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Abstract. This paper introduces and analyzes a self-adaptive inertial subgradient-like extragradient
method designed to solve the bilevel split pseudomonotone variational inequality problem within the

context of a common fixed-point problem, constrained by finite Bregman relatively nonexpansive
mappings in p-uniformly convex and uniformly smooth Banach spaces. The method incorporates

a strongly monotone mapping for the upper-level problem and a pseudomonotone operator for the

lower-level. We establish the strong convergence of the proposed method under mild conditions on
the algorithm parameters without requiring prior knowledge of the operator norm or the coefficient of
the underlying operator. Finally, we present numerical experiments to demonstrate the practicality

and applicability of the proposed method. Our findings extend and improve existing results in the
literature.
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1. Introduction

Consider a nonempty, closed, convex subsets C and Q of real Hilbert spaces H1 and
H2, respectively. Here, Hi (for i = 1, 2) is equipped with the inner product 〈·, ·〉 and
the induced norm ‖ · ‖. Let T : H1 → H2 be a nonzero linear bounded operator, and
let A,F : H1 → H1 and B : H2 → H2 be nonlinear mappings. We denote VI(C,A)
and VI(Q,B) as the solution sets for the following variational inequality problems
(VIPs), respectively:

(i) The VIP seeks x∗ ∈ C such that 〈Ax∗, x− x∗〉 ≥ 0 for all x ∈ C.
(ii) The VIP aims to find y∗ ∈ Q such that 〈By∗, y − y∗〉 ≥ 0 for all y ∈ Q.

To the best of our knowledge, Korpelevich’s extragradient approach [20], developed
in 1976, remains one of the most extensively utilized techniques for solving the VIP.
In other words, given any starting point x0 ∈ C, the sequence {xm} is constructed
using this method. {

um = PC(xm − εAxm),

xm+1 = PC(xm − εAum) ∀m ≥ 0,

where ε ∈ (0, 1
L ) and L is the Lipschitz constant of A. If VI(C,A) 6= ∅, it is well known

that the sequence {xm} converges weakly to an element of VI(C,A). The literature
on the problem (VIP) is extensive, and Korpelevich’s extragradient approach has
garnered widespread attention from numerous scholars. This method has undergone
various improvements, as evidenced by the works in [6-12, 15, 17-19, 21, 25, 27, 29-31,
33-37].

In contrast, our focus shifts to the Bilevel Split Variational Inequality Problem
(BSVIP) [2] formulated as follows: Seek z∗ ∈ Ω such that 〈Fz∗, z − z∗〉 ≥ 0 ∀z ∈ Ω ,
where Ω := {z ∈ VI(C,A) : T z ∈ VI(Q,B)} denotes the solution set of the Split
Variational Inequality Problem (SVIP), introduced by Censor et al. [13]. An iterative
method is proposed in [13] for approximating a solution to the SVIP. For any given
x1 ∈ H1, the sequence {xn} is formulated as

xn+1 = PC(I − λA)(xn + γT ∗(PQ(I − λB)− I)T xn) ∀n ≥ 1,

where both A and B are inverse-strongly monotone, and T is a nonzero bounded linear
operator. As illustrated in [13], the sequence {xn} converges weakly to a solution of
the (SVIP). Importantly, the problem (VIP) can be restated as a Fixed-Point Problem
(FPP):

Sy = PQ(y − µBy), µ > 0,

where VI(Q,B) = Fix(S), and Fix(S) designates the fixed-point set of S. Conse-
quently, the (BSVIP) can be reformulated as follows: consider A : H1 → H1 as an
L-Lipschitzian quasimonotonicity mapping, F : H1 → H1 as a κ-Lipschitzian and η-
strongly monotone mapping, T : H1 → H2 as a nonzero linear bounded operator, and
S : H2 → H2 as a τ -demimetric mapping with τ ∈ (−∞, 1). The problem is to find
z∗ ∈ Ω such that 〈Fz∗, z−z∗〉 ≥ 0 ∀z ∈ Ω , where Ω := {z ∈ VI(C,A) : T z ∈ Fix(S)}.
This problem is identified as a Bilevel Split Quasimonotone Variational Inequality
Problem (BSQVIP).
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Recently, Abuchu et al. [1] introduced a modified relaxed inertial subgradient
extragradient algorithm to address the Bilevel Split Quasimonotone Variational In-
equality Problem (BSQVIP). In their work, they demonstrated that the sequence
generated by this algorithm converges strongly to a unique solution of the BSQVIP
[1]. Subsequently, Ceng et al. [5] developed a triple-adaptive subgradient extragradi-
ent method with extrapolation to tackle a Bilevel Split Pseudomonotone Variational
Inequality Problem (BSPVIP). The problem (BSPVIP) involves the Common Fixed-
point Problem (CFPP) constraint of finitely many nonexpansive mappings in real
Hilbert spaces. Notably, the BSPVIP incorporates a fixed-point problem of demimet-
ric mapping. Consider a nonzero bounded linear operator T : H1 → H2 along with
its adjoint T ∗, and a τ -demimetric mapping S : H2 → H2, where τ ∈ (−∞, 1). Addi-
tionally, let A : H1 → H1 be a pseudomonotone and L-Lipschitz continuous mapping.
Assume a finite set of nonexpansive self-mappings {Si}Ni=1 on H1, and define

Ω := {z ∈ VI(C,A) : T z ∈ Fix(S)} and Ξ :=

N⋂
i=1

Fix(Si) ∩ Ω 6= ∅.

If necessary, denote Sn := SnmodN for n = 1, 2, 3, . . .. Introduce a contraction map-
ping f : H1 → H1 with a constant δ ∈ [0, 1), and a mapping F : H1 → H1 that is both

η-strongly monotone and κ-Lipschitzian, satisfying δ < ζ := 1−
√

1− ρ(2η − ρκ2) for
ρ ∈ (0, 2η/κ2). Assume sequences {βn}, {γn}, {εn} ⊂ (0,∞) such that βn + γn < 1,∑∞
n=1 βn = ∞, limn→∞ βn = 0, lim infn→∞ γn(1 − γn) > 0, and εn = o(βn). The

specification of the triple-adaptive subgradient extragradient method is as follows.

Algorithm 1.1 (Refer to [7, Algorithm 3.1]).
Initialization: Choose arbitrary values for λ1 > 0, ε > 0, σ ≥ 0, µ ∈ (0, 1), α ∈ [0, 1),
and select x0 and x1 from H1.

Iterative steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1), determine αn such that 0 ≤ αn ≤ αn,
where

αn =

{
min

{
α, εn
‖xn−xn−1‖

}
if xn 6= xn−1,

α otherwise.

Step 2. Compute wn = Snxn + αn(Snxn − Snxn−1) and yn = PC(wn − λnAwn).

Step 3. Construct Cn := {y ∈ H1 : 〈wn − λnAwn − yn, yn − y〉 ≥ 0}, and find
vn = PCn

(wn − λnAyn) and zn = vn − σnT ∗(I − S)T vn.

Step 4. Calculate xn+1 = βnf(xn) + γnxn + ((1− γn)I − βnρF )zn and update

λn+1 =

 min{µ‖wn − yn‖
2 + ‖vn − yn‖2

2〈Awn −Ayn, vn − yn〉
, λn} if 〈Awn −Ayn, vn − yn〉 > 0,

λn otherwise.
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For any fixed ε > 0, σn is selected as a bounded sequence that satisfies

0 < ε ≤ σn ≤
(1− τ)‖T vn − ST vn‖2

‖T ∗(T vn − ST vn)‖2
if T vn 6= ST vn,

otherwise set σn = σ ≥ 0. Return to Step 1 after setting n := n+ 1.

In reference [5], it was established that the sequence {xn} strongly converges to a
point z ∈ Ξ , which serves as the unique solution to the problem (VIP):

〈(ρF − f)z, y − z〉 ≥ 0 ∀y ∈ Ξ .

Moving to a different perspective, for p and q in the range (1,∞) with 1
p + 1

q = 1, let

E be a Banach space characterized by p-uniform convexity and uniform smoothness.
Consider C as a nonempty, closed, and convex subset of E. The dual space of E is
denoted as E∗. The norm and duality pairing between elements in E and E∗ are
represented by ‖ · ‖ and 〈·, ·〉, respectively. Consider the duality mappings of E and
E∗ denoted as JpE and JqE∗ , respectively. Define the function fp(x) = ‖x‖p/p for all
x ∈ E and let Dfp represent the Bregman distance with respect to fp. Additionally,
denote ΠC as the Bregman projection of E onto C with respect to fp. Eskandani
et al. [15] introduced a Mann-type subgradient-like extragradient method with
a line search process designed to find a common solution to the problem (VIP)
associated with a uniformly continuous pseudomonotonicity mapping F : E → E∗

and the Fixed-Point Problem (FPP) of a Bregman relatively nonexpansive mapping
T : C → C. It is assumed that there exist sequences {αn} and {βn} in the in-
terval (0, 1) such that limn→∞ αn = 0, lim infn→∞ βn(1−βn) > 0, and

∑∞
n=1 αn =∞.

Algorithm 1.2 (Refer to [15]).

Initialization: Given µ > 0, l ∈ (0, 1), λ ∈
(

0, 1
µ

)
, choose an arbitrary point

x1 ∈ C.
Iterative steps: For the current iterate xn, calculate xn+1 as follows:

Step 1. Compute yn = ΠC(JqE∗(JpExn−λFxn)) and rλ(xn) := xn− yn. If rλ(xn) = 0
and Txn = xn, then stop; xn ∈ Ω = Fix(T )∩VI(C,F ). Otherwise, go to the next step.

Step 2. Compute tn = xn − τnrλ(xn), where τn = ljn and jn is the smallest
nonnegative integer j satisfying 〈Fxn − F (xn − ljrλ(xn)), rλ(xn)〉 ≤ µ

2Dfp(xn, yn).

Step 3. Compute

vn = JqE∗(βnJ
p
Exn + (1− βn)JpE(TΠCnxn))

and
xn+1 = ΠC(JqE∗(αnJ

p
Eu+ (1− αn)JpEvn)),

where Cn = {x ∈ C : hn(x) ≤ 0} and hn(x) = 〈Ftn, x− xn〉+ τn
2λDfp(xn, yn).

In [15], the strong convergence of the sequence {xn} to û = ΠΩu is established,
representing the unique solution to the problem (VIP): 〈JPE (û) − JPE (u), v − û〉 ≥ 0
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for all v ∈ Ω. In this study, let H and E denote a Hilbert space and a p-uniformly
convex and uniformly smooth Banach space, respectively. Consider T : E → H as a
nonzero bounded linear operator. Drawing inspiration from prior research, we propose
a self-adaptive inertial subgradient-like extragradient method to address the BSPVIP
with a CFPP constraint involving a finite set of Bregman relatively nonexpansive self-
mappings {Si}Ni=1 on C. The BSPVIP encompasses a lower-level VIP associated with
a uniformly continuous pseudomonotonicity operator F : E → E∗ and an additional

FPP related to a demimetric mapping S : H → H. Consider Ξ =
⋂N
i=1 Fix(Si)∩Ω 6=

∅, where Ω = {z ∈ VI(C,F ) : T z ∈ Fix(S)}. Subject to mild conditions, we establish
the strong convergence of the proposed method to û = ΠΞu, representing a unique
solution to the upper-level problem (VIP): 〈JPE (û)− JPE (u), v − û〉 ≥ 0 for all v ∈ Ξ .
Finally, we present an illustrative example to demonstrate the practical applicability
of the proposed method.

