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Abstract. This paper introduces the concept of quasi α-firmly nonexpansive mappings in Wasser-

stein spaces over Rd and analyzes properties of these mappings. We prove that for quasi α-firmly
nonexpansive mappings satisfying a certain quadratic growth condition, the fixed point iterations

converge in the narrow topology. As a byproduct, we will get the known convergence of the prox-

imal point algorithm in Wasserstein spaces. We apply our results to show for the first time that
cyclic proximal point algorithms for minimizing the sum of certain functionals on Wasserstein spaces

converge under appropriate assumptions.

Key Words and Phrases: Quasi α-firmly nonexpansive mappings, Wasserstein spaces, fixed point,
cyclic proximal algorithm, push-forward operator, optimal transport.

2020 Mathematics Subject Classification: 46T99, 47H10, 47J25, 28A33.

1. Introduction

Splitting algorithms which include proximal operators have recently found broad
interest both in Hilbert spaces [8] and nonlinear CAT(0) spaces [6]. For certain
applications in finite dimensional linear spaces we refer to the overview papers [16],
and in Hadamard manifolds to [7, 12]. On the other hand, Wasserstein spaces and
Wasserstein proximal mappings are popular in connection with gradient and neural
gradient flows [22, 33].

In this paper, we introduce the concept of quasi α-firmly nonexpansive mappings
in Wasserstein-2 spaces over Rd. For linear spaces such operators were examined in
various papers, see, e.g. [8, 11, 26]. The main motivation for studying (quasi) α-firmly
nonexpansive operators in linear spaces, particularly in Hilbert spaces, is their con-
nection with the so-called averaged operators which are essential in fixed point theory,
see, e.g. the classical works [17, 18, 24, 27]. In the context of nonlinear CAT(0) spaces
(quasi) α-firmly nonexpansive mappings were introduced in [9] and later extended in
[10] to more general settings. For d = 1 the Wasserstein space is CAT(0) and the
theory about (quasi) α-firmly nonexpansive operators follows from [9]. Therefore our
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theory is a new contribution in the case d ≥ 2. We will see that quasi α-firmly nonex-
pansive mappings in Wasserstein spaces are closed under compositions of operators,
whenever they share a common fixed point. Prominent examples of such mappings are
the Wasserstein proximal mappings of proper, lower semicontinuous, coercive func-
tions that are convex along generalized geodesics. Also the push-forward mappings
of measures by an α-firmly nonexpansive operator in Rd constitute an example of its
own interest. As an application of such mappings, we consider the cyclic proximal
point algorithm. In contrast to CAT(0) spaces, Wasserstein spaces have a positive
Alexandrov curvature [1] for d ≥ 2, which makes the analysis of algorithms including
these operators in general quite tricky. Under appropriate conditions we show that
the iterations of this algorithm converge in the narrow topology to a minimizer of
a given finite sum of proper, lower semicontinuous, coercive functions that are con-
vex along generalized geodesics. Both situations when these functions share or don’t
share a common minimizer are treated. In the latter case, Lipschitz continuity of each
constituent function is needed. These results have direct relations to finding the mini-
mum of certain energy and relative entropy functionals, see [3, §9.3, §9.4]. It is known
that the minima of such functionals are the stationary solutions of corresponding sto-
chastic differential equations and that the corresponding density functions appear as
solutions of partial differential equations as, e.g. the well-examined Fokker–Planck
equation, see, e.g., [23].

The outline of this paper is as follows: Section 2 contains the basic notation required
for our analysis in Wasserstein spaces. In Section 3, we study proximal mappings of
functions that are proper, lsc, coercive and convex along generalized geodesics. Then,
in Section 4, we introduce the concept of quasi α-firmly nonexpansive mappings in
Wasserstein spaces. We show that proximal mappings of certain functions are quasi
1
2 -firmly nonexpansive. Further, we examine push-forward operators of measures for

operators on Rd which are themselves (quasi) α-firmly nonexpansive. Since α-firmly
nonexpansive operators in Hilbert spaces are important due to the related fixed point
theory, we examine the fixed point properties of such operators in Wasserstein spaces
in Section 5. As in Hilbert spaces, the path to go is via Opial’s property and Fejér’s
monotonicity. In Section 6, we apply our results to prove the convergence of the cyclic
proximal point algorithm.

2. Preliminaries

The following section provides the necessary facts and notation on Wasserstein
spaces as they can be found in several textbooks as [3, 2, 32, 34]. For applications we
also refer to [19] and for novel developments about the sliced-Wasserstein distances
see [15, 14].

Let Rd, d ≥ 1 be equipped with the Euclidean norm ‖ · ‖, and let B(Rd) be its
Borel σ-algebra. By P2(Rd), we denote the set of probability measures on B(Rd) with
finite second moments. With the L2-Wasserstein metric

W2(µ, ν) :=
(

min
π∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖2 dπ(x, y)
)1/2

, (2.1)
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where Π(µ, ν) denotes the set of all transport plans between µ and ν, i.e.,

π(A× Rd) = µ(A) and π(Rd ×B) = ν(B) for all A,B ∈ B(Rd), (2.2)

the space P2(Rd) becomes a separable, complete metric space, called Wasserstein
space or briefly Wasserstein space. Let Πopt(µ, ν) denote the set of optimal transport
plans, i.e. the set of all elements in Π(µ, ν) that attain (2.1).

Remark 2.1. If µ is absolutely continuous with respect to the Lebesgue measure, then
the optimal transport plan πνµ is unique and is induced by the unique minimizer T νµ of
the so-called Monge problem

W̃2(µ, ν) = inf
T

∫
Rd

‖x− T (x)‖2 dµ(x) subject to ν = T#µ := µ ◦ T−1 (2.3)

by πνµ = (Id, T νµ )#µ. In this case W̃2(µ, ν) coincides with W2(µ, ν). The situation
changes if µ is not absolutely continuous. Then, in contrast to the minimization
problem (2.1), which is also known as Kantorovich problem, the Monge problem (2.3)
may fail to have a minimizer. Further, if an optimal transport map T νµ in (2.3) exists,
then π := (Id, T νµ )#µ ∈ Π(µ, ν), i.e. this plan π fulfills the marginal conditions.

However, it need not be optimal as the example µ := 1
4δ0 + 3

4δ1 and ν := 3
4δ0 + 1

4δ1
shows.

A sequence (µn)n∈N ⊂ P2(Rd) converges to µ ∈ P2(Rd), denoted by µn → µ, if

lim
n→∞

W2(µn, µ) = 0.

A sequence (µn)n∈N ⊂ P2(Rd) converges narrowly to µ ∈ P2(Rd), denoted by µn
N→ µ,

if ∫
Rd

ϕ(x) dµn(x)→
∫
Rd

ϕ(x) dµ(x) for all ϕ ∈ Cb(Rd). (2.4)

The relation between both topologies is given by the following theorem.

