance, each Banach lattice M⊂ K(`2, c0) has the R-fpp.

In fact, since `2 has the DPrcP then for the Banach lattice M ⊂ K(`2, c0) all
evaluation operators ψy∗ : M → `2 are pwc. Also, c0 is an AM-space with order
continuous norm and then by Theorem 4.4, M has the R-fpp.

The following example shows that order continuity of the norm on an AM-space
F in Theorem 4.4 cannot be removed.
Example 4.6 Banach lattice `∞ is an AM-space without order continuous norm and
`∞ can be embedded isometrically into K(`2, `∞). It is easy to see that all evaluation
operators ψy∗ :M→ `2 are pwc, but `∞ (and so K(`2, `∞)) does not have the R-fpp
(note that, `∞ does not have the w-fpp [8]).

Similar to [14, Example 3.9] if X is a Banach space and H is a Hilbert space such
that all of the evaluation operators ψy with y ∈ H are pwc, then each Banach lattice
M⊂ K(X,H) has the R-fpp.

It should be noted that AL-spaces do not have the w-fpp, in general. For instance,
only reflexive subspaces of L1[0, 1] have the w-fpp (fpp). Also, `∞ is a σ-Dedekind
complete AM-space without w-fpp.
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