The paper is organized as follows: Section 2 introduces essential concepts and
basic tools for subsequent discussions. In Section 3, we delve into the convergence
analysis of the proposed algorithm. Section 4 applies our key findings to address
the BSPVIP with a CFPP constraint through an illustrative example and multiple
numerical examples. Importantly, our results significantly enhance and extend the
findings presented in [15], [5], [1]. Section 5 concludes the paper.

2. Preliminaries

Let E denote a real Banach space, with its dual denoted as E∗. Consider a sequence
{xn} in E. We use the notation xn ⇀ x (or xn → x) to signify weak (or strong)
convergence of the sequence {xn} to x. Additionally, let ωw(xn) represent the weak
limit point set of {xn}, defined as

ωw(xn) = {x† ∈ E : xnk
⇀ x† for certain {xnk

} ⊂ {xn}}.

Define U = {x ∈ E : ‖x‖ = 1}, and let q ∈ (1, 2] and p ∈ [2,∞) satisfy 1
p + 1

q = 1. E

is considered strictly convex if, for all x and y in U such that x 6= y, ‖x + y‖/2 < 1.
It is termed uniformly convex if, for every ` ∈ (0, 2], there exists δ̄ > 0 such that for
all x and y in U with ‖x− y‖ ≥ `, ‖x+ y‖/2 ≤ 1− δ̄. It is evident that the uniform
convexity of E implies reflexivity and strict convexity. The convexity modulus of E
is a mapping δ : [0, 2]→ [0, 1], defined by

δ(`) = inf{1− ‖x+ y‖/2 : x, y ∈ U with ‖x− y‖ ≥ `}.

The space E is labeled uniformly convex if δ(`) > 0 for all ` ∈ (0, 2]. Furthermore, E
is termed p-uniformly convex if there exists c > 0 such that δ(`) ≥ c`p for all ` ∈ [0, 2].

The smoothness modulus, denoted by ρE : [0,∞)→ [0,∞), is defined as

ρE(`) = sup{(‖x+ `y‖+ ‖x− `y‖)/2− 1 : x, y ∈ U}.

The space E is considered uniformly smooth if and only if lim`→0 ρE(`)/` = 0, and
q-uniformly smooth if there exists Cq > 0 such that ρE(`) ≤ Cq`

q for all ` > 0. The
p-uniform convexity of E is stated equivalently as the q-uniform smoothness of its
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dual, E∗; for more details, please refer to [28].

Let B(0, `) = {x ∈ E : ‖x‖ ≤ `} for each ` > 0. A function f : E → R is
termed uniformly convex on bounded sets (see [15]) if ρ`(t) > 0 for all `, t > 0, where
ρ`(t) : [0,∞)→ [0,∞] is defined by

ρ`(t) = inf{[αf(x) + (1− α)f(y)− f(αx+ (1− α)y)]/α(1− α) :

α ∈ (0, 1) and x, y ∈ B(0, `) with ‖x− y‖ = t}.

This function ρ` is referred to as the gauge of uniform convexity of f and is known
to be a nondecreasing function.

Consider the function f : E → R exhibiting convexity. If the limit

lim
`→0+

f(v + `y)− f(v)

`

exists for each y ∈ E, then f is referred to as Gâteaux differentiable at v. In this
context, the gradient of f at v is represented by the linear function ∇f(v), defined as

〈∇f(v), y〉 := lim
`→0+

f(v + `y)− f(v)

`

for each y ∈ E. The function f is characterized as Gâteaux differentiable if and only

if it is Gâteaux differentiable at each v ∈ E. When the limit lim`→0+
f(v+`y)−f(v)

` is
uniformly attained for any y ∈ U , it is asserted that f is Fréchet differentiable at v.
Moreover, f is designated as uniformly Fréchet differentiable on a subset K ⊂ E if

lim`→0+
f(v+`y)−f(v)

` is uniformly achieved for (v, y) ∈ K × U . A Banach space E is
classified as smooth if its norm is Gâteaux differentiable.

For p and q in the interval (1,∞) such that 1
p + 1

q = 1, the duality mapping

JpE : E → E∗ is defined as follows:

JpE(v) = {ψ ∈ E∗ : 〈ψ, v〉 = ‖v‖p and ‖ψ‖ = ‖v‖p−1} ∀v ∈ E.

It is clear that the smoothness of E is equivalent to JpE : E → E∗ being a single-valued
mapping. Similarly, the reflexivity of E corresponds to the surjectivity of JpE , while
the strict convexity of E is linked to the injectivity of JpE . Consequently, if E is
a Banach space that is smooth, strictly convex, and reflexive, then JpE forms a
single-valued bijection. In this particular scenario, it also holds that JpE = (JqE∗)−1,
where JqE∗ represents the duality mapping of E∗. Additionally, it is evident that
the uniform smoothness of E is equivalent to the uniform Fréchet differentiability of
the function fp(v) = ‖v‖p/p on bounded sets, which, in turn, is synonymous with
the single-valued and uniform continuity of JpE on bounded sets. Furthermore, the
uniform convexity of E aligns with the uniform convexity of the function fp (see [28]).
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Consider the function f : E → R, which possesses both Gâteaux’s differentiability
and convexity. The Bregman distance with respect to f is expressed as

Df (v, y) := f(v)− f(y)− 〈∇f(y), v − y〉 ∀v, y ∈ E.

The Bregman distance is notable for not conforming to conventional metric criteria.
Although it is clear that Df (v, v) = 0, the condition Df (v, y) = 0 does not necessarily
imply v = y. In general, Df lacks symmetry and fails to satisfy the triangle inequality.
However, it does adhere to the three-point identity:

Df (v, y) +Df (y, z) = Df (v, z)− 〈∇f(y)−∇f(z), v − y〉.

For a more comprehensive understanding of Bregman functions and distances, we
refer to [23].

It is crucial to emphasize that the duality mapping JpE on the smooth Banach space
E functions as the Gâteaux derivative of fp. Subsequently, the Bregman distance with
respect to fp is expressed as follows:

Dfp(v, y) = ‖v‖p/p− ‖y‖p/p− 〈JpE(y), v − y〉
= ‖v‖p/p+ ‖y‖p/q − 〈JpE(y), v〉
= (‖y‖p − ‖v‖p)/q − 〈JpE(y)− JpE(v), v〉.

For p ≥ 2, a significant relationship exists between the metric and Bregman distance
in the smooth and p-uniformly convex Banach space E:

τ‖v − y‖p ≤ Dfp(v, y) ≤ 〈JpE(v)− JpE(y), v − y〉, (2.1)

where τ > 0 is a fixed constant (refer to [26]). Using (2.1), it becomes evident
that for any bounded sequence {vn} ⊂ E, the convergence vn → v is equivalent to
Dfp(v, vn)→ 0 as n→∞.

Consider a nonempty, closed, convex subset C of a reflexive, smooth, and strictly
convex Banach space E. Bregman projections are defined as the minimizers of Breg-
man distances. The Bregman projection of v ∈ E onto C with respect to fp is the
unique element ΠCv ∈ C such that Dfp(ΠCv, v) = miny∈C Dfp(y, v). In Hilbert
spaces, the Bregman projection with respect to f2 reduces to the metric projection.
Employing [4, Corollary 4.4] and [3, Theorem 2.1], in uniformly convex Banach spaces,
Bregman projections can be characterized by the following inequality:

〈JpE(v)− JpE(ΠCv), y −ΠCv〉 ≤ 0 ∀y ∈ C. (2.2)

Furthermore, this inequality corresponds to the descent property:

Dfp(y,ΠCv) +Dfp(ΠCv, v) ≤ Dfp(y, v) ∀y ∈ C. (2.3)

In the case where p = 2, the duality mapping JpE reduces to the normalized duality
mapping, denoted by J . The function φ : E2 → R is formulated as:

φ(v, y) = ‖v‖2 − 2〈Jy, v〉+ ‖y‖2 ∀v, y ∈ E,

and ΠC(v) = argminy∈Cφ(y, v) for all v ∈ E.
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According to [15], a function Vfp : E × E∗ → [0,∞) linked via fp is formulated
below

Vfp(v, v∗) = ‖v‖p/p− 〈v∗, v〉+ ‖v∗‖q/q ∀(v, v∗) ∈ E × E∗. (2.4)

Hence, Vfp(v, v∗) = Dfp(v, JqE∗(v∗)) ∀(v, v∗) ∈ E × E∗. Furthermore, using the
subdifferential inequality, we get

Vfp(v, v∗) + 〈y∗, JqE∗(v∗)− v〉 ≤ Vfp(v, v∗ + y∗) ∀v ∈ E, v∗, y∗ ∈ E∗. (2.5)

The second variable of Vfp is also convex. So you have

Dfp(z, JqE∗(

n∑
i=1

`iJ
p
E(vi))) ≤

n∑
i=1

`iDfp(z, vi) (2.6)

for all z ∈ E, {vi}ni=1 ⊂ E, {`i}ni=1 ⊂ [0, 1] with
∑n
i=1 `i = 1.

Lemma 2.1 (See [3]). Consider a uniformly convex Banach space E, and let
{vn} and {yn} be two sequences in E, where the first sequence is bounded. If
limn→∞Dfp(yn, vn) = 0, then it follows that limn→∞ ‖yn − vn‖ = 0.

Given a mapping T : C → C, we define Fix(T ) as the fixed point set of T ,
represented by Fix(T ) = {v ∈ C : v = Tv}. A point v ∈ C is considered an
asymptotic fixed point of T if there exists a sequence {vn} ⊂ C such that vn ⇀ v

and vn − Tvn → 0. The set of asymptotic fixed points of T is denoted by F̂ix(T ).
The concept of an asymptotic fixed point was introduced by Reich [24]. A mapping
T : C → C is regarded as Bregman relatively nonexpansive with respect to fp if

Fix(T ) = F̂ix(T ) 6= ∅, and Dfp(u, Tv) ≤ Dfp(u, v) for all v ∈ C and u ∈ Fix(T ).

A mapping F : C → E∗ is called

(i) monotone on C if 〈Fv − Fy, v − y〉 ≥ 0 for all v, y ∈ C,
(ii) pseudomonotone if 〈Fv, y − v〉 ≥ 0 implies 〈Fy, y − v〉 ≥ 0 for all v, y ∈ C,

(iii) L-Lipschitz continuous or L-Lipschitzian if there exists L > 0 such that ‖Fv −
Fy‖ ≤ L‖v − y‖ for all v, y ∈ C, and

(iv) weakly sequentially continuous if, for every sequence {vn} ⊂ C, the weak
convergence of {vn} to v implies the weak convergence of {Fvn} to Fv.