Theorem 2.2. [34, Theorem 6.9] For (µn)n∈N ⊂ P2(Rd), we have µn → µ if and

only if µn
N→ µ and∫

Rd

‖x‖2 dµn(x)→
∫
Rd

‖x‖2 dµ(x) as n→ +∞.

For all ν ∈ P2(Rd), the Wasserstein metric W2(·, ν) is lower semicontinuous in

the narrow topology, i.e. W2(µ, ν) ≤ lim infn→+∞W2(µn, ν) whenever µn
N→ µ, see

[34, Lemma 4.3]. An important concept is the tightness of a set in P2(Rd). A set
S ⊆ P2(Rd) is tight, if for every ε > 0 there exists a compact set Kε ⊆ Rd such that
µ(Rd \Kε) ≤ ε for all µ ∈ S.

Theorem 2.3 (Prokhorov’s Theorem [30]). A set S ⊆ P2(Rd) is tight if and only if
S is relatively compact in the topology of narrow convergence.

In particular, we have the following lemma.

Lemma 2.4. [35, Theorem 1] Closed balls in
(
P2(Rd),W2

)
are tight.
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The Wasserstein spaces are so-called geodesic spaces, meaning, that for every µ, ν ∈
P2(Rd), there exists a curve γ : [0, 1]→ P2(Rd) with γ(0) = µ, γ(1) = ν and

W2(γ(t), γ(s)) = |t− s|W2(γ(0), γ(1)) for every t, s ∈ [0, 1]. (2.5)

A curve γ : [0, 1] → P2(Rd) with property (2.5) is called constant speed geodesic. If
π ∈ Πopt(µ1, µ2), then the curve

µ1→2
t := g(t, ·)#π, t ∈ [0, 1], (2.6)

with g : [0, 1] × Rd × Rd → Rd, (t, x1, x2) 7→ (1 − t)x1 + tx2 is a constant speed
geodesic connecting µ1 and µ2. Conversely, every constant speed geodesic connecting
µ1 and µ2 has a representation (2.6) for a suitable π ∈ Πopt(µ1, µ2), see [3, Theorem
7.2.2]. In particular, if µ1 is absolutely continuous with respect to the d-dimensional
Lebesgue measure, then, by Remark 2.1, there exists exactly one such constant speed
geodesic.

We will need a more general definition of geodesics in order to make the Wasserstein
proximal mappings in the next section well-defined. For µ0, µ1, µ2 ∈ P2(Rd), let
Π(µ0, µ1, µ2) denote the set of measures π ∈ P2(Rd × Rd × Rd) with marginals µi,
i = 0, 1, 2, and let Πj,k : Rd × Rd × Rd → Rd × Rd, (x0, x1, x2) 7→ (xj , xk) for
j, k = 0, 1, 2. A generalized geodesic connecting µ1 and µ2 with base µ0 is any curve
of type

µ1→2
0,t := h(t, ·)#π,

with h(t, ·) : [0, 1]× Rd × Rd × Rd → Rd, (t, x0, x1, x2) 7→ (1− t)x1 + tx2, where

π ∈ Π(µ0, µ1, µ2), Π0,1
# π = Πopt(µ0, µ1), Π0,2

# π = Πopt(µ0, µ2). (2.7)

Choosing the base µ0 = µ1, we have again the definition of a geodesic. Moreover,
for an absolutely continuous base measure µ0, the generalized geodesic connecting µ1

and µ2 is uniquely determined and the plan in (2.7) is given via the optimal transport
maps by π = (Id, Tµ1

µ0
, Tµ2
µ0

)#µ0, e.g. see [3, Remark 9.2.3].

We consider functions F : P2(Rd)→ (−∞,∞] with effective domain

D(F ) := {µ ∈ P2(Rd) : F (µ) <∞}

and call a function proper if D(F ) 6= ∅. A function F : P2(Rd) → (−∞,∞] is said
to be convex along generalized geodesics, if for every µ0, µ1, µ2 ∈ D(F ), there exists
a generalized geodesic µ1→2

0,t with base µ0 such that

F (µ1→2
0,t ) ≤ (1− t)F (µ1) + tF (µ2) for all t ∈ [0, 1]. (2.8)

Typical examples of functions defined on P2(Rd) that are convex along generalized
geodesics are the potential and interaction energy and the relative entropy discussed,
e.g., in [3, §9.3, §9.4].

3. Proximal mappings

In this section, we consider proximal mappings in Wasserstein spaces, which play an
important role in Wasserstein gradient flow methods. Let F : P2(Rd) → (−∞,+∞]
be proper, lower semicontinuous (lsc), coercive (in the sense of [3, (2.4.10)]) and convex
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along generalized geodesics. Then the proximal mapping Jτ : P2(Rd) → P2(Rd)
given by

Jτ (µ) := argminν∈P2(Rd)

{
F (ν) +

1

2 τ
W 2

2 (ν, µ)
}
, τ > 0 (3.1)

is well-defined, i.e., for every µ ∈ D(F ), the minimizer in (3.1) exits and is unique,
see [3, Theorem 4.1.2, Lemma 9.2.7]. Moreover, by [3, Theorem 4.1.2] (with λ = 0),

for all µ ∈ D(F ) and all ν ∈ D(F ), the following inequality is satisfied

1

2 τ
W 2

2 (Jτ (µ), ν)− 1

2 τ
W 2

2 (µ, ν) ≤ F (ν)−F (Jτ (µ))− 1

2 τ
W 2

2 (Jτ (µ), µ). (3.2)

Replacing ν with Jτ (ν) and changing the roles of µ with ν in (3.2), we obtain for all
µ, ν ∈ P2(Rd) that

W 2
2 (Jτ (µ),Jτ (ν)) ≤ 1

2

(
W 2

2 (µ,Jτ (ν)) +W 2
2 (Jτ (µ), ν) (3.3)

−W 2
2 (Jτ (µ), µ)−W 2

2 (Jτ (ν), ν)
)
. (3.4)

As in Hilbert spaces, minimizers of F : P2(Rd) → (−∞,+∞] and fixed points of its
proximal mapping are closely related.

Proposition 3.1. Let F : P2(Rd) → (−∞,+∞] be proper, lsc, coercive and convex
along generalized geodesics. Then it holds

argminµ∈P(Rd) F (µ) = Fix Jτ .

