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1. Introduction

This paper deals with the existence of positive solutions for the boundary value
problem of a fractional differential equation of the form{

Dβ
0+(ϕ(Dα

0+u(t))) = λh(t)f(u(t)), t ∈ (0, 1),

u(0) = u′(0) = u′(1) = 0, ϕ(Dα
0+u(0)) = (ϕ(Dα

0+u(1)))′ = 0,
(1.1)

where 2 < α ≤ 3, 1 < β ≤ 2, λ > 0, h 6≡ 0 on any subinterval in (0, 1), Dς
0+ (ς = α, β)

denotes the standard Riemann-Liouville derivative of order ς throughout this paper.
We also give some other assumptions as follows.

(A) ϕ : R→ R is an odd increasing homeomorphism and there exist an increasing
homeomorphism ψ from (0,+∞) onto (0,+∞) and a function γ from (0,+∞)
into (0,+∞) such that

ψ(σ) ≤ ϕ(σx)

ϕ(x)
≤ γ(σ), for all σ > 0, x ∈ R/{0}.

(H) h : (0, 1)→ [0,+∞) is locally integrable and satisfies
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0

tβ−1(1− t)β−2h(t)dt < +∞.

(F1) f : [0,+∞)→ [0,+∞) is continuous.

(F2) f(u) > 0, for all u > 0.

From condition (A), we see that ϕ covers two special cases ϕ(x) = x and ϕ(x) =
|x|p−2x (p > 1). Here we call ϕ a generalized Laplacian operator.

The boundary value problems of nonlinear ordinary differential equations usually
appear in various fields such as mathematics, physics and mechanics. In the past
decades, the study of existence criteria for the boundary value problems of different
kinds of integer-order differential equations (or systems) have attracted much atten-
tion (see [1, 2, 3, 5, 13, 15, 19, 20, 21, 22] and the references therein). For instance, Bai
and Chen [3] applied the Leggett-Williams fixed point theorem to prove the existence
of at least three solutions for the Dirichlet boundary value problem of the generalized
Laplacian equation {

−ϕ(u′(t))′ = λh(t)f(u(t)), t ∈ (0, 1),

u(0) = u(1) = 0,
(1.2)

where λ > 0, h ∈ C((0, 1), [0,+∞)) with 0 <
∫ 1

0
h(t)dt < +∞, f : [0,+∞) →

[0,+∞)) is continuous and

(A1) ϕ : R→ R is an odd increasing homeomorphism and there exist two increas-
ing homeomorphisms ψ1 and ψ2 of (0,+∞) onto (0,+∞) such that

ψ1(σ)ϕ(x) ≤ ϕ(σx) ≤ ψ2(σ)ϕ(x), for all σ and x > 0.

We remark that the three solutions obtained in [3] may be all positive solutions, or
there may be one nonnegative solution and two positive solutions.

Comparing with integer-order differential equations, fractional differential equa-
tions can be more accurate to describe phenomena in scientific areas such as fluid
flows, biological chemical physics, electrical networks, control theory. Thus, more and
more researchers have been interested in studying the boundary value problems for
fractional differential equations. Specially, the topic about the existence of solutions
for the boundary value problems of fractional differential equations has been widely
investigated (see [4, 6, 8, 10, 11, 18, 26, 25, 24, 23, 27] and the references therein).
For example, EI-Shahed [8] considered the boundary value problem of a fractional
differential equation with positive parameter{

−Dα
0+u(t) = λh(t)f(u(t)), t ∈ (0, 1),

u(0) = u′(0) = u′(1) = 0,
(1.3)

where 2 < α ≤ 3, h ∈ C((0, 1), [0,+∞)) with 0 <
∫ 1

0
h(t)dt < +∞ and f ∈

C([0,+∞), [0,+∞)). By the Krasnoselskii fixed point theorem of cone, EI-Shahed [8]
proved the existence and nonexistence of positive solutions for parameter λ belonging
to some explicit intervals. Specially, when h(t) ≡ 1 and f ∈ C([0,+∞), (0,+∞)),
Zhao et al. [26] derived the eigenvalue intervals that guarantee the existence of at
least one or two positive solutions to (1.3). Recently, Zhang and Zhong [25] proved the
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existence of three positive solutions for a higher-order fractional differential equation
with integral condition

−Dα
0+u(t)) = f(t, u(t)), t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

Dβ
0+u(1) = λ

∫ η
0
h(t)Dβ

0+u(t)dt,

(1.4)

where n−1 < α ≤ n, n ≥ 3, β ≥ 1, α−β−1 > 0, 0 < η ≤ 1, 0 ≤ λ
∫ η

0
h(t)tα−β−1dt <

1. Note that the nonlinearity may have singularities at t = 0, 1 and u = 0. Their
proof was completed by the Leggett-Williams and Krasnoselskii fixed point theorems
with aid of different height functions of the nonlinearity.

Since Leibenson [17] introduced the differential equations with p-Laplacian opera-
tor, the boundary value problems of fractional differential equations with p-Laplacian
or generalized Laplacian have also been extensively studied because of their wild ap-
plications in various fields of engineering and science. There have been considerable
works dealing with the existence of solutions (see [6, 10, 11, 18, 24, 23] and the refer-
ences therein). For instance, by the fixed point theorem on cones, Chai [6] obtained
existence and multiplicity results of positive solutions for the following boundary value
problem of fractional differential equation with p-Laplacian{

−Dβ
0+(ϕp(D

α
0+u(t))) = f(t, u(t)), t ∈ (0, 1),

u(0) = 0, u(1) + σDγ
0+u(1) = 0, Dα

0+u(0) = 0,
(1.5)

where 1 < α ≤ 2, 0 < β ≤ 1, 0 < γ ≤ 1, α− γ − 1 ≥ 0, σ > 0, ϕp(x) = |x|p−2x, p > 1
and f ∈ C([0, 1]× [0,+∞), [0,+∞)). Later, Han et al. [10] considered the boundary
value problem of a fractional differential equation with generalized Laplacian of the
form {

Dβ
0+(ϕ(Dα

0+u(t))) = λf(u(t)), t ∈ (0, 1),

u(0) = u′(0) = u′(1) = 0, ϕ(Dα
0+u(0)) = (ϕ(Dα

0+u(1)))′ = 0,
(1.6)

where 2 < α ≤ 3, 1 < β ≤ 2, λ > 0, f : (0,+∞) → (0,+∞) is continuous and ϕ
satisfies condition (A1) that appeared in [3]. By combining the Guo-Krasnoselskii
fixed point theorem on cones with the properties of Green function, Han et al. [10]
showed that (1.6) has at least one or two positive solutions in terms of different
eigenvalue intervals.

Inspired by the above works, we aim to study the boundary value problem of a
class of fractional differential equations with both generalized Laplacian and singular
weight like (1.1). To the best of our knowledge, there are few works dealing with the
existence of positive solutions for this kind of fractional boundary value problems. It
is worth noticing that condition (A) can be more general than condition (A1), and
the weight function h of model (1.1) may permit a singularity at t = 0 and/or t = 1
(see Example 3.4 in Section 3). Obviously, the model (1.6) considered in [10] is a
special case of our model (1.1). Under different assumptions on nonlinearity f , we
will find explicit eigenvalue intervals that guarantee the existence of at least one, two
and three positive solutions to (1.1), respectively. Our main results not only extend
the existence results in [10], but also seems to be initially discussing the existence
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of three positive solutions for fractional differential equations with parameter λ. For
the proofs of main results, we will firstly establish the solution operator to (1.1), and
then make use of the well-known results of fixed point index on cones due to Guo-
Krasnoselskii and Leggett-Williams. But, the concurrent appearance of singularity
and parameter λ will bring us difficulties to define a solution operator of (1.1) and
make priori estimations on possible positive solutions under different assumptions on
f . In particular, the process of solution operator set-up in [10] is not suitable for our

model (1.1) (see Lemma 2.2 and Lemma 2.4 in [10]). For example, if h(t) = t−
4
3 , then

we can easily check that the Riemann-Liouville fractional integral Iβ0+h(t) is not well-
defined (see Definition 2.4 in Section 2). Thus, we will try other method to establish
the solution operator of (1.1) (see Lemma 2.8 in Section 2 for details).

The outline of this paper is organized as follows. In Section 2, we give some
preliminaries which will be useful in this paper. Then we present some sufficient
conditions on the existence of positive solutions to (1.1), the detailed proofs and
corresponding examples in Section 3.