Lemma 2.2 (See [15]). Consider a constant r > 0. Let E be a Banach space, and
let f : E → R be a uniformly convex function on bounded subsets of E. For any
i, j ∈ {1, 2, . . . , n}, {vk}nk=1 ⊂ B(0, r), and {`k}nk=1 ⊂ (0, 1) with

∑n
k=1 `k = 1, the

inequality

f

(
n∑
k=1

`kvk

)
≤

n∑
k=1

`kf(vk)− `i`jρr(‖vi − vj‖),

holds, where ρr represents the gauge of uniform convexity of f .

Lemma 2.3 (See [18]). Let E1 and E2 be two Banach spaces. Suppose that the
mapping F : E1 → E2 is uniformly continuous on bounded subsets of E1, and let M
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be a bounded subset of E1. The conclusion is that F (M) is also bounded.

Lemma 2.4 (See [14]). Consider a nonempty closed convex subset C of a real
Banach space E, and let F : C → E∗ be pseudomonotone and continuous. Then,
x† ∈ C is a solution to the variational inequality problem (VIP) 〈Fx†, x − x†〉 ≥ 0
for all x ∈ C if and only if 〈Fx, x− x†〉 ≥ 0 for all x ∈ C.

The following lemma has been previously established in Rn and is documented in
[16]. It is evident that the proof of this lemma in Banach spaces closely parallels that
in Rn. Consequently, we present the lemma here while abstaining from providing the
proof within the context of Banach spaces.

Lemma 2.5. Let C be a nonempty closed convex subset of a Banach space E.
Consider a real-valued function h defined on E, and let K := {x ∈ C : h(x) ≤ 0}.
Assuming K is nonempty and h is Lipschitz continuous on C with a modulus of θ > 0,
then it holds that

θdist(v,K) ≥ max{h(v), 0}
for all v ∈ C, where dist(v,K) denotes the distance from v to K.

Lemma 2.6 (See [32]). Let {an} be a sequence in [0,∞) satisfying the recurrence
relation an+1 ≤ (1 − βn)an + βnγn for all n ≥ 1, where {βn} and {γn} are real
sequences. Suppose the following conditions are met:

(i) {βn} ⊂ [0, 1] and
∑∞
n=1 βn =∞, and

(ii) lim supn→∞ γn ≤ 0 or
∑∞
n=1 |βnγn| <∞.

Then, limn→∞ an = 0.

Lemma 2.7 (See [22]). Consider a sequence of real numbers {Φn} that does not
decrease at infinity, meaning there exists a subsequence {Φnk

} ⊂ {Φn} such that
Φnk

< Φnk+1 for all k ≥ 1. Define the sequence of integers {ψ(n)}n≥n0 as

ψ(n) = max{k ≤ n : Φk < Φk+1},

where n0 ≥ 1 is an integer satisfying {k ≤ n0 : Φk < Φk+1} 6= ∅. Then, the following
assertions hold:

(i) ψ(n0) ≤ ψ(n0 + 1) ≤ · · · and ψ(n)→∞;
(ii) Φψ(n) ≤ Φψ(n)+1 and Φn ≤ Φψ(n)+1 for all n ≥ n0.

3. Main results

In this section, let H be a real Hilbert space, and let the feasible set C be a
nonempty closed convex subset of a real, p-uniformly convex, and uniformly smooth
Banach space E. We are now poised to present and analyze our iterative method
for solving the BSPVIP with the CFPP constraint of finite Bregman relatively
nonexpansive self-mappings {Si}Ni=1 on C. We assume throughout that the following
conditions are satisfied:
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(C1) The mapping S : H → H is a τ -demimetric mapping with τ ∈ (−∞, 1).
Additionally, I − S is demiclosed at zero, denoted as τ -demimetric, if there exists
τ ∈ (−∞, 1) such that

〈(I − S)v, v − y〉 ≥ 1−τ
2 ‖(I − S)v‖2

for all v ∈ C and y ∈ Fix(S) 6= ∅. Furthermore, I − S is called demiclosed at zero
if, for any sequence {vn} ⊂ H where vn ⇀ v and (I−S)vn → 0, it implies v ∈ Fix(S).

(C2) For i = 1, . . . , N , Si : C → C is a uniformly continuous and Bregman relatively
nonexpansive mapping. The sequence {Sn}∞n=1 is defined as Sn := SnmodN for
an integer n ≥ 1, where the mod function takes values in the set {1, 2, . . . , N}.
Specifically, if n = jN +m for some integers j ≥ 0 and 0 ≤ m < N, then Sn = SN if
m = 0 and Sn = Sm if 0 < m < N .

(C3) T VI(C,G) ⊂ Fix(S), where G = T ∗(I − S)T : E → E∗ is pseudomonotone
and uniformly continuous on C. This is such that ‖Gv‖ ≤ lim infn→∞ ‖Gvn‖ for each
{vn} ⊂ C with vn ⇀ v.

(C4) The mapping F : E → E∗ is pseudomonotone and uniformly continuous on C.
Specifically, ‖Fv‖ ≤ lim infn→∞ ‖Fvn‖ for each {vn} ⊂ C with vn ⇀ v.

(C5) The intersection Ξ =
⋂N
i=1 Fix(Si) ∩ Ω 6= ∅ with

Ω = {v ∈ VI(C,F ) : T v ∈ Fix(S)}.

Algorithm 3.1.

Initialization: Given arbitrarily chosen x1 and x0 from the set C, consider
ε > 0, µ > 0, λ ∈ (0, 1

µ ), and l ∈ (0, 1). Choose sequences {αn}, {βn}, {γn},
and {`n}, where αn, βn, and γn are within the interval (0, 1), and `n is within
the interval (0,∞). Ensure that limn→∞ `n = 0,

∑∞
n=1 αn = ∞, limn→∞ αn = 0,

lim infn→∞ βn(1 − βn) > 0, and lim infn→∞ γn(1 − γn) > 0. Additionally, for
given iterates xn and xn−1 where n ≥ 1, select εn such that 0 ≤ εn ≤ ε̃n, where
supn≥1

εn
αn

<∞, and

ε̃n =

{
min

{
ε, `n
‖Jp

Exn−Jp
E(2xn−xn−1)‖

}
if xn 6= xn−1,

ε otherwise.

Iterative steps: Calculate xn+1 in the following way:

Step 1. Put un = JqE∗((1 − εn)JpExn + εnJ
p
E(2xn − xn−1)), and calculate gn =

JqE∗(γnJ
p
Exn + (1 − γn)JpEun), yn = ΠC(JqE∗(JpEgn − λGgn)), rλ(gn) := gn − yn

and sn = gn− τnrλ(gn), here, τn := lin , where in represents the smallest nonnegative
integer i such that

〈Ggn −G(gn − lirλ(gn)), gn − yn〉 ≤
µ

2
Dfp(gn, yn). (3.1)
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Step 2. Calculate wn = ΠKn
(gn), with Kn := {x ∈ C : hn(x) ≤ 0} and

hn(x) = 〈Gsn, x− gn〉+
τn
2λ
Dfp(gn, yn). (3.2)

Step 3. Calculate ȳn = ΠC(JqE∗(JpEwn − λFwn)), Rλ(wn) := wn − ȳn and tn =
wn− τ̄nRλ(wn), where τ̄n := ljn and jn is the smallest nonnegative integer j satisfying

〈Fwn − F (wn − ljRλ(wn)), wn − ȳn〉 ≤
µ

2
Dfp(wn, ȳn). (3.3)

Step 4. Put zn = ΠCn
(wn), and compute vn = JqE∗(βnJ

p
Ewn+(1−βn)JpE(Snzn)) and

xn+1 = ΠC(JqE∗(αnJ
p
Eu+ (1− αn)JpEvn), where Cn := {x ∈ C : ~n(x) ≤ 0} and

~n(x) = 〈Ftn, x− wn〉+
τ̄n
2λ
Dfp(wn, ȳn). (3.4)

Proceed to Step 1 after setting n := n+ 1.

The lemmas presented below are crucial in deriving our main results in the
subsequent discussion.

Lemma 3.1. Consider the sequence {xn} generated by Algorithm 3.1. The following
inequalities hold: 〈Ggn, rλ(gn)〉 ≥ 1

λDfp(gn, yn) and 〈Fwn, Rλ(wn)〉 ≥ 1
λDfp(wn, ȳn).

Proof. Given the similarity of the last two inequalities, it is sufficient to demonstrate
the validity of the latter. By utilizing the definition of ȳn and the properties of ΠC ,
we can express it as follows:

〈JpEwn − λFwn − J
p
E ȳn, y − ȳn〉 ≤ 0 ∀y ∈ C.

Substituting y = wn into the above inequality and leveraging the properties from
(2.1), we obtain:

Dfp(wn, ȳn) ≤ 〈JpEwn − J
p
E ȳn, wn − ȳn〉 ≤ λ〈Fwn, wn − ȳn〉.

Thus, the desired result is achieved.

Lemma 3.2. The Armijo-type search rules (3.1) and (3.3), along with the sequence
{xn} generated in Algorithm 3.1, are well-defined.

Proof. Since rules (3.1) and (3.3) are analogous, it suffices to establish the validity of
the latter rule (3.3). Given l ∈ (0, 1) and the uniform continuity of F on C, we have
limj→∞〈Fwn − F (wn − ljRλ(wn)), Rλ(wn)〉 = 0. If Rλ(wn) = 0, then jn = 0. In the
case where Rλ(wn) 6= 0, there exists an integer jn ≥ 0 satisfying (3.3).

For every n ≥ 1, it is evident that Cn is both closed and convex. We claim that

Ξ ⊂ Cn. Let z ∈ Ξ =
⋂N
i=1 Fix(Si)∩Ω , with Ω = {z ∈ VI(C,F ) : T z ∈ Fix(S)}. By

utilizing Lemma 2.4, we obtain 〈Ftn, tn − z〉 ≥ 0, and hence

~n(z) = 〈Ftn, z − wn〉+ τ̄n
2λDfp(wn, ȳn)

= −〈Ftn, wn − tn〉 − 〈Ftn, tn − z〉+ τ̄n
2λDfp(wn, ȳn)

≤ −τ̄n〈Ftn, Rλ(wn)〉+ τ̄n
2λDfp(wn, ȳn).

(3.5)



68 L.-C. CENG, H. REHMAN, D. GHOSH, J.-C. YAO AND X. ZHAO

Using (3.3), we have

〈Fwn − Ftn, Rλ(wn)〉 ≤ µ

2
Dfp(wn, ȳn).

This, along with Lemma 3.1, leads to

〈Ftn, Rλ(wn)〉 ≥ 〈Fwn, Rλ(wn)〉 − µ
2Dfp(wn, ȳn)

≥ ( 1
λ −

µ
2 )Dfp(wn, ȳn).

Combining this with (3.5) yields

~n(z) ≤ − τ̄n
2

(
1

λ
− µ

)
Dfp(wn, ȳn) ≤ 0.

Consequently, Ξ ⊂ Cn. Hence, the sequence {xn} is well-defined.

Lemma 3.3. Consider the sequences {yn} and {ȳn} generated by Algorithm 3.1.
If limn→∞ ‖gn − yn‖ = 0 and limn→∞ ‖wn − ȳn‖ = 0, then ωw(gn) ⊂ VI(C,G) and
ωw(wn) ⊂ VI(C,F ).