Proof. Let µ̂ be a minimizer of F . Then, for all µ ∈ P2(Rd),

F (µ̂) +
1

2τ
W 2

2 (µ̂, µ̂) = F (µ̂) ≤ F (µ) ≤ F (µ) +
1

2τ
W 2

2 (µ, µ̂)

implying µ̂ = Jτ (µ̂). The converse follows immediately from inequality (3.2) with µ
replaced by µ̂ and using µ̂ = Jτ (µ̂),

0 =
1

2 τ
W 2

2 (Jτ (µ̂), ν)− 1

2 τ
W 2

2 (µ̂, ν)

≤ F (ν)−F (Jτ̂ (µ))− 1

2 τ
W 2

2 (Jτ (µ̂), µ̂) = F (ν)−F (µ̂),

i.e. F (µ̂) ≤ F (ν) for all ν ∈ D(F ). �

4. Quasi α-firmly nonexpansive mappings

Recall that for α ∈ (0, 1), an operator T : Rd → Rd is α-firmly nonexpansive, if we
have

‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1− α
α
‖(Id−T )x− (Id−T )y‖2 for all x, y ∈ Rd. (4.1)

If the fixed point set FixT := {x ∈ Rd : T (x) = x} is nonempty and (4.1) is restricted
to y ∈ FixF , i.e.,

‖Tx− y‖2 ≤ ‖x− y‖2 − 1− α
α
‖(Id−T )x‖2 for all x ∈ Rd, y ∈ FixT, (4.2)



42 ARIAN BËRDËLLIMA AND GABRIELE STEIDL

then T is called quasi α-firmly nonexpansive. We do not know how to translate the
definition of α-firmly nonexpansive operators on Rd to Wasserstein spaces. However,
for quasi α-firmly nonexpansive operators this is possible. First, we say as usual that
a mapping T : P2(Rd)→ P2(Rd) is nonexpansive, if

W2(T (µ),T (ν)) ≤W2(µ, ν) for all µ, ν ∈ P2(Rd). (4.3)

If the fixed point set Fix T := {µ ∈ P2(Rd) : T (µ) = µ} is nonempty and (4.3) holds
for all µ ∈ P2(Rd) and all ν ∈ Fix T , then T is said to be a quasi nonexpansive
mapping. Finally, for α ∈ (0, 1), a mapping T : P2(Rd) → P2(Rd) is quasi α-firmly
nonexpansive, if Fix T 6= ∅ and for all µ ∈ P(Rd), ν ∈ Fix T , the following inequality
holds true:

W 2
2 (T (µ), ν) ≤W 2

2 (µ, ν)− 1− α
α

W 2
2 (µ,T (µ)). (4.4)

By the next proposition, proximal mappings are quasi 1/2-firmly nonexpansive.

Proposition 4.1. Let F : P2(Rd) → (−∞,+∞] be proper, lsc, coercive and convex
along generalized geodesics. Then, for every τ > 0, the proximal mapping Jτ :

P2(Rd)→ P2(Rd) is quasi α-firmly nonexpansive on D(F ) with α = 1/2.

Proof. The claim follows immediately from (3.3) using Jτ (ν) = ν. �

Next, we are interested in the behavior of push-forward operators of (quasi) α-
firmly nonexpansive operators T : Rd → Rd. In other words, we consider TT :
P2(Rd)→ P2(Rd) defined by

TT (µ) := T#µ = µ ◦ T−1. (4.5)

Proposition 4.2. Let T : Rd → Rd be an α-firmly nonexpansive operator for some

α ∈ (0, 1). Then TT : P2(Rd)→ P2(Rd) in (4.5) with T̃ := Id−T satisfies

W 2
2 (TT (µ),TT (ν)) ≤W 2

2 (µ, ν)− 1− α
α

W 2
2 (TT̃ (µ),TT̃ (ν)) for all µ, ν ∈ P2(Rd).

(4.6)
In particular TT is nonexpansive.

Proof. Let π ∈ Πopt(µ, ν). Then

W 2
2 (TT (µ),TT (ν)) ≤

∫
Rd×Rd

‖x− y‖2 d ((T, T )#π) (x, y)

=

∫
Rd×Rd

‖Tx− Ty‖2 dπ(x, y).
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By assumption T : Rd → Rd is α-firmly nonexpansive for some α ∈ (0, 1), so that∫
Rd×Rd

‖Tx− Ty‖2 dπ(x, y)

≤
∫
Rd×Rd

‖x− y‖2 dπ(x, y)− 1− α
α

∫
Rd×Rd

‖(Id−T )x− (Id−T )y‖2 dπ(x, y)

= W 2
2 (µ, ν)− 1− α

α

∫
Rd×Rd

‖x− y‖2 d
(

(T̃ , T̃ )#π
)

(x, y)

≤W 2
2 (µ, ν)− 1− α

α
W 2

2 (TT̃ (µ),TT̃ (ν)).

This proves (4.6) and in particular that TT is a nonexpansive mapping. �

The next result describes the relationships between FixT and Fix TT .

Proposition 4.3. Let T : Rd → Rd be a quasi α-firmly nonexpansive operator. Then
Fix TT 6= ∅ and in particular ν ∈ Fix TT if supp(ν) ⊆ FixT .

Proof. Let T : Rd → Rd be quasi α-firmly nonexpansive mapping. By [11, Lemma
4.1] it follows that FixT is nonempty, closed and convex. Let µ ∈ P2(Rd) be arbitrary.
Let f(x) := PFixT (x) for x ∈ Rd, where PFixT denotes the metric projection onto
FixT . Then we have for ν := f#µ that supp(ν) ⊆ FixT . If a measure ν fulfills the
later condition, then we obtain for every B ∈ B(Rd) that

TT (ν)(B) = (T#ν)(B) = ν(T−1(B)) = ν(T−1(B) ∩ FixT ) = ν(B ∩ FixT ) = ν(B),

i.e. ν ∈ Fix TT . It remains to show that ν ∈ P2(Rd). By definition of f , we have
for any B ∈ B(Rd) that ν(B) = µ(f−1(B)) = µ(f−1(B ∩ FixT )). It is evident that
ν(B) ≥ 0 and that ν(Rd) = µ(f−1(FixT )) = µ(Rd) = 1. Moreover, if (Bn)n∈N is
a countable family of disjoint Borel sets, then so is the family (Bn ∩ FixT )n∈N and
consequently

ν(
⋃
n∈N

Bn) = µ(f−1(
⋃
n∈N

Bn ∩ FixT ))

= µ(
⋃
n∈N

f−1(Bn ∩ FixT )) =
∑
n∈N

µ(f−1(Bn ∩ FixT )) =
∑
n∈N

ν(Bn).

Therefore ν is indeed a probability measure. Next, consider∫
Rd

‖x‖2 dν(x) =

∫
FixT

‖x‖2 dµ(x) +

∫
Rd\FixT

‖PFixTx‖2 dµ(x).