2. Preliminaries

In this section, we mainly introduce the well-known fixed point theorem on cones,
necessary definitions and preliminary lemmas from the fractional calculus theory. For
the sake of convenience, we denote K as a cone of the Banach space (E, ‖ · ‖) and
make the following notations throughout this paper.

Kr = {u ∈ K | ‖u‖ < r},

∂Kr = {u ∈ K | ‖u‖ = r},
K(α, b, d) = {u ∈ K | b ≤ α(u), ‖u‖ ≤ d},
K̊(α, b, d) = {u ∈ K | b < α(u), ‖u‖ ≤ d},

where r, b, d are positive constants and α is a continuous functional.

Lemma 2.1(Guo-Krasnoselskii [7, 9, 14]) Let E be a Banach space and let K be
a cone in E. Assume that T : Kr → K is completely continuous such that Tu 6= u
for u ∈ ∂Kr.

(i) If ‖Tu‖ ≥ ‖u‖ for u ∈ ∂Kr, then

i(T,Kr,K) = 0.

(ii) If ‖Tu‖ ≤ ‖u‖ for u ∈ ∂Kr, then

i(T,Kr,K) = 1.

Definition 2.2([16]) A continuous functional α : K → [0,+∞) is called a concave
positive functional on a cone K if α satisfies

α(κx+ (1− κ)y) ≥ κα(x) + (1− κ)α(y), for all x, y ∈ K, 0 ≤ κ ≤ 1.

Lemma 2.3(Leggett-Williams [16]) Let K be a cone in a real Banach space E
and α be a concave positive functional on K such that α(x) ≤ ‖x‖ for all x ∈ Kc.
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Suppose T : Kc → Kc is completely continuous and there exist numbers a, b and d,
with 0 < d < a < b ≤ c, satisfying the following conditions:

(i) {u ∈ K(α, a, b) : α(u) > a} 6= ∅ and α(Tu) > a if u ∈ K(α, a, b);
(ii) ‖Tu‖ < d if u ∈ Kd;
(iii) α(Tu) > a for all u ∈ K(α, a, c) with ‖Tu‖ > b.

Then

i(T,Kd,Kc) = 1,

i(T, K̊(α, a, c),Kc) = 1,

i(T,Kc\(Kd ∪K(α, a, c)),Kc) = −1.

Furthermore, T has at least three fixed points u1, u2, u3 in Kc such that ‖u1‖ < d,
a < α(u2), d < ‖u3‖ with α(u3) < a.

Definition 2.4([12]) The Riemann-Liouville fractional integral of order α > 0 of a
function y : (0,+∞)→ R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds,

provided the right side is pointwise defined on (0,+∞).

Definition 2.5([12]) The Riemann-Liouville fractional derivative of order α > 0 of a
continuous function y : (0,+∞)→ R is given by

Dα
0+y(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

0

y(s)

(t− s)α−n+1
ds,

where n is the smallest integer greater than or equal to α, provided that the right
side is pointwise defined on (0,+∞).

Remark 2.6([4]) Note for λ > −1,

Dα
0+tλ =

Γ(λ+ 1)

Γ(λ− α+ 1)
tλ−α,

In particular, Dα
0+tα−m = 0, m = 1, 2, · · · , N , where N is the smallest integer greater

than or equal to α.

Lemma 2.7([8]) Let 2 < α ≤ 3 and g ∈ C[0, 1]. Then the following boundary value
problem of fractional differential equation{

Dα
0+w(t) + g(t) = 0, 0 < t < 1,

w(0) = w′(0) = w′(1) = 0,

has a unique solution

w(t) =

∫ 1

0

G(t, s)g(s)ds,
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where

G(t, s) =


tα−1(1−s)α−2

Γ(α) , 0 ≤ t ≤ s ≤ 1,

tα−1(1−s)α−2−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1.

(2.1)

Lemma 2.8 Let 2 < α ≤ 3, 1 < β ≤ 2 and g satisfies (H). Then the solution of the
following boundary value problem{

Dβ
0+(ϕ(Dα

0+w(t))) = g(t), t ∈ (0, 1),

w(0) = w′(0) = w′(1) = 0, ϕ(Dα
0+w(0)) = (ϕ(Dα

0+w(1)))′ = 0,
(2.2)

can be uniquely represented by

w(t) =

∫ 1

0

G(t, s)ϕ−1

(∫ 1

0

H(s, τ)g(τ)dτ

)
ds,

where G(t, s) is the same as (2.1) and H(s, τ) is defined by

H(s, τ) =


sβ−1(1−τ)β−2

Γ(β) , 0 ≤ s ≤ τ ≤ 1,

sβ−1(1−τ)β−2−(s−τ)β−1

Γ(β) , 0 ≤ τ ≤ s ≤ 1.

(2.3)

Proof. From condition (H), we see that g may be singular at t = 0 and/or t = 1.
In order to deduce the solution operator of (2.2), we will divide the process into two
cases as follows.
Case 1: By integrating both sides of the first equation in (2.2) from s to 1

2 for

s ∈ (0, 1
2 ], we have ∫ 1

2

s

Dβ
0+(ϕ(Dα

0+w(τ)))dτ =

∫ 1
2

s

g(τ)dτ. (2.4)

It follows from Definition 2.4 and Definition 2.5 that

Dβ
0+y(s) = (

d

ds
)2I2−β

0+ y(s).

By (2.4), we deduce

c1 −
d

ds
I2−β
0+ ϕ(Dα

0+w(s)) =

∫ 1
2

s

g(τ)dτ, (2.5)

where c1 = d
dsI

2−β
0+ ϕ(Dα

0+w( 1
2 )). We continue integrating both sides of (2.5) from t

to 1
2 for t ∈ [0, 1

2 ] and then obtain

c1(
1

2
− t)− c2 + I2−β

0+ ϕ(Dα
0+w(t)) =

∫ 1
2

t

∫ 1
2

s

g(τ)dτds

=

∫ 1
2

t

∫ τ

t

g(τ)dsdτ

=

∫ 1
2

t

(τ − t)g(τ)dτ.
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i.e.

c1(
1

2
− t)− c2 + I2−β

0+ ϕ(Dα
0+w(t)) =

∫ 1
2

t

(τ − t)g(τ)dτ, (2.6)

where c2 = I2−β
0+ ϕ(Dα

0+w( 1
2 )). Taking D2−β

0+ on both sides of (2.6) and using Remark
2.6, we obtain

ϕ(Dα
0+w(t))− c1

Γ(β)
tβ−1 −

− 1
2c1 + c2

Γ(β − 1)
tβ−2 = D2−β

0+

∫ 1
2

t

(τ − t)g(τ)dτ. (2.7)

From Definition 2.5, we can calculate the right hand of (2.7). Exactly,

D2−β
0+

∫ 1
2

t

(τ − t)g(τ)dτ

=
1

Γ(β − 1)

d

dt

∫ t

0

(t− s)β−2

∫ 1
2

s

(τ − s)g(τ)dτds

=
1

Γ(β − 1)

d

dt

∫ t

0

∫ 1
2

s

(t− s)β−2(τ − s)g(τ)dτds

=
1

Γ(β − 1)

d

dt

[∫ t

0

∫ τ

0

(t− s)β−2(τ − s)g(τ)dsdτ

+

∫ 1
2

t

∫ t

0

(t− s)β−2(τ − s)g(τ)dsdτ

]

=
1

Γ(β − 1)

d

dt

[∫ t

0

(
τtβ−1

β − 1
+

(t− τ)β

(β − 1)β
− tβ

(β − 1)β

)
g(τ)dτ

+

∫ 1
2

t

(
τtβ−1

β − 1
− tβ

(β − 1)β

)
g(τ)dτ

]

=

∫ t

0

(t− τ)β−1 − tβ−1

Γ(β)
g(τ)dτ −

∫ 1
2

t

tβ−1

Γ(β)
g(τ)dτ +

∫ 1
2

0

τtβ−2

Γ(β − 1)
g(τ)dτ.

