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Abstract. This paper introduces the concept of quasi a-firmly nonexpansive mappings in Wasser-
stein spaces over R? and analyzes properties of these mappings. We prove that for quasi a-firmly
nonexpansive mappings satisfying a certain quadratic growth condition, the fixed point iterations
converge in the narrow topology. As a byproduct, we will get the known convergence of the prox-
imal point algorithm in Wasserstein spaces. We apply our results to show for the first time that
cyclic proximal point algorithms for minimizing the sum of certain functionals on Wasserstein spaces
converge under appropriate assumptions.
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1. INTRODUCTION

Splitting algorithms which include proximal operators have recently found broad
interest both in Hilbert spaces [8] and nonlinear CAT(0) spaces [6]. For certain
applications in finite dimensional linear spaces we refer to the overview papers [16],
and in Hadamard manifolds to [7, 12]. On the other hand, Wasserstein spaces and
Wasserstein proximal mappings are popular in connection with gradient and neural
gradient flows [22, 33].

In this paper, we introduce the concept of quasi a-firmly nonexpansive mappings
in Wasserstein-2 spaces over R%. For linear spaces such operators were examined in
various papers, see, e.g. [8, 11, 26]. The main motivation for studying (quasi) a-firmly
nonexpansive operators in linear spaces, particularly in Hilbert spaces, is their con-
nection with the so-called averaged operators which are essential in fixed point theory,
see, e.g. the classical works [17, 18, 24, 27]. In the context of nonlinear CAT(0) spaces
(quasi) a-firmly nonexpansive mappings were introduced in [9] and later extended in
[10] to more general settings. For d = 1 the Wasserstein space is CAT(0) and the
theory about (quasi) a-firmly nonexpansive operators follows from [9]. Therefore our
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theory is a new contribution in the case d > 2. We will see that quasi a-firmly nonex-
pansive mappings in Wasserstein spaces are closed under compositions of operators,
whenever they share a common fixed point. Prominent examples of such mappings are
the Wasserstein proximal mappings of proper, lower semicontinuous, coercive func-
tions that are convex along generalized geodesics. Also the push-forward mappings
of measures by an a-firmly nonexpansive operator in R¢ constitute an example of its
own interest. As an application of such mappings, we consider the cyclic proximal
point algorithm. In contrast to CAT(0) spaces, Wasserstein spaces have a positive
Alexandrov curvature [1] for d > 2, which makes the analysis of algorithms including
these operators in general quite tricky. Under appropriate conditions we show that
the iterations of this algorithm converge in the narrow topology to a minimizer of
a given finite sum of proper, lower semicontinuous, coercive functions that are con-
vex along generalized geodesics. Both situations when these functions share or don’t
share a common minimizer are treated. In the latter case, Lipschitz continuity of each
constituent function is needed. These results have direct relations to finding the mini-
mum of certain energy and relative entropy functionals, see [3, §9.3, §9.4]. It is known
that the minima of such functionals are the stationary solutions of corresponding sto-
chastic differential equations and that the corresponding density functions appear as
solutions of partial differential equations as, e.g. the well-examined Fokker—Planck
equation, see, e.g., [23].

The outline of this paper is as follows: Section 2 contains the basic notation required
for our analysis in Wasserstein spaces. In Section 3, we study proximal mappings of
functions that are proper, lsc, coercive and convex along generalized geodesics. Then,
in Section 4, we introduce the concept of quasi a-firmly nonexpansive mappings in
Wasserstein spaces. We show that proximal mappings of certain functions are quasi
%—ﬁrmly nonexpansive. Further, we examine push-forward operators of measures for
operators on R? which are themselves (quasi) a-firmly nonexpansive. Since a-firmly
nonexpansive operators in Hilbert spaces are important due to the related fixed point
theory, we examine the fixed point properties of such operators in Wasserstein spaces
in Section 5. As in Hilbert spaces, the path to go is via Opial’s property and Fejér’s
monotonicity. In Section 6, we apply our results to prove the convergence of the cyclic
proximal point algorithm.

2. PRELIMINARIES

The following section provides the necessary facts and notation on Wasserstein
spaces as they can be found in several textbooks as [3, 2, 32, 34]. For applications we
also refer to [19] and for novel developments about the sliced-Wasserstein distances
see [15, 14].

Let R%, d > 1 be equipped with the Euclidean norm || - ||, and let B(R?) be its
Borel o-algebra. By P2(R?), we denote the set of probability measures on B(R?) with
finite second moments. With the L2-Wasserstein metric

1/2

Wau) = (_min [ o=yl () (2.1)

mell(p,v)
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where II(u, v) denotes the set of all transport plans between p and v, i.e.,
(A x RY) = pu(A) and 7(R? x B) = v(B) for all A, B € B(R?), (2.2)

the space Po(R?) becomes a separable, complete metric space, called Wasserstein
space or briefly Wasserstein space. Let IIop (1, v) denote the set of optimal transport
plans, i.e. the set of all elements in TI(u,v) that attain (2.1).