The second integral can be estimated with an arbitrary fixed x0 ∈ FixT as follows:∫
Rd\FixT

‖PFixTx‖2 dµ(x) ≤
∫
Rd\FixT

(‖PFixTx− x0‖+ ‖x0‖)2 dµ(x)

≤ 2
(∫

Rd\FixT

‖PFixTx− x0‖2 dµ(x) +

∫
Rd\FixT

‖x0‖2 dµ(x)
)

≤ 2
(∫

Rd\FixT

‖x− x0‖2 dµ(x) +

∫
Rd\FixT

‖x0‖2 dµ(x)
)
.
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Since µ ∈ P2(Rd) this completes the proof. �

In particular we have showed the following relation.

Corollary 4.4. If T : Rd → Rd is a quasi α-firmly nonexpansive mapping, then it
holds (PFixT )#P2(Rd) ⊆ Fix TT .

Let µ, ν ∈ P2(Rd) and π ∈ Π(µ, ν). Let {νx}x∈Rd be the family of disintegrations
of π with respect to µ , i.e.

π(A×B) =

∫
A

(∫
B

νx(y) dy
)
dµ(x) for all A,B ∈ B(Rd), (4.7)

Proposition 4.5. Let T : Rd → Rd be a quasi α-firmly nonexpansive operator. Sup-
pose that for every ν ∈ Fix TT there is a family of disintegrating measures {νx}x∈Rd

satisfying νx(FixT ) ≥ CFixT for some positive uniform constant CFixT possibly de-
pending on FixT . Then TT : P2(Rd) → P2(Rd) is a quasi β-firmly nonexpansive
operator for some β depending on α.

Proof. Let µ ∈ P2(Rd) and ν ∈ Fix TT satisfying νx(FixT ) ≥ CFixT uniformly for
some positive constant CFixT . Let π ∈ Πopt(µ, ν). From Proposition 4.3 we have that
supp(ν) ⊆ FixT , therefore

W 2
2 (TT (µ),TT (ν)) ≤

∫
Rd×FixT

‖Tx− Ty‖2 dπ(x, y)

≤
∫
Rd×FixT

‖x− y‖2 dπ(x, y) − 1− α
α

∫
Rd×FixT

‖x− Tx‖2 dπ(x, y).

From the assumption on the disintegration we estimate the second integral from below
as∫

Rd×FixT

‖x− Tx‖2 dπ(x, y) =

∫
Rd

‖x− Tx‖2
(∫

FixT

νx(y) dy
)
dµ(x)

=

∫
Rd

‖x− Tx‖2νx(FixT ) dµ(x) ≥ CFixT

∫
Rd

‖x− Tx‖2 dµ(x).

Together with ν ∈ Fix TT , this implies

W 2
2 (TT (µ),TT (ν)) = W 2

2 (TT (µ), ν) ≤W 2
2 (µ, ν)− 1− α

α
CFixT

∫
Rd

‖x− Tx‖2 dµ(x)

≤W 2
2 (µ, ν)− 1− α

α
CFixT W

2
2 (µ,TT (µ)).

Taking β = (1 + CFixT (1− α)/α)−1, this completes the proof. �

In the particular case when FixT consists of a unique element x0 ∈ Rd, the previous
result holds without any disintegration condition as shown below.

Corollary 4.6. Let T : Rd → Rd be a quasi α-firmly nonexpansive operator such
that FixT = {x0} for some x0 ∈ Rd. Then ν0 := δx0

∈ P2(Rd) is a fixed point of the
push-forward operator TT and fulfills

W 2
2 (TT (µ),TT (ν0)) ≤W 2

2 (µ, ν0)− 1− α
α

W 2
2 (µ,TT (µ)).
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Proof. Let FixT = {x0} for some x0 ∈ Rd. Then, by the proof of Proposition 4.3,
there is ν0 ∈ Fix TT with supp(ν0) ⊆ {x0}, i.e. ν0 = δx0 . For any µ ∈ P2(Rd) the
only transport plan between µ and ν0 is π = µ ⊗ δx0 . By similar calculations as in
Proposition 4.5 we obtain

W 2
2 (TT (µ),TT (ν0)) ≤

∫
Rd×{x0}

‖Tx− Tx0‖2 dπ(x, x0) =

∫
Rd

‖Tx− x0‖2 dµ(x)

≤
∫
Rd

‖x− x0‖2 dµ(x)− 1− α
α

∫
Rd

‖Tx− x‖2 dµ(x)

≤W 2
2 (µ, ν0)− 1− α

α
W 2

2 (µ,TT (µ)).

�

We conclude this section by showing that quasi α-firmly nonexpansiveness is well
behaved under the composition of mappings that share at least a common fixed point.
The proofs are modifications of arguments from [9] for our setting.

Lemma 4.7. Let S ,T : P2(Rd) → P2(Rd) satisfy Fix T ∩ Fix S 6= ∅. If S
is quasi α-firmly nonexpansive and T is quasi nonexpansive, then Fix(T ◦ S ) =
Fix T ∩ Fix S .

Proof. The inclusion Fix T ∩Fix S ⊆ Fix(T ◦S ) is obvious. Now let µ ∈ Fix(T ◦S ).
First, suppose that S (µ) ∈ Fix T . Then S (µ) = T (S (µ)) = µ implies µ ∈
Fix T ∩Fix S . Next, let S (µ) /∈ Fix T . Then we distinguish two subcases µ ∈ Fix S
and µ /∈ Fix S . If µ ∈ Fix S , then µ = T (S (µ)) = T (µ) implies µ ∈ Fix T ∩Fix S .
Finally, let µ /∈ Fix S and take ν ∈ Fix T ∩ Fix S . This yields

W 2
2 (µ, ν) = W 2

2 (T (S (µ)),T (ν)) ≤W 2
2 (S (µ), ν) ≤W 2

2 (µ, ν)− 1− α
α

W 2
2 (µ,S (µ)),

which implies S (µ) = µ, a contradiction. �

Proposition 4.8. Let S : P2(Rd)→ P2(Rd) be quasi α-firmly nonexpansive and let
T : P2(Rd)→ P2(Rd) be quasi β-firmly nonexpansive. Suppose that Fix T ∩Fix S 6=
∅. Then T ◦S is quasi γ-firmly nonexpansive with

γ :=
α+ β − 2αβ

1− αβ
. (4.8)

Proof. By Lemma 4.7, assumption Fix T ∩ Fix S 6= ∅ implies that Fix(T ◦ S ) =
Fix T ∩ Fix S . Let ν ∈ Fix(T ◦S ) and µ ∈ P2(Rd). Then an application of (4.4)
yields

W 2
2 (T (S (µ)), ν) ≤W 2

2 (S (µ), ν)− 1− β
β

W 2
2 (S (µ),T (S (µ)))

≤W 2
2 (µ, ν)− 1− α

α
W 2

2 (µ,S (µ))− 1− β
β

W 2
2 (S (µ),T (S (µ)).