Hence, for t ∈ [0, 1
2 ], we get

ϕ(Dα
0+w(t))− c1

Γ(β)
tβ−1 −

− 1
2c1 + c2

Γ(β − 1)
tβ−2

=

∫ t

0

(t− τ)β−1 − tβ−1

Γ(β)
g(τ)dτ −

∫ 1
2

t

tβ−1

Γ(β)
g(τ)dτ +

∫ 1
2

0

τtβ−2

Γ(β − 1)
g(τ)dτ. (2.8)

Case 2: By integrating both sides of the first equation in (2.2) from 1
2 to s for

s ∈ [ 1
2 , 1), we get ∫ s

1
2

Dβ
0+(ϕ(Dα

0+w(τ)))dτ =

∫ s

1
2

g(τ)dτ. (2.9)

Based on the similar argument in Case 1 with aid of (2.9), we have

−c1 +
d

ds
I2−β
0+ ϕ(Dα

0+w(s)) =

∫ s

1
2

g(τ)dτ, (2.10)
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where c1 = d
dsI

2−β
0+ ϕ(Dα

0+w( 1
2 )). Integrating on both sides of (2.10) from 1

2 to t for

t ∈ [ 1
2 , 1], we can deduce

−c1(t− 1

2
)− c2 + I2−β

0+ ϕ(Dα
0+w(t)) =

∫ t

1
2

∫ s

1
2

g(τ)dτds

=

∫ t

1
2

∫ t

τ

g(τ)dsdτ

=

∫ t

1
2

(t− τ)g(τ)dτ.

i.e.

−c1(t− 1

2
)− c2 + I2−β

0+ ϕ(Dα
0+w(t)) =

∫ t

1
2

(t− τ)g(τ)dτ, (2.11)

where c2 = I2−β
0+ ϕ(Dα

0+w( 1
2 )). Taking D2−β

0+ on both sides of (2.11) and using Remark
2.6, we obtain

ϕ(Dα
0+w(t))− c1

Γ(β)
tβ−1 −

− 1
2c1 + c2

Γ(β − 1)
tβ−2 = D2−β

0+

∫ t

1
2

(t− τ)g(τ)dτ. (2.12)

By Definition 2.5, we can calculate the right hand of (2.12). Exactly,

D2−β
0+

∫ t

1
2

(t− τ)g(τ)dτ

=
1

Γ(β − 1)

d

dt

∫ t

0

(t− s)β−2

∫ s

1
2

(s− τ)g(τ)dτds

=
1

Γ(β − 1)

d

dt

∫ t

0

∫ s

1
2

(t− s)β−2(s− τ)g(τ)dτds

=
1

Γ(β − 1)

d

dt

[
−
∫ 1

2

0

∫ τ

0

(t− s)β−2(s− τ)g(τ)dsdτ

+

∫ t

1
2

∫ t

τ

(t− s)β−2(s− τ)g(τ)dsdτ

]

=
1

Γ(β − 1)

d

dt

[∫ 1
2

0

(
τtβ−1

β − 1
+

(t− τ)β

(β − 1)β
− tβ

(β − 1)β

)
g(τ)dτ +

∫ t

1
2

(t− τ)β

(β − 1)β
g(τ)dτ

]

=

∫ 1
2

0

(t− τ)β−1 − tβ−1

Γ(β)
g(τ)dτ +

∫ t

1
2

(t− τ)β−1

Γ(β)
g(τ)dτ +

∫ 1
2

0

τtβ−2

Γ(β − 1)
g(τ)dτ.

Hence, for t ∈ [ 1
2 , 1], we get

ϕ(Dα
0+w(t))− c1

Γ(β)
tβ−1 −

− 1
2c1 + c2

Γ(β − 1)
tβ−2

=

∫ 1
2

0

(t− τ)β−1 − tβ−1

Γ(β)
g(τ)dτ+

∫ t

1
2

(t− τ)β−1

Γ(β)
g(τ)dτ+

∫ 1
2

0

τtβ−2

Γ(β − 1)
g(τ)dτ. (2.13)
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Substituting boundary conditions ϕ(Dα
0+w(0)) = 0 and (ϕ(Dα

0+w(1)))′ = 0 into (2.8)
and (2.13), respectively, we have

−
− 1

2c1 + c2

Γ(β − 1)
=

∫ 1
2

0

τ

Γ(β − 1)
g(τ)dτ, (2.14)

− c1
Γ(β)

=

∫ 1
2

0

(1− τ)β−2 − 1

Γ(β)
g(τ)dτ +

∫ 1

1
2

(1− τ)β−2

Γ(β)
g(τ)dτ. (2.15)

Meanwhile, we can easily check that

lim
t→ 1

2
+
ϕ(Dα

0+w(t)) = lim
t→ 1

2
−
ϕ(Dα

0+w(t)). (2.16)

Thus, the solution w to (2.2) satisfy

ϕ(Dα
0+w(t))

= −
[∫ t

0

tβ−1(1− τ)β−2 − (t− τ)β−1

Γ(β)
g(τ)dτ +

∫ 1

t

tβ−1(1− τ)β−2

Γ(β)
g(τ)dτ

]
= −

∫ 1

0

H(t, τ)g(τ)dτ.

Because ϕ : R→ R is an odd increasing homeomorphism, we obtain

Dα
0+w(t) = ϕ−1

(
−
∫ 1

0

H(t, τ)g(τ)dτ

)
= −ϕ−1

(∫ 1

0

H(t, τ)g(τ)dτ

)
.

Thus, problem (2.2) can be represented by

Dα
0+w(t) = −ϕ−1

(∫ 1

0

H(t, τ)g(τ)dτ

)
,

w(0) = w′(0) = w′(1) = 0.

By Lemma 2.7, we see that the solution to (2.2) can be uniquely rewritten as

w(t) =

∫ 1

0

G(t, s)ϕ−1

(∫ 1

0

H(s, τ)g(τ)dτ

)
ds.

Lemma 2.9 ([8]) Let 2 < α ≤ 3, 1 < β ≤ 2. Functions G(t, s) and H(s, τ) defined
by (2.1) and (2.3), respectively, are continuous on [0, 1]× [0, 1] and satisfy

(i) G(t, s) ≥ 0, H(s, τ) ≥ 0, for t, s, τ ∈ [0, 1];
(ii) G(t, s) ≤ G(1, s), H(s, τ) ≤ H(τ, τ), for t, s, τ ∈ [0, 1];
(iii) G(t, s) ≥ tα−1G(1, s), H(s, τ) ≥ sβ−1H(1, τ), for t, s, τ ∈ [0, 1].

Remark 2.10 ([21]) From condition (A), we get

σx ≤ ϕ−1[γ(σ)ϕ(x)],

and

ϕ−1[σϕ(x)] ≤ ψ−1(σ)x, for σ and x > 0.
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In the following parts, we always take E = C[0, 1] as Banach space with norm
‖u‖ = maxt∈[0,1] |u(t)| and take a cone K defined by

K =
{
u ∈ E | u(t) ≥ tα−1‖u‖, t ∈ [0, 1]

}
.

Let λ > 0, u ∈ K and h satisfy (H), then λhf(u) also satisfies (H). By Lemma 2.8,
we see that problem (1.1) can be equivalently rewritten as

u(t) =

∫ 1

0

G(t, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds.

Thus, we need continue to introduce Lemma 2.11 which will play an important role
in Section 3.

Lemma 2.11 Let us give the solution operator Tλ : K → E defined by

Tλ(u)(t) =

∫ 1

0

G(t, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds.

Then Tλ : K → K is completely continuous.
Proof. Firstly, we show that Tλ(K) ⊂ K. Using (ii)(iii) of Lemma 2.9, we can estimate
that for t ∈ [0, 1]

Tλ(u)(t) ≤
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds,

i.e.

‖Tλ(u)‖ ≤
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds,

and

Tλ(u)(t) ≥
∫ 1

0

tα−1G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds

= tα−1

∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds.

Consequently, we have for t ∈ [0, 1]

Tλ(u)(t) ≥ tα−1‖Tλ(u)‖.

Meanwhile, the continuity of Tλ can be derived by the Lebesgue Dominated Conver-
gence Theorem and continuity of functions G,H and f .

Secondly, by the Arzela-Ascoli theorem, we show that Tλ(B) is uniform bounded
and equicontinuous for any bounded subset B in K. The proof is standard and can
be completed by making minor changes to the proof of Lemma 3.1 in [10]. Here we
omit it.

Remark 2.12 By the definition of cone K, the range of α and Lemma 2.11, we can
easily get ‖Tλ(u)‖ = Tλ(u)(1) for any u ∈ K.
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3. Sufficient conditions on the existence of positive solutions

Based on the well-known results of fixed point index on cones due to Guo-
Krasnoselskii and Leggett-Williams, we derive some sufficient conditions that guaran-
tee the existence of at least one, two and three positive solutions to (1.1), respectively.
As applications, we present the corresponding examples at the end of every subsec-
tion. Specially, by a nonnegative solution u to (1.1), we understand a function u ∈ E
with u(t) ≥ 0 for all t ∈ [0, 1], which satisfies (1.1). If u is a nonnegative solution of
(1.1) and satisfies ‖u‖ > 0, then u is called a positive solution of (1.1).