Proof. As the last two relations are analogous, it suffices to demonstrate the validity
of the latter relation. Suppose z ∈ ωw(wn). Then, there exists a subsequence {wnk

} ⊂
{wn} such that wnk

⇀ z and limn→∞ ‖wnk
− ȳnk

‖ = 0. Consequently, ȳnk
⇀ z. Since

C is convex and closed, and {ȳn} ⊂ C and ȳnk
⇀ z, it implies that z ∈ C.

Now, we consider two cases. If Fz = 0, then z ∈ VI(C,F ) because 〈Fz, y − z〉 ≥ 0
for all y ∈ C. If Fz 6= 0, utilizing the assumption on F instead of the weakly sequential
continuity of F , we obtain 0 < ‖Fz‖ ≤ lim infk→∞ ‖Fwnk

‖. Thus, we can assume
that ‖Fwnk

‖ 6= 0 for all k ≥ 1. Using (2.2), we have

〈JpEwnk
− λFwnk

− JpE ȳnk
, x− ȳnk

〉 ≤ 0 ∀x ∈ C,

and consequently,

1
λ 〈J

p
Ewnk

− JpE ȳnk
, x− ȳnk

〉+ 〈Fwnk
, ȳnk

−wnk
〉 ≤ 〈Fwnk

, x−wnk
〉 ∀x ∈ C. (3.6)

Given the uniform continuity of F , it is established that {Fwnk
} is bounded (as

indicated by Lemma 2.3). Notably, the boundedness of {ȳnk
} is also evident. Lever-

aging the uniform continuity of JpE on bounded subsets of E, we infer from (3.6) the
following expression:

lim inf
k→∞

〈Fwnk
, x− wnk

〉 ≥ 0 ∀x ∈ C. (3.7)

To demonstrate that z ∈ VI(C,F ), we now choose a sequence {ςk} ⊂ (0, 1) such
that ςk ↓ 0 as k → ∞. For each k ≥ 1, let mk denote the smallest positive integer
satisfying the condition:

〈Fwnj
, y − wnj

〉+ ςk ≥ 0 ∀j ≥ mk. (3.8)

Because {ςk} is decreasing, it is easily known that {mk} is increasing. For simplicity,
we indicate {Fwnmk

} by {Fwmk
}. Note that Fwmk

6= 0 ∀k ≥ 1 (due to {Fwmk
} ⊂
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{Fwnk
}). Then one sets ξmk

=
Fwmk

‖Fwmk
‖

q
q−1

, one gets 〈Fwmk
, JqE∗ξmk

〉 = 1 ∀k ≥ 1.

In fact, it is evident that

〈Fwmk
, JqE∗ξmk

〉 = 〈Fwmk
, (

1

‖Fwmk
‖

q
q−1

)q−1JqE∗Fwmk
〉

= (
1

‖Fwmk
‖

q
q−1

)q−1‖Fwmk
‖q = 1 ∀k ≥ 1.

So, using (3.8) one has

〈Fwmk
, y + ςkJ

q
E∗ξmk

− wmk
〉 ≥ 0 ∀k ≥ 1.

Again, from the pseudomonotonicity of F one has

〈F (y + ςkJ
q
E∗ξmk

), y + ςkJ
q
E∗ξmk

− wmk
〉 ≥ 0 ∀y ∈ C. (3.9)

We assert that limk→∞ ςkJ
q
E∗ξmk

= 0. Indeed, since {wmk
} ⊂ {wnk

} and ςk ↓ 0 as
k →∞, we observe that

0 ≤ lim sup
k→∞

‖ςkJqE∗ξmk
‖ = lim sup

k→∞

ςk
‖Fwmk

‖
≤ lim supk→∞ ςk

lim infk→∞ ‖Fwmk
‖

= 0.

Consequently, we obtain ςkJ
q
E∗ξmk

→ 0 as k →∞. Subsequently, by taking the limit
as k → ∞ in (3.9) and utilizing condition (C3), we deduce 〈Fy, y − z〉 ≥ 0 for all
y ∈ C. With the assistance of Lemma 2.4, we conclude that z ∈ VI(C,F ).

Lemma 3.4. Consider the sequences {yn} and {ȳn} generated by Algorithm 3.1.
Then, then following statements hold true:

(i) If limn→∞ τnDfp(gn, yn) = 0, then limn→∞Dfp(gn, yn) = 0;
(ii) If limn→∞ τ̄nDfp(wn, ȳn) = 0, then limn→∞Dfp(wn, ȳn) = 0.

Proof. As assertions (i) and (ii) are analogous, it is sufficient to establish the validity
of assertion (ii). To demonstrate assertion (ii), we consider two cases. In the scenario
where lim infn→∞ τ̄n > 0, we assume the existence of a positive constant τ̄ > 0 such
that τ̄n ≥ τ̄ > 0 for all n ≥ 1. This assumption yields

Dfp(wn, ȳn) =
1

τ̄n
τ̄nDfp(wn, ȳn) ≤ 1

τ̄
· τ̄nDfp(wn, ȳn). (3.10)

Combined with limn→∞ τ̄nDfp(wn, ȳn) = 0, this implies limn→∞Dfp(wn, ȳn) = 0.

In the case where lim infn→∞ τ̄n = 0, let us assume that lim supn→∞Dfp(wn, ȳn) =
a > 0. Consequently, there exists a subsequence {nk} ⊂ {n} such that

lim
k→∞

τ̄nk
= 0 and lim

k→∞
Dfp(wnk

, ȳnk
) = a > 0.

For each k ≥ 1, we define tnk
= 1

l τ̄nk
ȳnk

+ (1− 1
l τ̄nk

)wnk
. Applying (2.1) and noting

limk→∞ τ̄nk
Dfp(wnk

, ȳnk
) = 0, we obtain limk→∞ τ̄nk

‖wnk
− ȳnk

‖p = 0, and hence

lim
k→∞

‖tnk
− wnk

‖p = lim
k→∞

τ̄p−1
nk

lp
· τ̄nk
‖wnk

− ȳnk
‖p = 0. (3.11)
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As F is uniformly continuous on bounded subsets of C, we deduce:

lim
k→∞

‖Fwnk
− Ftnk

‖ = 0. (3.12)

Utilizing the step-size rule (3.3) and the definition of tnk
, it follows that:

〈Fwnk
− Ftnk

, wnk
− ȳnk

〉 > µ

2
Dfp(wnk

, ȳnk
). (3.13)

Now, from (3.12) we have limk→∞Dfp(wnk
, ȳnk

) = 0. However, this leads to a
contradiction. Therefore, it follows that limn→∞Dfp(wn, ȳn) = 0.

Now, we are ready to establish the strong convergence theorem for Algorithm 3.1.

Theorem 3.1. Assuming conditions (C1)-(C5), the sequence {xn} generated in
Algorithm 3.1 converges strongly to ΠΞu if and only if supn≥1 ‖xn‖ <∞.

Proof. The necessity of Theorem 3.1 is self-evident. Therefore, our sole focus is on
proving the sufficiency. Suppose supn≥0 ‖xn‖ < ∞. In the ensuing discussion, we
present our proof through four distinct claims.

Claim 1. We prove that

(1− αn)γn(1− γn)ρ∗b‖Jp
Exn − J

p
Eun‖ ≤ Dfp(û, xn)−Dfp(û, xn+1) + `nM + αnDfp(û, u).

Indeed, put û = ΠΞu. Since wn = ΠKn
gn, using (2.1) and (2.3) we have

Dfp(û, wn) ≤ Dfp(û, gn)−Dfp(wn, gn)
= Dfp(û, gn)−Dfp(ΠKn

gn, gn)
≤ Dfp(û, gn)− τ‖ΠKngn − gn‖p
≤ Dfp(û, gn)− τ‖PKngn − gn‖p
= Dfp(û, gn)− τ [dist(Kn, gn)]p.

Since zn = ΠCn
wn, from (2.1) and (2.3) we get

Dfp(û, zn) ≤ Dfp(û, wn)−Dfp(zn, wn)
= Dfp(û, wn)−Dfp(ΠCn

wn, wn)
≤ Dfp(û, wn)− τ‖ΠCn

wn − wn‖p
≤ Dfp(û, wn)− τ‖PCnwn − wn‖p
= Dfp(û, wn)− τ [dist(Cn, wn)]p.

Combining the last two inequalities, we get

Dfp(û, zn) ≤ Dfp(û, wn)−Dfp(zn, wn)
≤ Dfp(û, gn)−Dfp(wn, gn)−Dfp(zn, wn)
≤ Dfp(û, gn)− τ [dist(Kn, gn)]p − τ [dist(Cn, wn)]p.

(3.14)
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Using (2.1), (2.6), the definition of εn and the three point identity of Dfp we obtain
that

εn‖JpExn − J
p
E(2xn − xn−1)‖ ≤ `n,

and hence

Dfp(û, un) = Dfp(û, JqE∗((1− εn)JpExn + εnJ
p
E(2xn − xn−1)))

≤ (1− εn)Dfp(û, xn) + εnDfp(û, 2xn − xn−1)
= Dfp(û, xn) + εn[Dfp(û, 2xn − xn−1)−Dfp(û, xn)]
= Dfp(û, xn) + εn[Dfp(xn, 2xn − xn−1)
+〈JpExn − J

p
E(2xn − xn−1), û− xn〉]

≤ Dfp(û, xn) + εn[〈JpExn − J
p
E(2xn − xn−1), xn−1 − xn〉

+〈JpExn − J
p
E(2xn − xn−1), û− xn〉]

= Dfp(û, xn) + εn〈JpExn − J
p
E(2xn − xn−1), û+ xn−1 − 2xn〉

≤ Dfp(û, xn) + εn‖JpExn − J
p
E(2xn − xn−1)‖‖û+ xn−1 − 2xn‖

≤ Dfp(û, xn) + `nM,
(3.15)

where supn≥1 ‖û+ xn−1 − 2xn‖ ≤M for any M > 0. By Lemma 2.2 and due to the
definition of gn, we deduce that

Dfp(û, gn) = Dfp(û, JqE∗(γnJ
p
Exn + (1− γn)JpEun))

≤ γnDfp(û, xn) + (1− γn)Dfp(û, un)− γn(1− γn)ρ∗b‖J
p
Exn − J

p
Eun‖

≤ γnDfp(û, xn) + (1− γn)[Dfp(û, xn) + `nM ]− γn(1− γn)ρ∗b‖J
p
Exn − J

p
Eun‖

≤ Dfp(û, xn) + `nM − γn(1− γn)ρ∗b‖J
p
Exn − J

p
Eun‖.