It suffices to show that

1− γ
γ

W 2
2 (µ,T (S (µ)) ≤ 1− α

α
W 2

2 (µ,S (µ)) +
1− β
β

W 2
2 (S (µ),T (S (µ)). (4.9)
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With τ := (1− α)/α+ (1− β)/β inequality (4.9) is equivalent to(1− α
τα

)2

W 2
2 (µ,S (µ)) +

(1− β
τβ

)2

W 2
2 (S (µ),T (S (µ))

+
(1− α

τα

)(1− β
τβ

)(
W 2

2 (µ,S (µ)) +W 2
2 (S (µ),T (S (µ))−W 2

2 (µ,T (S (µ))
)
≥ 0.

Setting κ :=
1− α
α

/
1− β
β

, this is equivalent to

(κ+ 1)W 2
2 (µ,S (µ)) +

κ+ 1

κ
W 2

2 (S (µ),T (S (µ))−W 2
2 (µ,T (S (µ)) ≥ 0.

The elementary inequality

κW 2
2 (µ,S (µ)) +

1

κ
W 2

2 (S (µ),T (S (µ)) ≥ 2W2(µ,S (µ))W2(S (µ),T (S (µ))

for all κ > 0 together with the triangle inequality

W2(µ,S (µ)) +W2(S (µ),T (S (µ)) ≥W2(µ,T (S (µ))

implies

(κ+ 1)W 2
2 (µ,S (µ)) +

κ+ 1

κ
W 2

2 (S (µ),T (S (µ))

≥ (W2(µ,S (µ)) +W2(S (µ),T (S (µ)))2 ≥W 2
2 (µ,T (S (µ)).

�

The following corollary is an immediate consequence of the above proposition.

Corollary 4.9. Let (Ti)
N
i=1 be a finite family of quasi αi-firmly nonexpansive map-

pings. Suppose that their fixed point sets have a nonempty intersection. Then
T = Tin ◦Tin−1

◦ ... ◦Ti1 , where ij ∈ {1, 2, ..., n} are distinct, is also quasi α-firmly
nonexpansive for some α ∈ (0, 1) dependent on αi.

5. Fixed point theory of quasi α-firmly nonexpansive mappings

5.1. Opial’s property and Fejér monotonicity. A mapping T : P2(Rd) →
P2(Rd) is asymptotic regular at µ ∈ P2(Rd), if

lim
n→+∞

W2(T n+1(µ),T n(µ)) = 0. (5.1)

Here T n := T ◦ · · · ◦T︸ ︷︷ ︸
n−times

. If the limit in (5.1) holds for every µ ∈ P2(Rd), then T is

said to be asymptotic regular on P2(Rd). An immediate consequence of quasi α-firmly
nonexpansiveness is the following evident lemma.

Lemma 5.1. Let T : P2(Rd) → P2(Rd) be a quasi α-firmly nonexpansive mapping.
Then T is asymptotic regular on P2(Rd).
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Let (µn)n∈N be a sequence in P2(Rd). An element µ ∈ P2(Rd) is a narrow cluster

point of (µn)n∈N if and only if there exists a subsequence (µnk
)k∈N such that µnk

N→ µ.

Recently, it has been shown [28, Theorem 5.1] that if µn
N→ µ, then the following

inequality holds true

lim inf
n→+∞

W2(µn, µ) < lim inf
n→+∞

W2(µn, ν), for all ν ∈ P2(Rd) \ {µ}. (5.2)

This is known as the Opial’s property. It implies, for all ν ∈ P2(Rd) \ {µ}, that

lim sup
n→+∞

W2(µn, µ) = lim
k→+∞

W2(µnk
, µ) < lim inf

k→+∞
W2(µnk

, ν) ≤ lim sup
n→+∞

W2(µn, ν).

(5.3)
A sequence (µn)n∈N ⊂ P2(Rd) is Fejér monotone with respect to a set S ⊆ P2(Rd)

if W2(µn+1, ν) ≤W2(µn, ν) for all ν ∈ S and for all n ∈ N.

Lemma 5.2. Let (µn)n∈N ⊂ P2(Rd) be Fejér monotone with respect to a set S ⊆
P2(Rd). If all narrow cluster points of (µn)n∈N belong to S, then µn

N→ µ for some
µ ∈ P2(Rd).

Proof. The proof follows similar lines as in [11, Lemma 5.3]. �

5.2. Opial’s Theorem. A well-known result of Opial [29] for uniformly convex Ba-
nach spaces X satisfying Opial’s property states that the iterations xn+1 = Txn of
a nonexpansive and asymptotic regular operator T : X → X with FixT 6= ∅ always
converge weakly to an element in FixT . Recently, in [28, Theorem 6.9], it was shown
that such a result holds true as well in the Wasserstein space P2(Rd) for mappings
that are nonexpansive, asymptotic regular and have a nonempty fixed point set. This
is because the space P2(Rd) satisfies Opial’s property with respect to the narrow
convergence.

Theorem 5.3. [28, Theorem 6.9] Let T : P2(Rd) → P2(Rd) be a nonexpansive
mapping that is asymptotic regular on P2(Rd). Then Fix T 6= ∅ if and only if for
some µ0 ∈ P2(Rd) (hence any µ0 ∈ P2(Rd)) the iterates µn+1 = T (µn) are bounded
in P2(Rd), in which case they narrowly converge to some µ ∈ Fix T .

As a consequence of this theorem we have the following corollary.

Corollary 5.4. Let T : P2(Rd)→ P2(Rd) be a nonexpansive, quasi α-firmly nonex-
pansive mapping. Then, for any µ0 ∈ P2(Rd), the iterates µn+1 = T (µn) converge
narrowly to some element µ ∈ Fix T .

Proof. By Lemma 5.1 the operator T is asymptotic regular, whenever it is quasi
α-firmly nonexpansive. Moreover, by Definition (4.4), the fixed point set Fix T is
nonempty. Hence the result follows directly from Theorem 5.3. �

A function φ : P2(Rd) → (−∞,+∞] is a characteristic function of a mapping
T : P2(Rd)→ P2(Rd), if

argmin{φ(ν) : ν ∈ P2(Rd)} = Fix T

whenever the latter is nonempty. Let CT denote the set of all characteristic functions
associated to the mapping T . Note that CT 6= ∅ since φ(µ) = W2(µ,T (µ)) is a
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characteristic function for any mapping T satisfying Fix T 6= ∅. A mapping T :
P2(Rd) → P2(Rd) is said to satisfy the quadratic growth condition, if there exist a
constant C > 0 and a proper, narrow lower semicontinuous function φ ∈ CT satisfying

W 2
2 (T (µ), ν)−W 2

2 (µ, ν) ≤ C (φ(ν)− φ(T (µ))) for all µ, ν ∈ P2(Rd). (5.4)

Theorem 5.5. Let T : P2(Rd)→ P2(Rd) be a quasi α-firmly nonexpansive mapping
satisfying the quadratic growth condition (5.4). Then, for any µ0 ∈ P2(Rd), the
iterates µn+1 = T (µn) converge narrowly to some element µ ∈ Fix T .