For the sake of illustration, we introduce the following notations.

f0 = lim inf
u→0+

f(u)

ϕ(u)
, f∞ = lim inf

u→+∞

f(u)

ϕ(u)
,

F0 = lim sup
u→0+

f(u)

ϕ(u)
, F∞ = lim sup

u→+∞

f(u)

ϕ(u)
.

3.1. Existence of at least one positive solution.

Theorem 3.1 Suppose that (A)(H) and (F1) hold. If either

4γ

 16∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτf∞
(, λ∗) <

ψ
(

1
ψ−1(

∫ 1
0
H(τ,τ)h(τ)dτ)

∫ 1
0
G(1,s)ds

)
F0

(, λ∗),

or

4γ

 16∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτf0

(, λ∗) <
ψ
(

1
ψ−1(

∫ 1
0
H(τ,τ)h(τ)dτ)

∫ 1
0
G(1,s)ds

)
F∞

(, λ∗),

then the boundary value problem (1.1) has at least one positive solution for any
λ ∈ (λ∗, λ

∗).

Proof. (1) We prove that the result is true for the first case

4γ

 16∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτf∞
(, λ∗) <

ψ
(

1
ψ−1(

∫ 1
0
H(τ,τ)h(τ)dτ)

∫ 1
0
G(1,s)ds

)
F0

(, λ∗).
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For any λ ∈ (λ∗, λ
∗), we can choose ε > 0 sufficiently small so that

4γ

 16∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτ(f∞ − ε)
≤ λ ≤

ψ
(

1
ψ−1(

∫ 1
0
H(τ,τ)h(τ)dτ)

∫ 1
0
G(1,s)ds

)
F0 + ε

. (3.1)

On the one hand, the definition of F0 implies that, for ε given above, there must
exist a positive constant r1 satisfying

f(u) ≤ (F0 + ε)ϕ(u), for 0 < u ≤ r1. (3.2)

Let u ∈ ∂Kr1 . By applying Lemma 2.9, Remark 2.10, Remark 2.12 and (3.1)(3.2),
we have

‖Tλ(u)‖ = Tλ(u)(1) =

∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds

≤
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(τ, τ)λh(τ)f(u(τ))dτ

)
ds

≤
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(τ, τ)λh(τ)(F0 + ε)ϕ(u(τ))dτ

)
ds

≤
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(τ, τ)λh(τ)(F0 + ε)ϕ(r1)dτ

)
ds

≤ ψ−1 (λ(F0 + ε))ϕ−1

(∫ 1

0

H(τ, τ)h(τ)dτϕ(r1)

)∫ 1

0

G(1, s)ds

≤ ψ−1 (λ(F0 + ε))ψ−1

(∫ 1

0

H(τ, τ)h(τ)dτ

)∫ 1

0

G(1, s)ds · r1 ≤ r1.

i.e.
‖Tλ(u)‖ ≤ ‖u‖, for u ∈ ∂Kr1 . (3.3)

On the other hand, the definition of f∞ implies that, for ε mentioned above, we
can choose a positive constant r such that

f(u) ≥ (f∞ − ε)ϕ(u), for u ≥ r.
Take r2 > max{r1, 16r} and let u ∈ ∂Kr2 . Then we can derive

min
t∈[ 14 ,

3
4 ]
u(t) ≥ min

t∈[ 14 ,
3
4 ]
tα−1‖u‖ ≥ 1

16
‖u‖ > r,

f(u(t)) ≥ (f∞ − ε)ϕ(u(t)) ≥ (f∞ − ε)ϕ
(

1

16
‖u‖
)
, for t ∈ [

1

4
,

3

4
]. (3.4)

Using Lemma 2.9, Remark 2.10, Remark 2.12 and (3.1)(3.4), we can continue to
obtain

‖Tλ(u)‖ = Tλ(u)(1) =

∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

sβ−1H(1, τ)λh(τ)f(u(τ))dτ

)
ds
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=

∫ 1

0

G(1, s)ϕ−1

(
sβ−1

∫ 1

0

H(1, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G(1, s)ϕ−1

(
sβ−1

∫ 3
4

1
4

H(1, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G(1, s)ϕ−1

(
(
1

4
)β−1

∫ 3
4

1
4

H(1, τ)λh(τ)(f∞ − ε)ϕ
(

1

16
‖u‖
)
dτ

)
ds

≥ ϕ−1

(
1

4
λ(f∞ − ε)

∫ 3
4

1
4

H(1, τ)h(τ)dτϕ

(
1

16
‖u‖
))∫ 3

4

1
4

G(1, s)ds

≥ ϕ−1

γ
 16∫ 3

4
1
4

G(1, s)ds

ϕ

(
1

16
‖u‖
)∫ 3

4

1
4

G(1, s)ds ≥ ‖u‖.

i.e.
‖Tλ(u)‖ ≥ ‖u‖, for u ∈ ∂Kr2 . (3.5)

Suppose that
Tλ(u) = u, for u ∈ ∂Kri , i = 1 or 2.

Then Tλ must have a fixed point on ∂Kri for i = 1 or 2. i.e. Problem (1.1) has at
least one positive solution for any (λ∗, λ

∗). Otherwise, by Lemma 2.1 and (3.3)(3.5),
we have

i(Tλ,Kr1 ,K) = 1, i(Tλ,Kr2 ,K) = 0.

Applying the additivity of the fixed point index, we see that

i(Tλ,Kr2 \Kr1 ,K) = −1.

Thus, we can conclude that Tλ has a fixed point u ∈ Kr2 \Kr1 . That is to say, u is
a positive solution of the boundary value problem (1.1) with r1 < ‖u‖ < r2 for any
λ ∈ (λ∗, λ

∗).
(2) We show that the result is also true for the second case

4γ

 16∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτf0

(, λ∗) <
ψ
(

1
ψ−1(

∫ 1
0
H(τ,τ)h(τ)dτ)

∫ 1
0
G(1,s)ds

)
F∞

(, λ∗).

For any λ ∈ (λ∗, λ
∗), we can also choose ε > 0 sufficiently small so that

4γ

 16∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτ(f0 − ε)
(, λ∗) ≤ λ ≤

ψ
(

1
ψ−1(

∫ 1
0
H(τ,τ)h(τ)dτ)

∫ 1
0
G(1,s)ds

)
F∞ + ε

(, λ∗).

(3.6)
On the one hand, the definition of f0 implies that, for ε given above, there must

exist a positive constant r1 satisfying

f(u) ≥ (f0 − ε)ϕ(u), for 0 < u ≤ r1. (3.7)
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Let u ∈ ∂Kr1 . By applying the similar processes of the first case with aid of (3.7), we
can derive

‖Tλ(u)‖ ≥ ‖u‖, for u ∈ ∂Kr1 . (3.8)

On the other hand, the definition of F∞ implies that, for ε mentioned above, we
can choose a positive constant R satisfying

f(u) ≤ (F∞ + ε)ϕ(u), for u ≥ R. (3.9)

We will consider two subcases to estimate ‖Tλ(u)‖ in the following proof.
(i) If f is bounded, then there exists a positive constant M satisfying

f(u) ≤M, for u ≥ 0.

Take r3 > max{r1, ψ
−1 (λM)ϕ−1

(∫ 1

0
H(τ, τ)h(τ)dτ

) ∫ 1

0
G(1, s)ds} and then let u ∈

K with ‖u‖ = r3. It follows from Remark 2.10 and Remark 2.12 that

‖Tλ(u)‖ = Tλ(u)(1) =

∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds

≤
∫ 1

0

G(1, s)ϕ−1

(
λM

∫ 1

0

H(τ, τ)h(τ)dτ

)
ds

≤ ψ−1 (λM)ϕ−1

(∫ 1

0

H(τ, τ)h(τ)dτ

)∫ 1

0

G(1, s)ds ≤ r3 = ‖u‖.