(3.16)
Using (2.3), (2.6) and (3.16), we have

Dfp(û, xn+1) ≤ Dfp(û, JqE∗(αnJ
p
Eu+ (1− αn)JpEvn))

≤ αnDfp(û, u) + (1− αn)Dfp(û, vn)
≤ αnDfp(û, u) + (1− αn)[βnDfp(û, wn) + (1− βn)Dfp(û, Snzn)]
≤ αnDfp(û, u) + (1− αn)[βnDfp(û, wn) + (1− βn)Dfp(û, zn)]
≤ αnDfp(û, u) + (1− αn)[βnDfp(û, wn) + (1− βn)Dfp(û, wn)]
= αnDfp(û, u) + (1− αn)Dfp(û, wn)
≤ (1− αn)Dfp(û, gn) + αnDfp(û, u)
≤ (1− αn)[Dfp(û, xn) + `nM − γn(1− γn)ρ∗b‖J

p
Exn − J

p
Eun‖] + αnDfp(û, u)

≤ Dfp(û, xn) + `nM − (1− αn)γn(1− γn)ρ∗b‖J
p
Exn − J

p
Eun‖+ αnDfp(û, u).

(3.17)
This promptly establishes the intended assertion. Additionally, it is evident that

the sequences {gn}, {un}, {wn}, {yn}, {ȳn}, {sn}, {tn}, {vn}, and {Snzn} are all
bounded.

Claim 2. We prove that

Dfp(wn, gn)+(1−βn)Dfp(zn, wn) ≤ Dfp(û, gn)−Dfp(û, xn+1)+αn〈JpEu−J
p
E û, ξn−û〉.
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Define b = supn≥1{‖wn‖p−1, ‖Snzn‖p−1}. Employing Lemma 2.2, we obtain

Dfp(û, vn) = Vfp(û, βnJ
p
Ewn + (1− βn)JpESnzn)

≤ 1
p‖û‖

p − βn〈JpEwn, û〉 − (1− βn)〈JpESnzn, û〉+ βn

q ‖J
p
Ewn‖q

+ (1−βn)
q ‖JpESnzn‖q − βn(1− βn)ρ∗b‖J

p
Ewn − J

p
ESnzn‖

= 1
p‖û‖

p − βn〈JpEwn, û〉 − (1− βn)〈JpESnzn, û〉+ βn

q ‖wn‖
p

+ (1−βn)
q ‖Snzn‖p − βn(1− βn)ρ∗b‖J

p
Ewn − J

p
ESnzn‖

= βnDfp(û, wn) + (1− βn)Dfp(û, Snzn)− βn(1− βn)ρ∗b‖J
p
Ewn − J

p
ESnzn‖

≤ βnDfp(û, wn) + (1− βn)Dfp(û, zn)− βn(1− βn)ρ∗b‖J
p
Ewn − J

p
ESnzn‖

≤ Dfp(û, wn)− βn(1− βn)ρ∗b‖J
p
Ewn − J

p
ESnzn‖.

(3.18)
Set ξn = JqE∗(αnJ

p
Eu+ (1− αn)JpEvn). Using (2.5), we have

Dfp(û, xn+1) ≤ Dfp(û, JqE∗(αnJ
p
Eu+ (1− αn)JpEvn))

= Vfp(û, αnJ
p
Eu+ (1− αn)JpEvn)

≤ Vfp(û, αnJ
p
Eu+ (1− αn)JpEvn − αn(JpEu− J

p
E û))

+αn〈JpEu− J
p
E û, ξn − û〉

≤ αnDfp(û, û) + (1− αn)Dfp(û, vn) + αn〈JpEu− J
p
E û, ξn − û〉

= (1− αn)Dfp(û, vn) + αn〈JpEu− J
p
E û, ξn − û〉

≤ (1− αn)[Dfp(û, wn)− βn(1− βn)ρ∗b‖J
p
Ewn − J

p
ESnzn‖]

+αn〈JpEu− J
p
E û, ξn − û〉

= (1− αn)Dfp(û, wn)− (1− αn)βn(1− βn)ρ∗b‖J
p
Ewn − J

p
ESnzn‖

+αn〈JpEu− J
p
E û, ξn − û〉

≤ (1− αn)Dfp(û, wn) + αn〈JpEu− J
p
E û, ξn − û〉.

(3.19)

On the other hand, we have

Dfp(û, vn) ≤ βnDfp(û, wn) + (1− βn)Dfp(û, zn)
≤ βnDfp(û, wn) + (1− βn)[Dfp(û, wn)−Dfp(zn, wn)]
= Dfp(û, wn)− (1− βn)Dfp(zn, wn).

By substituting the aforementioned inequality into (3.19), we obtain

Dfp(û, xn+1) ≤ (1− αn)Dfp(û, vn) + αn〈JpEu− J
p
E û, ξn − û〉

≤ Dfp(û, wn)− (1− βn)Dfp(zn, wn) + αn〈JpEu− J
p
E û, ξn − û〉

≤ Dfp(û, gn)−Dfp(wn, gn)− (1− βn)Dfp(zn, wn) + αn〈JpEu− J
p
E û, ξn − û〉.

This immediately arrives at

Dfp(wn, gn)+(1−βn)Dfp(zn, wn) ≤ Dfp(û, gn)−Dfp(û, xn+1)+αn〈JpEu−J
p
E û, ξn−û〉.

(3.20)
Claim 3. Next, we prove that

(1− αn)(1− βn){τ [ τn2λLDfp(gn, yn)]p + τ [ τ̄n
2λL̄

Dfp(wn, ȳn)]p}
≤ αnDfp(û, u) +Dfp(û, gn)−Dfp(û, xn+1).

Certainly, given that the sequence {Gsn} is bounded, there exists a positive constant
L such that ‖Gsn‖ ≤ L. This ensures that for any x and y belonging to Kn,

|hn(x)− hn(y)| = |〈Gsn, x− y〉| ≤ ‖Gsn‖‖x− y‖ ≤ L‖x− y‖,
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which implies that hn(x) is L-Lipschitz continuous on Kn. According to Lemma 2.5,
we obtain

dist(Kn, gn) ≥ 1

L
hn(gn) =

τn
2λL

Dfp(gn, yn). (3.21)

Similarly, since {Ftn} is bounded, there exists another positive constant L̄ such that
‖Ftn‖ ≤ L̄. This ensures that for any x and y in Cn,

|~n(x)− ~n(y)| = |〈Ftn, x− y〉| ≤ ‖Ftn‖‖x− y‖ ≤ L̄‖x− y‖,

demonstrating that ~n(x) is L̄-Lipschitz continuous on Cn. By applying Lemma 2.5,
we get

dist(Cn, wn) ≥ 1

L̄
~n(wn) =

τ̄n
2λL̄

Dfp(wn, ȳn). (3.22)

Combining (3.14), (3.21) and (3.22), we get

Dfp(û, zn) ≤ Dfp(û, gn)− τ [dist(Kn, gn)]p − τ [dist(Cn, wn)]p

≤ Dfp(û, gn)− τ [ τn2λLDfp(gn, yn)]p − τ [ τ̄n
2λL̄

Dfp(wn, ȳn)]p.
(3.23)

Note that

xn+1 = ΠC(JqE∗(αnJ
p
Eu+(1−αn)JpEvn)) and vn = JqE∗(βnJ

p
Ewn+(1−βn)JpE(Snzn)).

Consequently, it concludes from (3.23) that

Dfp(û, xn+1) ≤ Dfp(û, JqE∗(αnJ
p
Eu+ (1− αn)JpEvn))

≤ αnDfp(û, u) + (1− αn)Dfp(û, vn)
≤ αnDfp(û, u) + (1− αn)[βnDfp(û, wn) + (1− βn)Dfp(û, zn)]
= αnDfp(û, u) + (1− αn)βnDfp(û, wn) + (1− αn)(1− βn)Dfp(û, zn)
≤ αnDfp(û, u) + (1− αn)βnDfp(û, gn)

+(1− αn)(1− βn){Dfp(û, gn)− τ [ τn2λLDfp(gn, yn)]p − τ [ τ̄n
2λL̄

Dfp(wn, ȳn)]p}
≤ αnDfp(û, u) +Dfp(û, gn)

−(1− αn)(1− βn){τ [ τn2λLDfp(gn, yn)]p + τ [ τ̄n
2λL̄

Dfp(wn, ȳn)]p}.
(3.24)

Claim 4. We establish the convergence xn → û as n → ∞. Given the reflexivity of
the space E and the boundedness of the sequence {xn}, it follows that ωw(xn) 6= ∅.
Let z† ∈ ωw(xn). Consequently, there exists a subsequence {xnk

} ⊂ {xn} such that
xnk

⇀ z†. For each n ≥ 1, let Φn = Dfp(û, xn).

In what follows, we establish the convergence of {Φn} to zero in two distinct cases.

Case 1. Assume there exists an integer n0 ≥ 1 such that {Φn}∞n=n0
is nonincreasing.

In this scenario, limn→∞Φn = d < +∞, and limn→∞(Φn − Φn+1) = 0. Utilizing
equations (3.16) and (3.20), we obtain

Dfp(wn, gn) + (1− βn)Dfp(zn, wn)
≤ Dfp(û, gn)−Dfp(û, xn+1) + αn〈JpEu− J

p
E û, ξn − û〉

≤ Dfp(û, xn) + `nM −Dfp(û, xn+1) + αn〈JpEu− J
p
E û, ξn − û〉

= Φn −Φn+1 + `nM + αn〈JpEu− J
p
E û, ξn − û〉.
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Given that

lim
n→∞

`n = 0, lim
n→∞

αn = 0, lim inf
n→∞

βn(1− βn) > 0, lim
n→∞

(Φn −Φn+1) = 0,

and the sequence {ξn} is bounded, we deduce

lim
n→∞

Dfp(wn, gn) = 0 and lim
n→∞

Dfp(zn, wn) = 0.

So it follows from (2.1) that

lim
n→∞

‖wn − gn‖ = 0 and lim
n→∞

‖zn − wn‖ = 0. (3.25)

Furthermore, from (3.19) we have

(1− αn)βn(1− βn)ρ∗b‖J
p
Ewn − J

p
ESnzn‖

≤ (1− αn)Dfp(û, wn)−Dfp(û, xn+1) + αn〈JpEu− J
p
E û, ξn − û〉

≤ Dfp(û, gn)−Dfp(û, xn+1) + αn〈JpEu− J
p
E û, ξn − û〉

≤ Dfp(û, xn)−Dfp(û, xn+1) + `nM + αn〈JpEu− J
p
E û, ξn − û〉

= Φn −Φn+1 + `nM + αn〈JpEu− J
p
E û, ξn − û〉.

By similar arguments, we deduce that limn→∞ ‖JpEwn − J
p
ESnzn‖ = 0, which hence

leads to limn→∞ ‖JpEvn− J
p
Ewn‖ = 0 (due to vn = JqE∗(βnJ

p
Ewn + (1− βn)JpESnzn)).

By leveraging the uniform continuity of JqE∗ on bounded subsets of E∗, we obtain

lim
n→∞

‖wn − Snzn‖ = lim
n→∞

‖vn − wn‖ = 0. (3.26)

This together with (3.25) implies that

lim
n→∞

‖zn − Snzn‖ = lim
n→∞

‖vn − gn‖ = 0. (3.27)

Note that

un = JqE∗((1− εn)JpExn+ εnJ
p
E(2xn−xn−1)) and gn = JqE∗(γnJ

p
Exn+ (1−γn)JpEun).