Proof. Since T is quasi α-firmly nonexpansive, then, by similar arguments as in
Proposition 5.4, it follows that, for any µ0 ∈ P2(Rd), the sequence (µn)n∈N defined by
µn+1 = T (µn) is bounded and therefore it contains a subsequence (µnk

)k∈N narrowly
converging to a certain element µ ∈ P2(Rd). The assumption that T satisfies the
quadratic growth condition implies that there is a constant C > 0 and a proper narrow
lsc function φ ∈ CT such that inequality (5.4) is satisfied. In particular, it follows
that φ(T (µ)) ≤ φ(µ) for all µ ∈ P2(Rd). Consequently, we obtain φ(µn+1) ≤ φ(µn)
for every n ∈ N. Again, from condition (5.4) for every ν ∈ P2(Rd) it follows

N∑
n=0

(W 2
2 (T (µn), ν)−W 2

2 (µn, ν)) ≤ C
N∑
n=0

(φ(ν)− φ(T (µn))), (5.5)

W 2
2 (T (µN ), ν)−W 2

2 (µ0, ν) ≤ C (N + 1)φ(ν)− C
N∑
n=0

φ(T (µn)). (5.6)

Rearranging the terms and using the monotonicity of (φ(µn))n∈N yields

φ(µN+1) +
1

C (N + 1)
(W 2

2 (µN+1, ν)−W 2
2 (µ0, ν)) ≤ φ(ν) for all ν ∈ P2(Rd).

Consequently, by narrow lower semicontinuity of φ, we get

φ(ν) ≥ lim sup
N→+∞

φ(µN+1) ≥ lim inf
k→+∞

φ(µnk
) ≥ φ(µ) for all ν ∈ P2(Rd).

Therefore, µ ∈ argmin{φ(ν) : ν ∈ P2(Rd)}.
Since φ is a characteristic function for the mapping T we have µ ∈ Fix T . If

µ̃ ∈ P2(Rd) is another narrow cluster point of (µn)n∈N, then by the same arguments
we conclude that µ̃ ∈ Fix T . By quasi α-firmly nonexpansiveness of the mapping
T , it holds that (µn)n∈N is Fejér monotone with respect to Fix T . By Lemma 5.2 it
follows that the whole sequence (µn)n∈N narrowly converges to µ ∈ Fix T . �

As a corollary, we obtain a result on the convergence of the so-called proximal point
algorithm which is already known from the literature, see, e.g., [28, Theorem 6.7] .

Corollary 5.6. Let F : P2(Rd) → (−∞ +∞] be proper, lsc, coercive and convex
along generalized geodesics. For τ > 0, let Jτ : P2(Rd) → P2(Rd) be the proximal

mapping defined in (3.1). Then, for any µ0 ∈ D(F ), the iterates µn+1 = Jτ (µn)
converge narrowly to some µ ∈ argmin{F (ν) : ν ∈ P2(Rd)}.
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Proof. By Proposition 4.1, the proximal mapping Jτ is quasi α-firmly nonexpan-
sive with α = 1/2. Moreover, from inequality (3.2) we know that Jτ satisfies the
quadratic growth condition with C = 2τ and φ = F . Then the result follows from
Theorem 5.5. �

6. Cyclic proximal point algorithm

Let Fi : P2(Rd)→ (−∞,+∞] be proper, lsc, coercive and convex along generalized
geodesics for i = 1, 2, · · · , N . Consider the minimization problem

inf
µ∈P2(Rd)

N∑
i=1

Fi(µ). (6.1)

The function F =
∑N
i=1 Fi is itself proper, lsc, coercive and convex along generalized

geodesics, since it is the sum of finitely many such functions. Suppose further that
D(F ) ⊆ D(Fi). A popular method to solve a problem of this kind is the proximal
point algorithm from the previous section. However, computing the proximal mapping
Jτ might be complicated because it could happen that the function F is difficult to
handle, both theoretically and computationally. One way out consists in considering
the functions Fi separately, that is one computes the proximal mapping Jτi for each
function, where τi > 0 is the corresponding step size for i = 1, 2, · · · , N . Then we
consider the iterates

µn+1 = Jτ[n]
(µn), where [n] = n (modN) + 1 ∈ {1, 2, · · · , N}. (6.2)

Such a method is known as the cyclic proximal point method. For two operators,
it is also called backward-backward splitting method. Splitting methods in convex
analysis date back to papers of Lions, Mercier [25, Lions–Mercier, 1979] who studied
splitting algorithms for stationary and evolution problems involving the sum of two
monotone (multivalued) operators defined on a Hilbert space. In finite dimensional,
linear spaces cyclic proximal point algorithms go back to [13]. Since then splitting
algorithms have been applied to more general problems in the setting of both linear
and non-linear spaces. For example, in the context of complete CAT(0) spaces, this
proximal point algorithms were studied in [4], see also [21] and their cyclic version in
[5]. In this paper, we introduce the cyclic proximal point algorithm in P2(Rd). For
recent papers on related algorithms, see e.g. [20, 31].

Theorem 6.1. Let Fi : P2(Rd) → (−∞,+∞] be proper, lsc, coercive and convex

along generalized geodesics. Denote by F =
∑N
i=1 Fi and suppose that ∅ 6= D(F ) ⊆

D(Fi) for i = 1, 2, · · · , N . Let Jτi : P2(Rd) → P2(Rd) be the proximal mapping of

Fi for i = 1, 2, · · · , N . Assume that
⋂N
i=1 Fix Jτi 6= ∅. Then, for any µ0 ∈ D(F ),

the iterates µn+1 = J[n](µn) converge narrowly to a solution of (6.1).

Proof. Let J := JτN ◦JτN−1
◦ · · · ◦Jτ1 . Assumption

⋂N
i=1 Fix Jτi 6= ∅ implies

by Lemma 4.7 that Fix J =
⋂N
i=1 Fix Jτi . Given µ0 ∈ D(F ), we define µn+1 =

Jτ[n]
(µn). By Proposition 4.1, the mapping Jτi is quasi 1/2-firmly nonexpansive
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for every i = 1, 2, · · · , N and in particular Jτi is quasi nonexpansive for every i =
1, 2, · · · , N . Therefore, we get for every ν ∈ Fix J that

W2(µn+1, ν) = W2(Jτ[n]
(µn), ν) ≤W2(µn, ν).