(ii) If f is unbounded, then there must exist a positive constant r4 > max{r1, R}
satisfying

f(u) ≤ f(r4), for 0 < u ≤ r4. (3.10)

Let u ∈ K with ‖u‖ = r4. By Remark 2.10, Remark 2.12 and (3.6)(3.9)(3.10), we get

‖Tλ(u)‖ = Tλ(u)(1) =

∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds

≤
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(τ, τ)λh(τ)f(r4)dτ

)
ds

≤
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(τ, τ)λh(τ)(F∞ + ε)ϕ(r4)dτ

)
ds

≤ ψ−1 (λ(F∞ + ε))ϕ−1

(∫ 1

0

H(τ, τ)h(τ)dτϕ(r4)

)∫ 1

0

G(1, s)ds

≤ ψ−1 (λ(F∞ + ε))ψ−1

(∫ 1

0

H(τ, τ)h(τ)dτ

)∫ 1

0

G(1, s)ds · r4 ≤ r4 = ‖u‖.

Based on the arguments of (i)(ii), we can take r2 = max{r3, r4}. Then, we have

‖Tλ(u)‖ ≤ ‖u‖, for u ∈ ∂Kr2 . (3.11)

Suppose that

Tλ(u) = u, for u ∈ ∂Kri , i = 1 or 2.
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Then Tλ must have a fixed point on ∂Kri for i = 1 or 2. i.e. Problem (1.1) has at
least one positive solution for any (λ∗, λ

∗). Otherwise, by Lemma 2.1 and (3.8)(3.11),
we have

i(Tλ,Kr1 ,K) = 0, i(Tλ,Kr2 ,K) = 1.

Applying the additivity of the fixed point index, we see that

i(Tλ,Kr2 \Kr1 ,K) = 1.

Hence, we can conclude that Tλ has a fixed point u ∈ Kr2 \Kr1 . That is to say, u is
a positive solution of the boundary value problem (1.1) with r1 < ‖u‖ < r2 for any
λ ∈ (λ∗, λ

∗).

Example 3.2 Consider the following boundary value problem{
D

3
2

0+(ϕ(D
5
2

0+u(t))) = λt−1(1000− 999e−u)u
1
3 , t ∈ (0, 1),

u(0) = u′(0) = u′(1) = 0, ϕ(D
5
2

0+u(0)) = (ϕ(D
5
2

0+u(1)))′ = 0.
(3.12)

Here we take ϕ(x) = x
1
3 , x ∈ R and ψ(x) = γ(x) ≡ ϕ(x). It is obvious that ϕ is

an odd increasing homeomorphism and satisfies condition (A). Since h(t) = t−1 and
β = 3

2 , we see that h is singular at t = 0 and∫ 1

0

tβ−1(1− t)β−2h(t)dt =

∫ 1

0

t
1
2 (1− t)− 1

2 t−1dt =

∫ 1

0

t−
1
2 (1− t)− 1

2 dt = π,

which implies that condition (H) is true. While, f(u) = (1000− 999e−u)u
1
3 satisfies

condition (F1). Moreover, by the definitions of f∞, F0, G and H, we can calculate
that

f∞ = lim inf
u→+∞

(1000− 999e−u)u
1
3

u
1
3

= lim inf
u→+∞

(1000− 999e−u) = 1000,

F0 = lim sup
u→0+

(1000− 999e−u)u
1
3

u
1
3

= lim sup
u→0+

(1000− 999e−u) = 1,∫ 3
4

1
4

G(1, s)ds =

∫ 3
4

1
4

(1− s) 1
2 − (1− s) 3

2

Γ( 5
2 )

ds
.
= 0.13, (3.13)∫ 3

4

1
4

H(1, τ)h(τ)dτ =

∫ 3
4

1
4

(1− τ)−
1
2 − (1− τ)

1
2

Γ( 3
2 )

τ−1dτ
.
= 0.83, (3.14)∫ 1

0

G(1, s)ds =

∫ 1

0

(1− s) 1
2 − (1− s) 3

2

Γ( 5
2 )

ds =
16

45
√
π
, (3.15)∫ 1

0

H(τ, τ)h(τ)dτ =

∫ 1

0

τ
1
2 (1− τ)−

1
2

Γ( 3
2 )

τ−1dτ = 2
√
π. (3.16)

Thus, we have

4γ

 16∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτf∞

.
= 0.024,
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ψ
(

1
ψ−1(

∫ 1
0
H(τ,τ)h(τ)dτ)

∫ 1
0
G(1,s)ds

)
F0

.
= 0.48,

which belongs to the first case of Theorem 3.1. Therefore, by Theorem 3.1 , we can
conclude that problem (3.12) has at least one positive solution for λ ∈ (0.024, 0.48).

3.2. Existence of at least two positive solutions.

Theorem 3.3 Suppose that (A)(H)(F1) and (F2) hold.
(1) If f0 = f∞ = +∞, then the boundary value problem (1.1) has at least two positive
solutions for any λ ∈ (0, λ0), where

λ0 = sup
r>0

ϕ(r)∫ 1

0
H(τ, τ)h(τ)dτ maxu∈[0,r] f(u)

.

(2) If F0 = F∞ = 0, then the boundary value problem (1.1) has at least two positive
solutions for any λ > λ0, where

λ0 = inf
r>0

4ϕ

 r∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτ minu∈[ r16 ,r]
f(u)

.

Proof. (1) By (F2), we can easily get that maxu∈[0,r] f(u) > 0 for any r > 0. Let
u ∈ K with ‖u‖ = r. Using Remark 2.10 and Remark 2.12 again, we can get

‖Tλ(u)‖ = Tλ(u)(1) =

∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds

≤
∫ 1

0

G(1, s)ϕ−1

(
λ

∫ 1

0

H(τ, τ)h(τ)dτ max
u∈[0,r]

f(u)

)
ds

= ϕ−1

(
λ

∫ 1

0

H(τ, τ)h(τ)dτ max
u∈[0,r]

f(u)

)∫ 1

0

G(1, s)ds.

By the definition of function G(t, s), we can easily check that
∫ 1

0
G(1, s)ds < 1. Thus,

we have

‖Tλ(u)‖ ≤ ϕ−1

(
λ

∫ 1

0

H(τ, τ)h(τ)dτ max
u∈[0,r]

f(u)

)
. (3.17)

To show the existence of λ0, we need to give a new function x : (0,+∞)→ (0,+∞)
defined by

x(r) =
ϕ(r)∫ 1

0
H(τ, τ)h(τ)dτ maxu∈[0,r] f(u)

.

Clearly, x(r) is a continuous function. From f0 = f∞ = +∞, we see that
limr→0 x(r) = limr→+∞ x(r) = 0, and there exists a positive constant r∗ such that
x(r∗) = supr>0 x(r). Take λ0 = x(r∗), and then for any λ ∈ (0, λ0), we can find two
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positive constants r1, r2 such that x(r1) = x(r2) = λ. Using (3.17), for u ∈ K with
‖u‖ = ri (i = 1, 2), we have

‖Tλ(u)‖

≤ ϕ−1

(
λ

∫ 1

0

H(τ, τ)h(τ)dτ max
u∈[0,r]

f(u)

)
= ϕ−1

(
ϕ(ri)∫ 1

0
H(τ, τ)h(τ)dτ maxu∈[0,ri] f(u)

∫ 1

0

H(τ, τ)h(τ)dτ max
u∈[0,ri]

f(u)

)
= ri.

Thus, we get
‖Tλ(u)‖ ≤ ‖u‖, for u ∈ ∂Kri , i = 1, 2. (3.18)

Moreover, applying the similar arguments in the proof of Theorem 3.1 with aids
of f0 = f∞ = +∞, for any λ ∈ (0, λ0) mentioned above, we can find two positive
constants r3, r4 such that r3 < r1 < r2 < r4 and

‖Tλ(u)‖ ≥ ‖u‖, for u ∈ ∂Krj , j = 3, 4. (3.19)

Finally, we need consider three cases to complete the proof of this theorem.
Case 1: Suppose that

Tλ(u) 6= u, for u ∈ ∂Kri , i = 1, 2, 3, 4.

By Lemma 2.1 and (3.18)(3.19), we have

i(Tλ,Kr1 ,K) = 1, i(Tλ,Kr2 ,K) = 1,

and
i(Tλ,Kr3 ,K) = 0, i(Tλ,Kr4 ,K) = 0.

Applying the additivity of the fixed point index, we see that

i(Tλ,Kr1 \Kr3 ,K) = 1, i(Tλ,Kr4 \Kr2 ,K) = −1.