Therefore, we deduce from the fact that limn→∞ `n = 0 and the definition of εn that

‖JpEun − J
p
Exn‖ = εn‖JpE(2xn − xn−1)− JpExn‖ ≤ `n → 0 (n→∞),

and hence

‖JpEgn − J
p
Exn‖ = (1− γn)‖JpEun − J

p
Exn‖ ≤ ‖J

p
Eun − J

p
Exn‖ → 0 (n→∞).

Exploiting the uniform continuity of JqE∗ on bounded subsets of E∗, we attain

lim
n→∞

‖un − xn‖ = lim
n→∞

‖gn − xn‖ = 0. (3.28)

So, based on (3.25), (3.27), and (3.28) it concludes that

‖vn − xn‖ ≤ ‖vn − gn‖+ ‖gn − xn‖ → 0 (n→∞), (3.29)

and

‖zn − xn‖ ≤ ‖zn − wn‖+ ‖wn − gn‖+ ‖gn − xn‖ → 0 (n→∞). (3.30)

Since ξn = JqE∗(αnJ
p
Eu+ (1− αn)JpEvn), it is clear from (3.29) that

lim
n→∞

‖ξn − xn‖ = 0. (3.31)
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Furthermore, considering (2.3), (3.16), and (3.24), we have

Dfp(û, xn+1) ≤ Dfp(û, ξn)−Dfp(xn+1, ξn)
= Dfp(û, JqE∗(αnJ

p
Eu+ (1− αn)JpEvn)−Dfp(xn+1, ξn)

≤ αnDfp(û, u) +Dfp(û, gn)−Dfp(xn+1, ξn)
≤ αnDfp(û, u) +Dfp(û, xn) + `nM −Dfp(xn+1, ξn),

which immediately arrives at

Dfp(xn+1, ξn) ≤ αnDfp(û, u) + `nM +Dfp(û, xn)−Dfp(û, xn+1)
= αnDfp(û, u) + `nM + Φn −Φn+1.

Thus, we get limn→∞Dfp(xn+1, ξn) = 0, and hence limn→∞ ‖xn+1 − ξn‖ = 0. Note
that ‖xn+1 − xn‖ ≤ ‖xn+1 − ξn‖ + ‖ξn − xn‖ and ‖zn+1 − zn‖ ≤ ‖zn+1 − xn+1‖ +
‖xn+1 − xn‖+ ‖xn − zn‖. So it follows from (3.30), (3.31) and xn+1 − ξn → 0 that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖zn+1 − zn‖ = 0. (3.32)

Subsequently, we demonstrate that z† ∈ VI(C,G) ∩ VI(C,F ). Employing equations
(3.16) and (3.24), we obtain

(1− αn)(1− βn){τ [ τn2λLDfp(gn, yn)]p + τ [ τ̄n
2λL̄

Dfp(wn, ȳn)]p}
≤ αnDfp(û, u) +Dfp(û, gn)−Dfp(û, xn+1)
≤ αnDfp(û, u) +Dfp(û, xn) + `nM −Dfp(û, xn+1)
= αnDfp(û, u) + `nM + Φn −Φn+1.

Thus, it means that limn→∞
τn

2λLDfp(gn, yn) = limn→∞
τ̄n

2λL̄
Dfp(wn, ȳn) = 0, and

hence

lim
n→∞

τnDfp(gn, yn) = lim
n→∞

τ̄nDfp(wn, ȳn) = 0. (3.33)

Applying Lemma 3.4, we deduce that

lim
n→∞

‖gn − yn‖ = lim
n→∞

‖wn − ȳn‖ = 0. (3.34)

From (3.25), (3.28) and xnk
⇀ z†, we know that z† ∈ ωw(gn) and z† ∈ ωw(wn).

Combining Lemma 3.3 and (3.34), we get that z† ∈ ωw(gn) ∩ ωw(wn) ⊂ VI(C,G) ∩
VI(C,F ). Also, by the definition of Sn we have that Sn ∈ {S1, . . . , SN} ∀n ≥ 1. So
we get

‖zn − Sn+izn‖ ≤ ‖zn − zn+i‖+ ‖zn+i − Sn+izn+i‖+ ‖Sn+izn+i − Sn+izn‖

≤ ‖zn − zn+i‖+ ‖zn+i − Sn+izn+i‖+

N∑
j=1

‖Sjzn+i − Sjzn‖.

By employing equations (3.27) and (3.32), along with the uniform continuity of each
Sj on C, we deduce that limn→∞ ‖zn − Srzn‖ = 0 holds for r = 1, . . . , N . Conse-

quently, given znk
⇀ z† (as per (3.30)), we establish that z ∈ F̂ix(Sr) = Fix(Sr)

for r = 1, . . . , N . Hence, z ∈
⋂N
i=1 Fix(Si). Note that T z† ∈ T VI(C,G) ⊂ Fix(S)

(due to condition (C3)). As a result, z† ∈ Ξ =
⋂N
i=1 Fix(Si) ∩ Ω with Ω = {z ∈

VI(C,F ) : T z ∈ Fix(S)}. This suggests that ωw(xn) ⊂ Ξ . Finally, we establish
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lim supn→∞〈J
p
Eu − J

p
E û, ξn − û〉 ≤ 0. By selecting a subsequence {xnj

} from {xn},
we have

lim sup
n→∞

〈JpEu− J
p
E û, xn − û〉 = lim

j→∞
〈JpEu− J

p
E û, xnj − û〉.

Given the reflexivity of E and the boundedness of {xn}, we can assume, without loss
of generality, that xnj

⇀ z̃. Consequently, utilizing (2.2) and z̃ ∈ Ξ , we obtain

lim sup
n→∞

〈JpEu− J
p
E û, xn − û〉 = lim

j→∞
〈JpEu− J

p
E û, xnj − û〉 = 〈JpEu− J

p
E û, z̃ − û〉 ≤ 0.

(3.35)
This, combined with (3.31), ensures that

lim sup
n→∞

〈JpEu− J
p
E û, ξn − û〉 ≤ 0. (3.36)

Using (3.15), (3.16) and (3.19), we get

Dfp(û, xn+1) ≤ (1− αn)Dfp(û, wn) + αn〈JpEu− J
p
E û, ξn − û〉

≤ (1− αn)Dfp(û, gn) + αn〈JpEu− J
p
E û, ξn − û〉

≤ (1− αn)[Dfp(û, xn) + εn‖JpExn − J
p
E(2xn − xn−1)‖M ] + αn〈JpEu− J

p
E û, ξn − û〉

= (1− αn)Dfp(û, xn) + αn[ εnαn
‖JpExn − J

p
E(2xn − xn−1)‖M + 〈JpEu− J

p
E û, ξn − û〉].

(3.37)
By leveraging the uniform continuity of JpE on bounded subsets of E, we deduce from
(3.32) and the boundedness of {xn} that limn→∞ ‖JpExn − JpE(2xn − xn−1)‖ = 0.
Noticing supn≥1

εn
αn

<∞ and lim supn→∞〈J
p
Eu− J

p
E û, ξn − û〉 ≤ 0, we infer that

lim sup
n→∞

[
εn
αn
‖JpExn − J

p
E(2xn − xn−1)‖M + 〈JpEu− J

p
E û, ξn − û〉] ≤ 0.

Given that {αn} ⊂ (0, 1) and
∑∞
n=1 αn = ∞, applying Lemma 2.6 to (3.37)

allows us to deduce that limn→∞Dfp(û, xn) = 0. Consequently, we establish
limn→∞ ‖û− xn‖ = 0.

Case 2. Suppose there exists a subsequence {Φnk
} ⊂ {Φn} such that Φnk

< Φnk+1

for all k ∈ N , where N denotes the set of positive integers. Introduce the mapping
ψ : N → N defined by

ψ(n) := max{k ≤ n : Φk < Φk+1}.

By employing Lemma 2.7, we establish

Φψ(n) ≤ Φψ(n)+1 and Φn ≤ Φψ(n)+1. (3.38)

Proceeding from (3.16) and (3.20), we derive

Dfp(wψ(n), gψ(n)) + (1− βψ(n))Dfp(zψ(n), wψ(n))
≤ Dfp(û, gψ(n))−Dfp(û, xψ(n)+1) + αψ(n)〈JpEu− J

p
E û, ξψ(n) − û〉

≤ Φψ(n) −Φψ(n)+1 + `ψ(n)M + αψ(n)〈JpEu− J
p
E û, ξψ(n) − û〉.

Consequently, we conclude

lim
n→∞

‖wψ(n) − gψ(n)‖ = 0 and lim
n→∞

‖zψ(n) − wψ(n)‖ = 0. (3.39)
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Furthermore, from (3.19) we have

(1− αψ(n))βψ(n)(1− βψ(n))ρ
∗
b‖J

p
Ewψ(n) − JpESψ(n)zψ(n)‖

≤ (1− αψ(n))Dfp(û, wψ(n))−Dfp(û, xψ(n)+1) + αψ(n)〈JpEu− J
p
E û, ξψ(n) − û〉.

Noting that vψ(n) = JqE∗(βψ(n)J
p
Ewψ(n) + (1 − βψ(n))J

p
ESψ(n)zψ(n)) and employing

arguments similar to those in Case 1, we deduce

lim
n→∞

‖wψ(n) − Sψ(n)zψ(n)‖ = lim
n→∞

‖vψ(n) − wψ(n)‖ = 0.

This, combined with (3.39), implies that

lim
n→∞

‖zψ(n) − Sψ(n)zψ(n)‖ = lim
n→∞

‖vψ(n) − gψ(n)‖ = 0. (3.40)

Note that uψ(n) = JqE∗((1− εψ(n))J
p
Exψ(n) + εψ(n)J

p
E(2xψ(n) − xψ(n)−1)) and gψ(n) =

JqE∗(γψ(n) J
p
Exψ(n) + (1 − γψ(n))J

p
Euψ(n)). Thus, we infer from limn→∞ `n = 0 and

the definition of εn that

‖JpEuψ(n)−JpExψ(n)‖ = εψ(n)‖JpE(2xψ(n)−xψ(n)−1)−JpExψ(n)‖ ≤ `ψ(n) → 0 (n→∞),

and hence

‖JpEgψ(n) − JpExψ(n)‖ = (1− γψ(n))‖JpEuψ(n) − JpExψ(n)‖ ≤ ‖JpEuψ(n) − JpExψ(n)‖ → 0

(n→∞).