Consequently, the sequence (µn)n∈N is bounded. Hence, by Lemma 2.4 and
Prokhorov’s Theorem 2.3 it has a subsequence (µnk

)k∈N narrowly converging to some
measure µ ∈ P2(Rd). Since there are finitely many indices i ∈ {1, 2, · · · , N}, we get
by the pigeonhole principle that µnk

= Jτj (µnk−1) for infinitely many k ∈ N, for
some j ∈ {1, 2, · · · , N}. Moreover, by inequality (3.2), we have for all l ∈ N and all
ν ∈ D(F ) that

1

2τj
W 2

2 (µnk(l)
, ν)− 1

2τj
W 2

2 (µnk(l)−1, ν) ≤ Fj(ν)−Fj(µnk(l)
).

From Fejér monotonicity, we get W2(µnk(l)
, ν) ≥W2(µnk(l+1)−1, ν) for any ν ∈ Fix J

and every l ∈ N. Then, rearranging terms in the last inequality, yields for all l ∈ N
and all ν ∈ Fix J that

Fj(µnk(l)
) ≤ Fj(ν) +

1

2τj
W 2

2 (µnk(l−1)
, ν)− 1

2τj
W 2

2 (µnk(l)
, ν).

Passing to the limit as l→ +∞ and from Fejér monotonicity of (µn)n∈N with respect
to Fix J , we obtain for all ν ∈ Fix J that

lim inf
l→+∞

Fj(µnk(l)
) ≤ Fj(ν) +

1

2τj
lim

l→+∞

(
W 2

2 (µnk(l−1)
, ν)−W 2

2 (µnk(l)
, ν)
)

= Fj(ν).

On the other hand, Fix J ⊆ Fix Jτj = argmin{Fj(ν) : ν ∈ P2(Rd)} implies that

the last inequality holds for all ν ∈ argmin{Fj(σ) : σ ∈ P2(Rd)} and so for all
ν ∈ P2(Rd). Narrow lsc of Fj gives

Fj(µ) ≤ lim inf
l→+∞

Fj(µnk(l)
) ≤ Fj(ν) for all ν ∈ P2(Rd),

and therefore µ ∈ argmin{Fj(ν) : ν ∈ P2(Rd)}. Now consider the sequence
(µnk(l)−1

)l∈N that by construction satisfies µnk(l)−1
= Jτj−1

(µnk(l)−2
). Since

(µnk(l)−1
)l∈N is bounded, let µnk(l)−1

N→ µ′ ∈ P2(Rd), else by Lemma 2.4 and

Prokhorov’s Theorem 2.3, we can always pass to a subsequence of (µnk(l)−1
)l∈N

with this property. By similar arguments as above, we find that the limit µ′ ∈
argmin{Fj−1(ν) : ν ∈ P2(Rd)}. By inequality (3.2) we have

1

2τj
W 2

2 (µnk(l)
, µnk(l)−1

)+
1

2τj
W 2

2 (µnk(l)
, ν)− 1

2τj
W 2

2 (µnk(l)−1
, ν) ≤ Fj(ν)−Fj(µnk(l)

)

for all ν ∈ D(F ) and in particular for all ν ∈ Fix J . From narrow lsc of W (·, ·) and
Fejér monotonicity of (µn)n∈N with respect to Fix J , passing to the limit as l→ +∞,
we obtain

1

2τj
W 2

2 (µ, µ′) ≤ Fj(ν)−Fj(µ) for all ν ∈ Fix J .

Since Fix J ⊆ argmin{Fj(ν) : ν ∈ P2(Rd)}, the last inequality holds in particular
for all ν ∈ argmin{Fj(ν) : ν ∈ P2(Rd)}. Therefore W2(µ, µ′) ≤ 0 implies that µ = µ′.
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This means that µ ∈ argmin{Fj−1(ν) : ν ∈ P2(Rd)}. Repeating the same argument
for every index i ∈ {1, 2, · · · , N} yields that µ ∈ argmin{Fi(ν) : ν ∈ P2(Rd)} for all
i = 1, 2, · · · , N , so that

µ ∈
N⋂
i=1

argmin{Fi(ν) : ν ∈ P2(Rd)} ⊆ argmin{F (ν) : ν ∈ P2(Rd)}.

Hence we obtain for the original subsequence µnk

N→ µ ∈
⋂N
i=1 argmin{Fi(ν) : ν ∈

P2(Rd)}. If µ′ is another narrow cluster point of (µn)n∈N, then, by same arguments,
we obtain

µ′ ∈
N⋂
i=1

argmin{Fi(ν) : ν ∈ P2(Rd)}.

We have that
⋂N
i=1 argmin{Fi(ν) : ν ∈ P2(Rd)} = Fix J and that the sequence

(µn)n∈N is Fejér monotone with respect to Fix J . Consequently, by Lemma 5.2, the

whole sequence converges µn
N→ µ ∈ Fix J . This completes the proof. �

Since the our theory relies on the assumption that the intersection of the fixed
points sets of a finite collection of quasi α-firmly nonexpansive operators is nonempty,
the last results cannot be applied to a situation when this intersection is empty.
However, inspired by a result of Bačak [6, Theorem 6.3.7], we can provide a con-
vergence theorem, when the functions Fi do not have a common minimizer, which
essentially is the case when the corresponding proximal mappings Jτi have no com-
mon fixed point. However, we need to add two conditions. First, each function Fi

is Lipschitz continuous on D(Fi). This means that there exists Li > 0 such that
|Fi(µ)−Fi(ν)| ≤ LiW2(µ, ν) for all µ, ν ∈ D(Fi). Second, if Ji,τk is the proximal
mapping of Fi with step size τk, we require that (τk)k∈N0

satisfies
∑
k∈N τk = +∞

and
∑
k∈N0

τ2
k < +∞. Then we consider the iterations

µkN+n+1 = J[n],τk(µkN+n), [n] = n (modN) + 1 ∈ {1, 2, · · · , N}, k = 0, 1, 2, · · · .
(6.3)

Theorem 6.2. Let Fi : P2(Rd) → (−∞,+∞] be proper, lsc, coercive and convex

along generalized geodesics. Denote by F =
∑N
i=1 Fi and suppose that ∅ 6= D(F ) ⊆

D(Fi) for i = 1, 2, · · · , N . Assume that Fi is Lipschitz continuous on D(Fi) for
every i ∈ {1, 2, · · · , N}. Denote by Ji,τk the proximal mapping of Fi with step size
τk > 0 satisfying

∑
k∈N0

τk = +∞ and
∑
k∈N0

τ2
k < +∞. Then, for any initial

measure µ0 ∈ D(F ), the iterates µkN+n+1 = J[n],τk(µkN+n) converge narrowly to a
solution of problem (6.1).