Thus, we can conclude that Tλ has two fixed points u1, u2 in Kr1 \Kr3 and Kr4 \Kr2 ,
respectively. That is to say, u1, u2 are two positive solutions of the boundary value
problem (1.1) with r3 < ‖u1‖ < r1 < r2 < ‖u2‖ < r4 for any λ ∈ (0, λ0).
Case 2: Suppose that there exists only one component r0 ∈ {r1, r2, r3, r4} such that
Tλ(u) = u for u ∈ ∂Kr0 . Without loss of generality, we assume that

Tλ(u) = u, for u ∈ ∂Kr1 , (3.20)

and
Tλ(u) 6= u, for u ∈ ∂Kri , i = 2, 3, 4. (3.21)

From (3.20), we see that Tλ must have a fixed point u1 ∈ ∂Kr1 . Meanwhile, by
Lemma 2.1 and (3.21), we have

i(Tλ,Kr2 ,K) = 1, i(Tλ,Kr4 ,K) = 0.

Applying the additivity of the fixed point index, we obtain

i(Tλ,Kr4 \Kr2 ,K) = −1.

i.e. Tλ has a fixed point u2 ∈ Kr4 \ Kr2 . That is to say, u1, u2 are two positive
solutions of the boundary value problem (1.1) with ‖u1‖ = r1 < r2 < ‖u2‖ < r4 for
any λ ∈ (0, λ0).
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Case 3: Suppose that there exist at least two components r0, r∗ ∈ {r1, r2, r3, r4} such
that Tλ(u) = u for u ∈ ∂Kri , ri = r0, r∗. Without loss of generality, we assume that

Tλ(u) = u, for u ∈ ∂Kri , i = 1, 2.

Then Tλ must have two fixed points u1, u2 ∈ ∂Kri , i = 1, 2. That is to say, u1, u2 are
two positive solutions of the boundary value problem (1.1) with ‖u1‖ = r1 < r2 =
‖u2‖ for any λ ∈ (0, λ0).

(2) By (F2), we can easily get that minu∈[ r16 ,r]
f(u) > 0 for any r > 0. If u ∈ K

with ‖u‖ = r, then we have

r ≥ min
t∈[ 14 ,

3
4 ]
u(t) ≥ min

t∈[ 14 ,
3
4 ]
tα−1‖u‖ ≥ 1

16
‖u‖ =

r

16
,

f(u(t)) ≥ min
u∈[ r16 ,r]

f(u), for t ∈ [
1

4
,

3

4
]. (3.22)

Applying Lemma 2.9, Remark 2.10, Remark 2.12 and (3.22) again, we can get

‖Tλ(u)‖ = Tλ(u)(1) =

∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

sβ−1H(1, τ)λh(τ)f(u(τ))dτ

)
ds

=

∫ 1

0

G(1, s)ϕ−1

(
sβ−1

∫ 1

0

H(1, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G(1, s)ϕ−1

(
sβ−1

∫ 3
4

1
4

H(1, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G(1, s)ϕ−1

(
(
1

4
)β−1

∫ 3
4

1
4

H(1, τ)λh(τ) min
u∈[ r16 ,r]

f(u)dτ

)
ds

≥ ϕ−1

(
1

4
λ

∫ 3
4

1
4

H(1, τ)h(τ)dτ min
u∈[ r16 ,r]

f(u)

)∫ 3
4

1
4

G(1, s)ds.

Obviously,
∫ 3

4
1
4

G(1, s)ds < 1. Thus, we have

‖Tλ(u)‖ ≥ ϕ−1

(
1

4
λ

∫ 3
4

1
4

H(1, τ)h(τ)dτ min
u∈[ r16 ,r]

f(u)

)∫ 3
4

1
4

G(1, s)ds. (3.23)

To show the existence of λ0, we need to give a new function y : (0,+∞)→ (0,+∞)
defined by

y(r) =

4ϕ

 r∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτ minu∈[ r16 ,r]
f(u)

.

Clearly, y(r) is a continuous function. From F0 = F∞ = 0, we see that limr→0 y(r) =
limr→+∞ y(r) = +∞, and there exists a positive constant r∗ such that y(r∗) =
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infr>0 y(r). Take λ0 = y(r∗), and then for any λ > λ0, we can find two positive
constants r1, r2 such that y(r1) = y(r2) = λ. Using (3.23), for u ∈ K with ‖u‖ = ri
(i = 1, 2), we have

‖Tλ(u)‖

≥ ϕ−1

(
1

4
λ

∫ 3
4

1
4

H(1, τ)h(τ)dτ min
u∈[ r16 ,r]

f(u)

)∫ 3
4

1
4

G(1, s)ds

≥ ϕ−1


1

4
·

4ϕ

 ri∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτ minu∈[
ri
16 ,ri]

f(u)

∫ 3
4

1
4

H(1, τ)h(τ)dτ min
u∈[

ri
16 ,ri]

f(u)


×
∫ 3

4

1
4

G(1, s)ds

= ri.

Thus, we get
‖Tλ(u)‖ ≥ ‖u‖, for u ∈ ∂Kri , i = 1, 2. (3.24)

Moreover, applying the similar arguments in the proof of Theorem 3.1 with aids
of F0 = F∞ = 0, for any λ > λ0 mentioned above, we can find two positive constants
r3, r4 such that r3 < r1 < r2 < r4 and

‖Tλ(u)‖ ≤ ‖u‖, for u ∈ ∂Krj , j = 3, 4. (3.25)

Finally, we need consider three cases to complete the proof of this theorem.
Case 1: Suppose that

Tλ(u) 6= u, for u ∈ ∂Kri , i = 1, 2, 3, 4.

By Lemma 2.1 and (3.24)(3.25) that

i(Tλ,Kr1 ,K) = 0, i(Tλ,Kr2 ,K) = 0,

and
i(Tλ,Kr3 ,K) = 1, i(Tλ,Kr4 ,K) = 1.

Applying the additivity of the fixed point index, we see that

i(Tλ,Kr1 \Kr3 ,K) = −1, i(Tλ,Kr4 \Kr2 ,K) = 1.

Thus, we can conclude that Tλ has two fixed points u1, u2 in Kr1 \Kr3 and Kr4 \Kr2 ,
respectively. That is to say, u1, u2 are two positive solutions of the boundary value
problem (1.1) with r3 < ‖u1‖ < r1 < r2 < ‖u2‖ < r4 for any λ > λ0.
Case 2: Suppose that there exists only one component r0 ∈ {r1, r2, r3, r4} such that
Tλ(u) = u for u ∈ ∂Kr0 . Without loss of generality, we assume that

Tλ(u) = u, for u ∈ ∂Kr1 , (3.26)

and
Tλ(u) 6= u, for u ∈ ∂Kri , i = 2, 3, 4. (3.27)
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From (3.26), we see that Tλ must have a fixed point u1 ∈ ∂Kr1 . Meanwhile, by
Lemma 2.1 and (3.27), we have

i(Tλ,Kr2 ,K) = 0, i(Tλ,Kr4 ,K) = 1.

Applying the additivity of the fixed point index, we obtain

i(Tλ,Kr4 \Kr2 ,K) = 1.

i.e. Tλ has a fixed point u2 ∈ Kr4 \ Kr2 . That is to say, u1, u2 are two positive
solutions of the boundary value problem (1.1) with ‖u1‖ = r1 < r2 < ‖u2‖ < r4 for
any λ > λ0.
Case 3: Suppose that there exist at least two components r0, r∗ ∈ {r1, r2, r3, r4} such
that Tλ(u) = u for u ∈ ∂Kri , ri = r0, r∗. Without loss of generality, we assume that

Tλ(u) = u, for u ∈ ∂Kri , i = 1, 2.

Then Tλ must have two fixed points u1, u2 ∈ ∂Kri , i = 1, 2. That is to say,
u1, u2 are two positive solutions of the boundary value problem (1.1) with
‖u1‖ = r1 < r2 = ‖u2‖ for any λ > λ0.

Example 3.4 Consider the following boundary value problem{
D

3
2

0+(ϕ(D
5
2

0+u(t))) = λt−1f(u), t ∈ (0, 1),

u(0) = u′(0) = u′(1) = 0, ϕ(D
5
2

0+u(0)) = (ϕ(D
5
2

0+u(1)))′ = 0.
(3.28)

Here we take ϕ(x) = |x|x+ x, x ∈ R, and

f(u) =

{
u3, 0 ≤ u < 1,
u, u ≥ 1.

Combining Example 4.1 of [15] and Example 3.2 mentioned above, we can prove that
problem (3.28) satisfies conditions (A)(H) (F1) and (F2). We can also calculate that

F0 = lim sup
u→0+

u3

u2 + u
= 0,

F∞ = lim sup
u→+∞

u

u2 + u
= 0,

which belongs to the second case of Theorem 3.3. Additionally, for any r > 0, we
have

min
u∈[ r16 ,r]

f(u) = f(
r

16
) =

{
r3

4096 , 0 < r < 16,
r
16 , r ≥ 16.