Utilizing the uniform continuity of JqE∗ on bounded subsets of E∗, we conclude

lim
n→∞

‖uψ(n) − xψ(n)‖ = lim
n→∞

‖gψ(n) − xψ(n)‖ = 0. (3.41)

So, from (3.39), (3.40), and (3.41), it follows that

‖vψ(n) − xψ(n)‖ ≤ ‖vψ(n) − gψ(n)‖+ ‖gψ(n) − xψ(n)‖ → 0 (n→∞), (3.42)

and

‖zψ(n)−xψ(n)‖ ≤ ‖zψ(n)−wψ(n)‖+‖wψ(n)−gψ(n)‖+‖gψ(n)−xψ(n)‖ → 0 (n→∞).
(3.43)

Noticing ξψ(n) = JqE∗(αψ(n)J
p
Eu+ (1− αψ(n))J

p
Evψ(n)), from (3.42) we get

lim
n→∞

‖ξψ(n) − xψ(n)‖ = 0. (3.44)

Applying analogous reasoning to that employed in Case 1, we arrive at the following
conclusion:

lim
n→∞

‖xψ(n)+1 − xψ(n)‖ = lim
n→∞

‖gψ(n) − wψ(n)‖ = lim
n→∞

‖wψ(n) − ȳψ(n)‖ = 0, (3.45)

and

lim sup
n→∞

〈JpEu− J
p
E û, ξψ(n) − û〉 ≤ 0. (3.46)

Using (3.37) we have

Φψ(n)+1 ≤ (1− αψ(n))Φψ(n) + εψ(n)‖JpExψ(n) − JpE(2xψ(n) − xψ(n)−1)‖M
+αψ(n)〈JpEu− J

p
E û, ξψ(n) − û〉,

(3.47)
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which together with (3.38), leads to

αψ(n)Φψ(n) ≤ Φψ(n) −Φψ(n)+1 + εψ(n)‖JpExψ(n) − JpE(2xψ(n) − xψ(n)−1)‖M
+ αψ(n)〈JpEu− J

p
E û, ξψ(n) − û〉

≤ αψ(n)[
εψ(n)

αψ(n)
‖JpExψ(n) − JpE(2xψ(n) − xψ(n)−1)‖M + 〈JpEu− J

p
E û, ξψ(n) − û〉].

Therefore, by leveraging the uniform continuity of JpE on bounded subsets of E, we can
infer from equations (3.45) and (3.46), combined with the condition supn≥1

εn
αn

<∞,
that

lim
n→∞

Φψ(n) = 0. (3.48)

From (3.47), (3.48) and the definition of εn, one has that

Φψ(n)+1 ≤ (1− αψ(n))Φψ(n) + `ψ(n)M + αψ(n)〈JpEu− J
p
E û, ξψ(n) − û〉

≤ Φψ(n) + `ψ(n)M + αψ(n)‖JpEu− J
p
E û‖‖ξψ(n) − û‖ → 0 (n→∞).

(3.49)
From equation (3.38), it follows that limn→∞Dfp(û, xn) = limn→∞Φn = 0. Conse-
quently, limn→∞ ‖xn − û‖ = 0. This concludes the proof.

Remark 3.1. The proof of Theorem 3.1 reveals that substituting the assumption
limn→∞

`n
αn

= 0 for limn→∞ `n = 0 and supn≥1
εn
αn

< ∞ maintains the validity of
Theorem 3.1. It is noteworthy that the BSPVIP under consideration encompasses
the following VIPs:

(i) The upper-level VIP involves finding û ∈ Ξ such that 〈Γ û, v − û〉 ≥ 0 ∀v ∈ Ξ .
Here, Γx = JpE(x) − JpE(u) (∀x ∈ E) is strongly monotone (due to (2.1)) and
uniformly continuous on bounded subsets of E.

(ii) The lower-level VIP consists of finding z† ∈ C such that 〈Fz†, y−z†〉 ≥ 0 ∀y ∈ C.
Here, F : E → E∗ is pseudomonotone and uniformly continuous on C. Setting

F = 0 yields Ξ =
⋂N
i=1 Fix(Si) ∩ Ω = {z ∈

⋂N
i=1 Fix(Si) : T z ∈ Fix(S)},

representing the solution set to the split fixed-point problem (SFPP) given by:

Seek z ∈
N⋂
i=1

Fix(Si) such that T z ∈ Fix(S). (3.50)

In this scenario, Algorithm 3.1 simplifies to the follwing iterative algorithm
designed for solving SFPP (3.50).

Algorithm 3.2.

Initialization: By choosing arbitrary values for x1 and x0 from the set C. Spec-
ify positive values for ε, µ, λ within the range (0, 1

µ ), and l within (0, 1). Subse-

quently, meticulously define sequences {αn}, {βn}, {γn}, and {`n} within the interval
(0, 1). Ensure that the conditions limn→∞ `n = 0,

∑∞
n=1 αn = ∞, limn→∞ αn = 0,

lim infn→∞ βn(1−βn) > 0, and lim infn→∞ γn(1−γn) > 0 are satisfied. Furthermore,
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given iterates xn and xn−1 for n ≥ 1, choose εn within the range 0 ≤ εn ≤ ε̃n, making
certain that supn≥1

εn
αn

<∞ and

ε̃n =

{
min

{
ε, `n
‖Jp

Exn−Jp
E(2xn−xn−1)‖

}
if xn 6= xn−1,

ε otherwise.

Iterative steps: Evaluate xn+1 as follows:

Step 1. Set un = JqE∗((1 − εn)JpExn + εnJ
p
E(2xn − xn−1)), and calculate gn =

JqE∗(γnJ
p
Exn + (1 − γn)JpEun), yn = ΠC(JqE∗(JpEgn − λGgn)), rλ(gn) := gn − yn

and sn = gn − τnrλ(gn), where τn := lin and in is the smallest nonnegative integer i
satisfying

〈Ggn −G(gn − lirλ(gn)), gn − yn〉 ≤
µ

2
Dfp(gn, yn).

Step 2. Calculate wn = ΠKn(gn), with Kn := {x ∈ C : hn(x) ≤ 0} and

hn(x) = 〈Gsn, x− gn〉+
τn
2λ
Dfp(gn, yn).

Step 3. Compute vn = JqE∗(βnJ
p
Ewn + (1 − βn)JpE(Snwn)) and xn+1 =

ΠC(JqE∗(αnJ
p
Eu+ (1− αn)JpEvn)).

Proceed to Step 1 after setting n := n+ 1.

Drawing upon Theorem 3.1, we deduce the following strong convergence result.

Corollary 3.1. Assuming that conditions (C1)–(C3) are met, and

Ξ = {z ∈
N⋂
i=1

Fix(Si) : T z ∈ Fix(S)} 6= ∅,

the sequence {xn} generated by Algorithm 3.2 demonstrates strong convergence to
ΠΞu if and only if supn≥1 ‖xn‖ <∞.

4. Numerical experiments

In this section, we present a series of numerical experiments to demonstrate the
effectiveness of the proposed methodologies. The primary goal of these experiments
is to provide insights into the selection of optimal control settings and to conduct a
thorough examination of control parameter configuration. Throughout this section,
the error term is consistently symbolized as Dn, while essential parameters such as
the total number of iterations and the required execution time are denoted as k
and t, respectively. This section presents an illustrative example highlighting the
proposed method’s practical applicability.

Set µ = 1 and l = λ = 1
3 . Initially, we consider a Lipschitz continuous and

pseudomonotone mapping F : E → E∗, a Bregman relatively nonexpansive mapping
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S1 : C → C, a τ -demimetric mapping S : H → H, and a nonzero bounded linear oper-
ator T : E → H with Ξ = Fix(S1)∩Ω 6= ∅, where Ω = {z ∈ VI(C,F ) : T z ∈ Fix(S)}.

Consider C = [−2, 2] and E = H = R with the inner product 〈a, b〉 = ab and
induced norm ‖ · ‖ = | · |. The initial point x1 is randomly chosen from C. Define
F : H → H and S1 : C → C as Fx := 1

1+| sin x| −
1

1+|x| and S1x := sinx for all x ∈ C.

We now proceed to demonstrate that F is Lipschitz continuous and pseudomonotone.
Indeed, for all x, y ∈ H, we have

‖Fx− Fy‖ =

∣∣∣∣ 1

1 + ‖ sinx‖
− 1

1 + ‖x‖
− 1

1 + ‖ sin y‖
+

1

1 + ‖y‖

∣∣∣∣
≤
∣∣∣∣ ‖y‖ − ‖x‖
(1 + ‖x‖)(1 + ‖y‖)

∣∣∣∣+

∣∣∣∣ ‖ sin y‖ − ‖ sinx‖
(1 + ‖ sinx‖)(1 + ‖ sin y‖)

∣∣∣∣
≤ ‖x− y‖+ ‖ sinx− sin y‖ ≤ 2‖x− y‖.

This confirms the Lipschitz continuity of F . Furthermore, we illustrate the pseu-
domonotonicity of F . For any x and y in H, it is evident that

〈Fx, y − x〉 =
(

1
1+| sin x| −

1
1+|x|

)
(y − x) ≥ 0

=⇒ 〈Fy, y − x〉 =
(

1
1+| sin y| −

1
1+|y|

)
(y − x) ≥ 0.

It is evident that Fix(S1) = {0}, and S1 demonstrates Bregman relatively nonex-
pansiveness. Additionally, consider Sx = 1

5x + 3
5 sinx for all x ∈ H. Let us assume

T x = x for all x ∈ H. Consequently, T is a bounded linear operator on H. Remark-
ably, S emerges as a τ -demicontractive mapping with τ = 1

5 , and Fix(S) = {0}. In

fact, S is τ -strictly pseudocontractive with τ = 1
5 because

‖Sx− Sy‖2 =
∥∥ 1

5 (x− y) + 3
5 (sinx− sin y)

∥∥2 ≤ ‖x− y‖2 + 1
5‖(I − S)x− (I − S)y‖2.

Therefore, Ξ = Fix(S1) ∩ Ω = {0} 6= ∅ with Ω = {z ∈ VI(C,F ) : T z ∈ Fix(S)}. In
this case, G = T ∗(I − S)T = I − S is strongly monotone and Lipschitz continuous.
In fact, we have

〈Gx−Gy, x− y〉 =
〈

4
5x−

3
5 sinx− ( 4

5y −
3
5 sin y), x− y

〉
= 4

5‖x− y‖
2 − 3

5 〈sinx− sin y, x− y〉 ≥ 1
5‖x− y‖

2.

The Lipschitz continuity of Gx = 4
5x −

3
5 sinx is evident. Consequently,

VI(C,G) = {0}. This ensures that T VI(C,G) ⊂ Fix(S1). Consequently, con-
ditions (C1)-(C5) are fulfilled.

Example 4.1. Consider the sequences `n = 1
2(n+1)2 , αn = 1

2(n+1) , and βn = γn =
n

2(n+1) for all n ≥ 1. When provided with the iterates xn−1 and xn (n ≥ 1), opt for

εn such that 0 ≤ εn ≤ ε̃n, where

ε̃n =

{
min{ε, `n

‖xn−xn−1‖} if xn 6= xn−1,

ε else.
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Algorithm 3.1 yields

un = xn + εn(xn − xn−1),
gn = n

2(n+1)xn + n+2
2(n+1)un,

yn = PC(gn − 1
3 (I − S)gn),

sn = (1− τn)gn + τnyn,
wn = PKn

gn,
ȳn = PC(wn − 1

3Fwn),
tn = (1− τ̄n)wn + τ̄nȳn,
vn = n

2(n+1)wn + n+2
2(n+1)S1PCn

wn,

xn+1 = PC( 1
2(n+1)u+ 2n+1

2(n+1)vn) for all n ≥ 1.

For each n ≥ 1, the choice of sets Kn, Cn, and step sizes τn, τ̄n adheres to the
specifications outlined in Algorithm 3.1. In accordance with Theorem 3.1, it can be
concluded that the sequence {xn} converges to 0 ∈ Ξ = Fix(S1) ∩ Ω .