The proof follows similar steps as in [6, Theorem 6.3.7].

Proof. First, we get from inequality (3.2) for each i ∈ {1, 2, · · · , N} that

W 2
2 (µkN+i, ν) ≤W 2

2 (µkN+i−1, ν)− 2τk(Fi(µkN+i)−Fi(ν)) for all ν ∈ D(F ).
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Summing on the both sides of this inequality yields

W 2
2 (µkN+N , ν) ≤W 2

2 (µkN , ν)− 2τk

N∑
i=1

Fi(µkN+i) + 2τkF (ν) (6.4)

= W 2
2 (µkN , ν)− 2τk(F (µkN )−F (ν)) + 2τkF (µkN )− 2τk

N∑
i=1

Fi(µkN+i). (6.5)

The assumption that Fi is Lipschitz continuous on D(Fi) and hence on D(F ) for
every i ∈ {1, 2, · · · , N} implies for all k ∈ N0 that

F (µkN )−
N∑
i=1

Fi(µkN+i) =

N∑
i=1

(Fi(µkN )−Fi(µkN+i)) ≤
N∑
i=1

LiW2(µkN , µkN+i).

By definition of the proximum we have for all i ∈ {1, 2, · · · , N} and all k ∈ N0 that

Fi(µkN+i) +
1

2τk
W 2

2 (µkN+i−1, µkN+i) ≤ Fi(µkN+i−1).

This implies

W2(µkN+i−1, µkN+i) ≤ 2τk
Fi(µkN+i−1)−Fi(µkN+i)

W2(µkN+i−1, µkN+i)
≤ 2τk Li.

This upper estimate together with an iterative application of the triangle inequality
to the expression W2(µkN , µkN+i) ≤ W2(µkN , µkN+1) + · · · + W2(µkN+i−1, µkN+i)
yields

N∑
i=1

Fi(µkN )−Fi(µkN+i) ≤ 2τk

N∑
i=1

Li

i∑
j=1

Lj ≤ τkL2
maxN(N + 1),

where Lmax := max{Li : i = 1, 2, · · · , N}. Therefore, we obtain for all ν ∈ D(F ) the
inequality

W 2
2 (µkN+N , ν) ≤W 2

2 (µkN , ν)− 2τk(F (µkN )−F (ν)) + 2τ2
k L

2
maxN(N + 1). (6.6)

In particular, (6.6) holds if ν ∈ argmin{F (σ) : σ ∈ P2(Rd)}. Applying [6, Exercise
6.5] with ak := W 2

2 (µkN , ν), bk := F (µkN ) − F (ν) and ck := 2τ2
k L

2
maxN(N + 1)

yields that the sequence (W2(µkN , ν))k∈N0 converges to a certain number d(ν) ≥ 0.
In particular, the sequence (µkN )k∈N0 is bounded. By Lemma 2.4 and Prokhorov’s

Theorem 2.3, there is a subsequence µkjN
N→ µ for some µ ∈ P2(Rd). On the other

hand, again by [6, Exercise 6.5], it holds that∑
k∈N0

τk(F (µkN )−F (ν)) < +∞ for all ν ∈ argmin{F (σ) : σ ∈ P2(Rd)}.

Therefore limk→+∞ τk(F (µkN )−F (ν)) = 0 implies that limk→+∞F (µkN ) = F (ν),
else we can always pass to a subsequence of (µkN )k∈N0

having this property. By
narrow lsc of F we get that

F (µ) ≤ lim inf
j→+∞

F (µkjN ) ≤ lim sup
k→+∞

F (µkN ) = F (ν)

for all ν ∈ argmin{F (σ) : σ ∈ P2(Rd)}.
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Thus, µ ∈ argmin{F (σ) : σ ∈ P2(Rd)}. Let (µkmN )m∈N be another narrowly con-

vergent subsequence of (µkN )k∈N0 . Let µkmN
N→ µ′ ∈ P2(Rd). Note that (6.6) acts as

a substitute in the argument of Lemma 5.2 for Fejér monotonicity of (µkN )k∈N0 with
respect to argmin{F (σ) : σ ∈ P2(Rd)}. Indeed, let r1 = lim supj→+∞W2(µkjN , µ)
and r2 = lim supm→+∞W2(µkmN , µ

′). Suppose w.l.o.g. that r1 ≤ r2. From Opial’s
property (5.3) it follows that r2 < lim supm→+∞W2(µkmN , µ). For every ε > 0,
there is j0 ∈ N such that W2(µkjN , µ) < r1 + ε, whenever j ≥ j0. In (6.6), let

ε2
k := 2τ2

kL
2
maxN(N + 1). Then we have W 2

2 (µkmN , µ) < (r1 + ε)2 +
∑km
l=kj0

ε2
l when-

ever km ≥ kj0 . For a fixed difference ∆(m, j0) = km − kj0 , we let j0 → +∞, i.e.,

also m → +∞. Since εl → 0 and the sum
∑km
l=kj0

ε2
l is finite, we get for suffi-

ciently large j0 and sufficiently large m that W2(µkmN , µ) < r1 + 2ε. Therefore
there exists m1 ∈ N such that W2(µkmN , µ) < r2 + 2ε, whenever m ≥ m1, implying
lim supm→+∞W2(µkmN , µ) ≤ r2. This would raise a contradiction. Therefore the
sequence (µkN )k∈N0

must have a unique narrow cluster point. Following exactly the

same arguments as in Lemma 5.2, we get that the whole sequence converges µkN
N→ µ.

Now consider (µkN+i)k∈N0
for i = 1, 2, · · · , N − 1. Repeating the same reasoning as

for (µkN )k∈N0 , we conclude that µkN+i
N→ µi ∈ argmin{F (σ) : σ ∈ P2(Rd)} for each

i = 1, 2, · · · , N − 1. From the estimate W2(µkN , µkN+i) ≤ 2τk
∑i
j=1 Lj and narrow

lsc of W2(·, ·), we obtain that

0 ≤W2(µ, µi) ≤ lim inf
k→+∞

W2(µkN , µkN+i) ≤ lim
k→+∞

(2τk

i∑
j=1

Lj) = 0.

Hence µ = µi for every i = 1, 2, · · · , N − 1. This means that the whole sequence of
iterates µkN+n+1 = J[n],τk(µkN+n) converges narrowly to µ ∈ argmin{F (σ) : σ ∈
P2(Rd)}. �
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