Using (3.13) and (3.14), for 0 < r < 16, we have

y(r) =

4ϕ

 r∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτ · r3

4096

.
=

1167409.41r + 151798.75

r2
,
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and y′(r) < 0. While, for r ≥ 16, we have

y(r) =

4ϕ

 r∫ 3
4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτ · r16

.
= 4560.29r + 592.98,

and y′(r) > 0. Thus, we can get

λ0 = inf
r>0

y(r) = y(16)
.
= 73557.62.

Therefore, by Theorem 3.3, we can conclude that problem (3.28) has at least two
positive solutions for λ > 73557.62.

3.3. Existence of at least three positive solutions.

Theorem 3.5 Suppose that (A)(H) (F1) hold and F∞ < 1. If there exist two
constants 0 < d < k such that

(i) maxu∈[0,d] f(u) ≤ ϕ(d);
(ii) f(u) ≥ ϕ(θu) for all k ≤ u ≤ 16k, where θ > 0 is a constant satisfying

4γ

 16

θ
∫ 3

4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτ
(, λ) < ψ

(
1

ψ−1(
∫ 1

0
H(τ, τ)h(τ)dτ)

∫ 1

0
G(1, s)ds

)
(, λ).

Then the boundary value problem (1.1) has at least one nonnegative solution and
two positive solutions for any λ ∈ (λ, λ).

Proof. The condition on θ implies that the interval (λ, λ) is not empty. Exactly, we
will divide the proof into four steps.
Step 1: Show that Tλ : Kc → Kc is completely continuous for some positive constant
c > 0.

From F∞ < 1, we can find two constants %, δ satisfying 0 < % < 1, δ > 0 and

f(u) ≤ %ϕ(u), for u ≥ δ.
By (F1), we can denote η = max0≤u≤δ f(u). Thus, we get

f(u) ≤ %ϕ(u) + η, for u ≥ 0. (3.29)

Take c > max
{

16k, ϕ−1( η
1−% )

}
and let u ∈ Kc. By Lemma 2.9 and Remark 2.12, we

can obtain

‖Tλ(u)‖ = Tλ(u)(1) =

∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds

≤
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(τ, τ)λh(τ)(%ϕ(u(τ)) + η)dτ

)
ds
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≤
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(τ, τ)λh(τ)(%ϕ(c) + η)dτ

)
ds.

By the choice of c, we can derive that %ϕ(c) + η < ϕ(c). Thus, we have

‖Tλ(u)‖ ≤
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(τ, τ)λh(τ)ϕ(c)dτ

)
ds.

Combining Remark 2.10 with the range of λ, we see that

‖Tλ(u)‖ ≤ ψ−1(λ)ϕ−1

(∫ 1

0

H(τ, τ)λh(τ)ϕ(c)dτ

)∫ 1

0

G(1, s)ds

≤ ψ−1(λ)ψ−1

(∫ 1

0

H(τ, τ)h(τ)dτ

)∫ 1

0

G(1, s)ds · c < c,

which implies that Tλ(Kc) ⊂ Kc. By Lemma 2.11, the proof of Step 1 is done.
Step 2: Show that ‖Tλ(u)‖ < d for u ∈ Kd.

From condition (i) in this theorem, we see that

f(u) ≤ max
u∈[0,d]

f(u) ≤ ϕ(d), for 0 ≤ u ≤ d. (3.30)

Applying the similar process of Step 1 with the aid of (3.30), we can derive that for
u ∈ Kd

‖Tλ(u)‖ ≤ ψ−1(λ)ψ−1

(∫ 1

0

H(τ, τ)h(τ)dτ

)∫ 1

0

G(1, s)ds · d < d,

which completes the proof of Step 2.
Step 3: Show that there exist two positive constants a, b with a < b and a nonnegative
continuous concave functional α on K satisfying {u ∈ K(α, a, b) : α(x) > a} 6= ∅ and
α(Tλ(u)) > a if u ∈ K(α, a, b).

By the definition of cone K, we give a nonnegative continuous concave functional
α defined by

α(u) = min
t∈[ 14 ,

3
4 ]
u(t), on K.

Choosing a = k, b = 16k and u(t) ≡ 2k for t ∈ [0, 1], we can easily see that k < u(t) ≡
2k < 16k. That is to say, {u ∈ K(α, a, b) : α(x) > a} 6= ∅.

Next, we need continue to show α(Tλ(u)) > a for u ∈ K(α, a, b). By the definition
of α and Tλ(u) ∈ K for u ∈ K(α, a, b), we obtain

α(Tλ(u)) = min
t∈[ 14 ,

3
4 ]
Tλ(u)(t) ≥ min

t∈[ 14 ,
3
4 ]
tα−1‖Tλ(u)‖ ≥ 1

16
‖Tλ(u)‖.

Then, the problem can be transferred to estimate ‖Tλ(u)‖ for u ∈ K(α, a, b). From the
definition of K(α, a, b), we see that mint∈[ 14 ,

3
4 ] u(t) = α(u) ≥ a = k and ‖u‖ ≤ b = 16k.

Applying condition (ii) in this theorem, we can obtain

f(u(t)) ≥ ϕ(θu(t)) ≥ ϕ(θk), for t ∈ [
1

4
,

3

4
]. (3.31)
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By Lemma 2.9, Remark 2.12 and (3.31), we have

‖Tλ(u)‖ = Tλ(u)(1) =

∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

sβ−1H(1, τ)λh(τ)f(u(τ))dτ

)
ds

=

∫ 1

0

G(1, s)ϕ−1

(
sβ−1

∫ 1

0

H(1, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G(1, s)ϕ−1

(
sβ−1

∫ 3
4

1
4

H(1, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G(1, s)ϕ−1

(
(
1

4
)β−1

∫ 3
4

1
4

H(1, τ)λh(τ)ϕ(θk)dτ

)
ds

≥ ϕ−1

(
1

4
λ

∫ 3
4

1
4

H(1, τ)h(τ)dτϕ(θk)

)∫ 3
4

1
4

G(1, s)ds.

From condition (A) on ϕ, h is nonnegative and nontrivial on any subinterval of (0, 1),
and Remark 2.10, we can derive that for any λ ∈ (λ, λ)

‖Tλ(u)‖ > ϕ−1

(
1

4
λ

∫ 3
4

1
4

H(1, τ)h(τ)dτϕ(θk)

)∫ 3
4

1
4

G(1, s)ds

= ϕ−1

γ
 16

θ
∫ 3

4
1
4

G(1, s)ds

ϕ(θk)

∫ 3
4

1
4

G(1, s)ds

≥ 16

θ
∫ 3

4
1
4

G(1, s)ds
· θk ·

∫ 3
4

1
4

G(1, s)ds = 16k = 16a.

Thus, we can show that

α(Tλ(u)) ≥ 1

16
‖Tλ(u)‖ > 1

16
· 16a = a, for u ∈ K(α, a, b),

which completes the proof of Step 3.
Step 4: For all u ∈ K(α, a, c) with ‖Tλ(u)‖ > b, we can easily check that

α(Tλ(u)) = min
t∈[ 14 ,

3
4 ]
Tλ(u)(t) ≥ min

t∈[ 14 ,
3
4 ]
tα−1‖Tλ(u)‖ ≥ 1

16
‖Tλ(u)‖ > b

16
= a.

Based on the four steps above and Lemma 2.3, we can obtain that Tλ has at least
three fixed points u1, u2, u3 in Kc such that ‖u1‖ < d, a < α(u2), d < ‖u3‖ with
α(u3) < a. That is to say, u1 is a nonnegative solution and u2, u3 are two positive so-
lutions of the boundary value problem (1.1) with ‖u1‖ < d, mint∈[ 14 ,

3
4 ] u2(t) > a = k,

‖u3‖ > d and mint∈[ 14 ,
3
4 ] u3(t) < a = k for any λ ∈ (λ, λ).

Theorem 3.6 Suppose that (A)(H) (F1) hold and F∞ < 1. If there exist three
constants 0 < e < d < k such that
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(i) maxu∈[0,d] f(u) ≤ ϕ(d);
(ii) f(u) ≥ ϕ(θ1u) for all e

16 ≤ u ≤ e, f(u) ≥ ϕ(θ2u) for all k ≤ u ≤ 16k, where
θ1, θ2 > 0 are two constants satisfying

4γ

 16

min{θ1,θ2}
∫ 3

4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτ
(, λ) < ψ

(
1

ψ−1(
∫ 1

0
H(τ, τ)h(τ)dτ)

∫ 1

0
G(1, s)ds

)
(, λ).