Experiment 1. In the first experiment, we examine the computational effectiveness

of Algorithm 3.1 using the problem described in Example 4.1 as a test case. Our
aim is to carefully test the algorithm’s performance across multiple threshold values,
denoted as ϕ, while monitoring the behavior of the error term ‖xn+1 − x∗‖. The
main objective is to determine the number of iterations and execution time required
to achieve convergence for various threshold values. To conduct the experiment, we
chose different values for ϕ, specifically 10−4, 10−3, 10−2, and 10−1. The chosen
stopping criterion is defined as ‖xn+1 − x∗‖ ≤ ϕ. By varying the threshold, we aim
to gain insight into the algorithm’s accuracy and performance characteristics.

To understand the relationship between the selected threshold values, the number
of iterations, and the accompanying execution times, we evaluate the data. This
study clarifies Algorithm 3.1’s stability and adaptability to a variety of convergence
conditions in addition to contributing to understanding of the algorithm. To conduct
this experiment, we will begin with the following parameter values:
x0 = x1 = 2, ε = 1

3 , `n = 1
2(n+1)2 , γn = n

2(n+1) , βn = n
2(n+1) , λ = 1

3 , l = 1
3 , µ = 1,

u = 2, and αn = 1
2n+2 .

The numerical results regarding experiment are shown in Figure 1. It is important
to note that when the value of ϕ, lowers, so does the number of iterations and the
execution time in seconds in Example 4.1.

Experiment 2. The second experiment aims to evaluate the numerical efficiency of

Algorithm 3.1 by selecting alternative initial values for x0 and x1. The chosen stop-
ping condition is defined as |xn+1− x∗| ≤ 10−2. Our primary objective is to precisely
determine the number of iterations and associated execution time required for conver-
gence. We are particularly interested in determining how the initial choice of starting
points affects the algorithm’s performance. To carry out this experiment, we will
start the process with the following parameters:
ε = 1

3 , `n = 1
2(n+1)2 , γn = n

2(n+1) , βn = n
2(n+1) , λ = 1

3 , l = 1
3 , µ = 1, u = 1,

ϕ = 10−2, and αn = 1
2n+2 .



82 L.-C. CENG, H. REHMAN, D. GHOSH, J.-C. YAO AND X. ZHAO

1 2 3 4 5 6 7 8 9
10-2

10-1

100

(a) ϕ = 10−1 and k =
9.

0 5 10 15 20 25 30

10-2

10-1

100

(b) ϕ = 10−2 and k =
26.

0 10 20 30 40 50 60 70 80
10-4

10-3

10-2

10-1

100

101

(c) ϕ = 10−3 and k =
80.

0 50 100 150 200 250
10-5

10-4

10-3

10-2

10-1

100

101

(d) ϕ = 10−4 and k =
235.

1 2 3 4 5 6 7

Elapsed Time [sec]

10-2

10-1

100

(e) ϕ = 10−1 and t =
6.8506539.

0 2 4 6 8 10 12 14

Elapsed Time [sec]

10-2

10-1

100

(f) ϕ = 10−2 and t =
13.721539.

0 5 10 15 20 25 30 35 40

Elapsed Time [sec]

10-4

10-3

10-2

10-1

100

101

(g) ϕ = 10−3 and t =
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(h) ϕ = 10−4 and t =
100.5667999.

Figure 1. The numerical graph of Algorithm 3.1 enables us to ana-
lyze the impact of various values of ϕ on iteration count and execution
time in seconds.

Figures 2 and 3 show a graph demonstrating the numerical results. It is worth
noting that the computing performance in each situation is inextricably linked to the
initial starting point selection. This emphasizes the importance of initial conditions
for determining the algorithm’s overall numerical performance.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10-3

10-2

10-1

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Elapsed Time [sec]

10-3

10-2

10-1

100

Figure 2. A numerical graph with iteration count and execution
time of Algorithm 3.1 [x0 = x1 = 2, k = 6, t = 4.5610639], [x0 = x1 =
1, k = 5, t = 2.7475078], and [x0 = x1 = 1

2 , k = 4, t = 1.7185153],
respectively.

Experiment 3. The third experiment aims to assess the numerical efficiency of Al-

gorithm 3.1 by varying the value of ε. The chosen termination criterion is defined as
|xn+1−x∗| ≤ 10−2. Our primary goal is to investigate how various parameter ε values
affect the algorithm’s efficiency. Figure 4 depicts a visual illustration of the numerical
results. It is important to note that the computational performance in each scenario



SELF-ADAPTIVE INERTIAL SUBGRADIENT-LIKE 83

0 2 4 6 8 10 12 14 16 18
10-3

10-2

10-1

100

0 1 2 3 4 5 6 7 8

Elapsed Time [sec]

10-3

10-2

10-1

100

Figure 3. A numerical graph with iteration count and execution
time of Algorithm 3.1 [x0 = x1 = −1, k = 17, t = 7.2834759], and
[x0 = x1 = −2, k = 16, t = 6.9293856], respectively.

does not effected by the variation of parameter ε. To carry out this experiment, we
start with the following parameters:
x0 = x1 = 2, `n = 1

2(n+1)2 , γn = n
2(n+1) , βn = n

2(n+1) , λ = 1
3 , l = 1

3 , µ = 1, u =

2, ϕ = 10−2, andαn = 1
2n+2 .
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(h) ε = 1
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and t =
6.6772184.

Figure 4. A numerical graph of Algorithm 3.1 allows us to examine
how different values ε affect iteration count and execution time in
seconds.

Experiment 4. The main objective of the this experiment is to examine the com-

putational effectiveness of Algorithm 3.1 by varying the vector u and analyzing its
impact on the overall performance of Algorithm 3.1. The termination criterion is
defined as |xn+1 − x∗| ≤ 10−2. We are particularly interested in understanding how
the vector u selection affects the performance of Algorithm 3.1. The numerical results
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are graphically shown in Figure 5. It is important to highlight that the computational
performance in every case is strongly related to the vector u selection. To begin the
numerical experiment, we set the following parameters:
x0 = x1 = 1, ε = 1

3 , `n = 1
2(n+1)2 , γn = n

2(n+1) , βn = n
2(n+1) , λ = 1

3 , l = 1
3 , µ = 1,

and αn = 1
2n+2 .
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14.4237914.

Figure 5. A numerical graph of Algorithm 3.1 allows us to examine
how different values of vector u affect iteration count and execution
time in seconds.

Experiment 5. In this experiment, we analyze the computational efficacy of

Algorithm 3.1 through changing the parameter l and examining its impact on
the overall performance of Algorithm 3.1. The termination criteria is specified as
|xn+1 − x∗| ≤ 10−2. It is significant to note that the computing performance in
every case is directly connected to the parameter l, and the numerical findings are
graphically illustrated in Figure 6. To begin the numerical experiment, we set the
following parameters: x0 = x1 = 1, ε = 1

3 , `n = 1
2(n+1)2 , γn = n

2(n+1) , βn = n
2(n+1) ,

λ = 1
3 , µ = 1, u = 2, and αn = 1

2n+2 .

Experiment 6. In this experiment, our aim is to assess the computational efficiency of

Algorithm 3.1 by varying the parameter λ and investigating its impact on the overall
performance of Algorithm 3.1. The termination criterion is specified as |xn+1−x∗| ≤
10−2. It is crucial to highlight that the computing performance in each case is directly
linked to the parameter λ, as illustrated in Figure 7. Notably, we observe that values
such as λ = 1

2 and λ = 1
3 outperform other λ values. To initiate the numerical

experiment, we have set the following parameters:



SELF-ADAPTIVE INERTIAL SUBGRADIENT-LIKE 85

0 5 10 15 20 25 30 35 40 45
10-4

10-3

10-2

10-1

100

(a) l = 9
10

and k =
43.

0 2 4 6 8 10 12 14 16 18 20
10-3

10-2

10-1

(b) l = 1
2
and k = 20.

1 2 3 4 5 6 7 8
10-2

10-1

100

(c) l = 1
3
and k = 8.

0 5 10 15 20 25 30 35

10-2

10-1

100

(d) l = 1
4
and k = 34.

0 2 4 6 8 10 12 14 16

Elapsed Time [sec]

10-4

10-3

10-2

10-1

100

(e) l = 9
10

and t =
15.1554477.

0 1 2 3 4 5 6 7 8 9

Elapsed Time [sec]

10-2

10-1

100

(f) l = 1
2

and t =
8.7339292.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Elapsed Time [sec]

10-2

10-1

100

(g) l = 1
3

and t =
4.9063413.

0 2 4 6 8 10 12 14 16 18

Elapsed Time [sec]

10-2

10-1

100

(h) l = 1
4

and t =
16.7598393.

Figure 6. A numerical graph of Algorithm 3.1 allows us to examine
how different values of parameter l affect iteration count and execu-
tion time in seconds.

x0 = x1 = 1, ε = 1
3 , `n = 1

2(n+1)2 , γn = n
2(n+1) , βn = n

2(n+1) , l = 1
3 , µ = 1, u = 1,

and αn = 1
2n+2 .

Experiment 7. The objective of this experiment is to determine the computation

effectiveness of Algorithm 3.1 by changing the parameter sequence αn and examining
the effect on the overall performance of the algorithm. It is critical to note that the
computational performance in each scenario is tightly connected to the parameter
sequence αn. The numerical results are shown graphically in Figure 8. Notably, our
analysis shows that sequences αn with slow convergence to zero have a tendency to
perform better in most situations. The termination criterion is defined as |xn+1 −
x∗| ≤ 10−2. To initiate the numerical experiment, we have established the following
parameters:
x0 = x1 = 1, ε = 1

3 , `n = 1
2(n+1)2 , γn = n

2(n+1) , βn = n
2(n+1) , λ = 1

3 , l = 1
3 , µ = 1,

and u = 1.

5. Conclusions

This article introduces and analyzes iterative algorithms designed to address the
problem (BSPVIP), incorporating a problem (CFPP) constraint for finite Bregman
relatively nonexpansive mappings in p-uniformly convex and uniformly smooth Ba-
nach spaces. By employing a self-adaptive inertial subgradient-like extragradient
method, we develop an algorithm to approximate a common solution for both the
BSPVIP and the CFPP of finite Bregman relatively nonexpansive mappings. The
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Figure 7. A numerical graph of Algorithm 3.1 allows us to examine
how different values λ affect iteration count and execution time in
seconds.
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Figure 8. A numerical graph of Algorithm 3.1 allows us to examine
how different values αn affect iteration count and execution time in
seconds.

BSPVIP encompasses the upper-level VIP for a strongly monotone operator and the
lower-level VIP for a pseudomonotone operator. Our focus lies in discussing the
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strong convergence of the proposed algorithm, utilizing standard conditions and in-
novative techniques. Furthermore, we establish the strong convergence outcome for
the proposed method under mild conditions on the algorithm parameters, without
prior knowledge of the operator norm or the coefficient of the underlying operator.
Additionally, an illustrative example is provided to support the practicality and ap-
plicability of the proposed method. Finally, it is noteworthy that part of our future
research aims to establish a strong convergence result for the modified version of
our proposed method with Nesterov double inertial extrapolation steps (see [34]) and
adaptive step sizes.
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