Then the boundary value problem (1.1) has at least three positive solutions for any
λ ∈ (λ, λ).

Proof. The condition on θ1, θ2 implies that the interval (λ, λ) is not empty. Based
upon the arguments of Theorem 3.5 with aid of conditions in this theorem, we can
derive that

i(Tλ,Kd,Kc) = 1, (3.32)

i(Tλ, K̊(α, a, c),Kc) = 1, (3.33)

i(Tλ,Kc\(Kd ∪K(α, a, c)),Kc) = −1. (3.34)

Moreover, if u ∈ K with ‖u‖ = e, then for t ∈ [ 1
4 ,

3
4 ]

e ≥ u(t) ≥ tα−1‖u‖ ≥ 1

16
‖u‖ =

e

16
,

f(u(t)) ≥ ϕ(θ1u(t)) ≥ ϕ(θ1 ·
e

16
). (3.35)

Let u ∈ ∂Ke. From Lemma 2.9, condition (A) on ϕ, h is nonnegative and nontrivial
on any subinterval of (0, 1), Remark 2.10 , Remark 2.12 and (3.35), we can obtain
that for any λ ∈ (λ, λ)

‖Tλ(u)‖ = Tλ(u)(1) =

∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

H(s, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 1

0

G(1, s)ϕ−1

(∫ 1

0

sβ−1H(1, τ)λh(τ)f(u(τ))dτ

)
ds

=

∫ 1

0

G(1, s)ϕ−1

(
sβ−1

∫ 1

0

H(1, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G(1, s)ϕ−1

(
sβ−1

∫ 3
4

1
4

H(1, τ)λh(τ)f(u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G(1, s)ϕ−1

(
(
1

4
)β−1

∫ 3
4

1
4

H(1, τ)λh(τ)ϕ(θ1 ·
e

16
)dτ

)
ds

≥ ϕ−1

(
1

4
λ

∫ 3
4

1
4

H(1, τ)h(τ)dτϕ(θ1 ·
e

16
)

)∫ 3
4

1
4

G(1, s)ds

> ϕ−1

(
1

4
λ

∫ 3
4

1
4

H(1, τ)h(τ)dτϕ(θ1 ·
e

16
)

)∫ 3
4

1
4

G(1, s)ds
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= ϕ−1

γ
 16

min{θ1, θ2}
∫ 3

4
1
4

G(1, s)ds

ϕ(θ1 ·
e

16
)

∫ 3
4

1
4

G(1, s)ds

≥ 16

min{θ1, θ2}
∫ 3

4
1
4

G(1, s)ds
· θ1 ·

e

16
·
∫ 3

4

1
4

G(1, s)ds ≥ e.

i.e.

‖Tλ(u)‖ > ‖u‖, for u ∈ ∂Ke.

If follow from Lemma 2.1 that

i(Tλ,Ke,Kc) = 0. (3.36)

By the additivity of the fixed point index and (3.32)(3.36), we get

i(Tλ,Kd\Ke,Kc) = 1. (3.37)

Therefore, by (3.33)(3.34) and (3.37), we can derive that Tλ has at least three
fixed points u1, u2, u3 in Kc such that e < ‖u1‖ < d, a < α(u2), d < ‖u3‖ with
α(u3) < a. That is to say, u1, u2, u3 are three positive solutions of the boundary
value problem (1.1) with e < ‖u1‖ < d, mint∈[ 14 ,

3
4 ] u2(t) > a = k, ‖u3‖ > d and

mint∈[ 14 ,
3
4 ] u3(t) < a = k for any λ ∈ (λ, λ).

Example 3.7 Consider the following boundary value problem{
D

3
2

0+(D
5
2

0+u(t)) = λt−1f(u), t ∈ (0, 1),

u(0) = u′(0) = u′(1) = 0, ϕ(D
5
2

0+u(0)) = (ϕ(D
5
2

0+u(1)))′ = 0.
(3.38)

Here we take ϕ(x) = x, x ∈ R, and

f(u) =


1
2u, 0 ≤ u < 1,
333u2 − 1991

6 u− 2
3 , 1 ≤ u < 4,

1000u, 4 ≤ u < 64,
64000 + 1

2 (u− 64), u ≥ 64.

(3.39)

Using the similar arguments in Example 4.2 of [22] and Example 3.2 in this paper,
we can choose ψ(x) = γ(x) ≡ ϕ(x) and check that problem (3.38) satisfies conditions
(A)(H) (F1) and

F∞ = lim sup
u→+∞

64000 + 1
2 (u− 64)

u
=

1

2
< 1.

From the representation of f , we can find a constant d = 1 satisfying

max
u∈[0,1]

f(u) = max
u∈[0,1]

1

2
u =

1

2
< 1,
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which means that condition (i) of Theorem 3.5 holds. Additionally, we can find two
constants k = 4 and θ = 1000 such that f(u) = 1000u for all 4 ≤ u ≤ 64 and

4γ

 16

θ
∫ 3

4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτ
< ψ

(
1

ψ−1(
∫ 1

0
H(τ, τ)h(τ)dτ)

∫ 1

0
G(1, s)ds

)
, (3.40)

which implies that condition (ii) of Theorem 3.5 also holds. Substituting (3.13) (3.14)
(3.15) (3.16) into (3.40), we can have

4γ

 16

θ
∫ 3

4
1
4

G(1,s)ds


∫ 3

4
1
4

H(1, τ)h(τ)dτ

.
= 0.59,

ψ

(
1

ψ−1(
∫ 1

0
H(τ, τ)h(τ)dτ)

∫ 1

0
G(1, s)ds

)
.
= 1.41.

Therefore, by Theorem 3.5, we can conclude that problem (3.38) has at least one non-
negative solution u1 and two positive solutions u2, u3 for λ ∈ (0.59, 1.41). Particularly,
we can also obtain ‖u1‖ < 1, mint∈[ 14 ,

3
4 ] u2(t) > 4, ‖u3‖ > 4 and mint∈[ 14 ,

3
4 ] u3(t) < 4.

However, if we take f(u) = 1
2

√
u for 0 ≤ u < 1 in (3.39), we can also find constants

e = 9 × 10−6, d = 1, k = 4, θ1 = 1500 and θ2 = 1000 satisfying all conditions of
Theorem 3.6 hold. Thus, by Theorem 3.6, we can conclude that problem (3.38) has
at least three positive solutions u1, u2, u3 for λ ∈ (0.59, 1.41). It is worth to note that
9× 10−6 < ‖u1‖ < 1, mint∈[ 14 ,

3
4 ] u2(t) > 4, ‖u3‖ > 4 and mint∈[ 14 ,

3
4 ] u3(t) < 4.
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[19] R. Precup, J. Rodŕıguez-López, Positive solutions for discontinuous problems with applications

to φ-Laplacian equations, J. Fixed Point Theory Appl., 20(2018), 156.

[20] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl.,
281(2003), 287-306.

[21] X. Xu, Y.H. Lee, Some existence results of positive solutions for ϕ-Laplacian systems, Abstr.
Appl. Anal., 2014(2014), 1-11.

[22] X. Xu, Y.H. Lee, On singularly weighted generalized Laplacian systems and their applications,

Adv. Nonlinear Anal., 7(2018), 149-165.
[23] X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu, The eigenvalue for a calss of singular p-

Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary

condition, Appl. Math. Comput., 235(2014), 412-422.
[24] L. Zhang, F. Wang, Y. Ru, Existence of nontrivial solutions for fractional differential equations

with p-Laplacian, J. Funct. Spaces, 2019(2019), 1-12.

[25] X. Zhang, Q. Zhong, Triple positive solutions for nonlocal fractional differential equations with
singularities both on time and space variables, Appl. Math. Lett., 80(2018), 12-19.

[26] Y. Zhao, S. Sun, Z. Han, M. Zhang, Positive solutions for boundary value problems of nonlinear

fractional differential equations, Appl. Math. Comput., 217(2011), 6950-6958.
[27] Y. Zou, G. He, On the uniqueness of solutions for a class of fractional differential equations,

Appl. Math. Lett., 74(2017), 68-73.

Received: October 26, 2021; Accepted: December 6, 2023.



118 TINGZHI CHENG AND XIANGHUI XU