Remark 2.1. If i is absolutely continuous with respect to the Lebesgue measure, then

the optimal transport plan m; is unique and is induced by the unique minimizer T of

the so-called Monge problem
1nf/ |z — T(2)||? du(x) subject to v = Typ = poT (2.3)

by 7, = (Id,T)yp. In this case Wa(u,v) coincides with Wy (u,v). The situation
changes if 1 is not absolutely continuous. Then, in contrast to the minimization
problem (2.1), which is also known as Kantorovich problem, the Monge problem (2.3)
may fail to have a minimizer. Further, if an optimal transport map T) in (2.3) exists,
then m = (Id,T})yp € I(u,v), i.e. this plan 7 fulfills the marginal conditions.
Howewver, it need not be optimal as the example p = iéo + %51 and v = %50 + icﬁ
shows.

A sequence (pn)nen C Pa2(R?) converges to p € Po(R?), denoted by, — p, if
nlingo Wa(pin, 1) = 0.
A sequence (i, )nen C P2(R?) converges narrowly to p € P2(R%), denoted by pu,, N i,
if
/ x) dpiy () — / x)dp(z) for all ¢ € Cy(RY). (2.4)
The relation between both topologies is given by the following theorem.

Theorem 2.2. [34, Theorem 6.9] For (un)nen C P2(R?), we have p, — p if and
only if pn N u and

[ el duntz) > [ ol dta) s > 4.
R4 R4

For all v € Py(R?), the Wasserstein metric Wy(-,v) is lower semicontinuous in

the narrow topology, i.e. Wa(u,v) < liminf, . Wa(un,v) whenever u, M 1, see
[34, Lemma 4.3]. An important concept is the tightness of a set in P(R%). A set
S C Pa(RY) is tight, if for every e > 0 there exists a compact set K. C R? such that
pRINK,) <eforal pes.

Theorem 2.3 (Prokhorov’s Theorem [30]). A set S C Pa(RY) is tight if and only if
S is relatively compact in the topology of narrow convergence.

In particular, we have the following lemma.

Lemma 2.4. [35, Theorem 1] Closed balls in (P2(R%), W2) are tight.
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The Wasserstein spaces are so-called geodesic spaces, meaning, that for every pu,v €
Pa(R9), there exists a curve v : [0, 1] — P2(R?) with v(0) = u, y(1) = v and

Wa(y(t),v(s)) = |t — s|Wa(v(0),v(1)) for every ¢,s € [0,1]. (2.5)

A curve v : [0,1] — P2(RY) with property (2.5) is called constant speed geodesic. If
7 € Iope (111, p12), then the curve

% =gt ) gm, te[0,1], (2.6)

with g : [0,1] x R? x RY — R?, (t,21,73) — (1 — t)z; + try is a constant speed
geodesic connecting p; and py. Conversely, every constant speed geodesic connecting
w1 and po has a representation (2.6) for a suitable m € I, (1, p2), see [3, Theorem
7.2.2]. In particular, if p; is absolutely continuous with respect to the d-dimensional
Lebesgue measure, then, by Remark 2.1, there exists exactly one such constant speed
geodesic.

We will need a more general definition of geodesics in order to make the Wasserstein
proximal mappings in the next section well-defined. For g, i1, o € Pa(R?), let
(0, p11, p2) denote the set of measures w € Po(R% x RY x RY) with marginals p;,
i = 0,1,2, and let TP"* : R x R x R? — R? x R, (z,21,22) + (xj,xr) for
4,k =0,1,2. A generalized geodesic connecting pq and po with base pg is any curve
of type

u(l))?Q = h(t, )um,
with h(t,-) : [0,1] x R? x R? x R? — R?, (t, 2, x1,2) + (1 — t)x1 + txs, where

7€ MW(po, pa, p2), Ty m = Mope(pao, ), T2 = Mopi (1o, 12). (2.7)

Choosing the base pg = p1, we have again the definition of a geodesic. Moreover,
for an absolutely continuous base measure pg, the generalized geodesic connecting 11
and po is uniquely determined and the plan in (2.7) is given via the optimal transport
maps by 7 = (Id, Th, Th2) 410, e.g. see [3, Remark 9.2.3].

We consider functions .% : Py(R?) — (—o0, 0o] with effective domain

D(F) = {n € Pa(R%) : () < o0}

and call a function proper if D(#) # 0. A function .7 : Py(R%) — (—o00, 0] is said
to be convex along generalized geodesics, if for every po, p1, uo € D(F), there exists

a generalized geodesic 47 with base po such that

F(up7?) < (1= t)F (u1) + t.F (uz) for all t € [0,1]. (2.8)

Typical examples of functions defined on Py(R%) that are convex along generalized
geodesics are the potential and interaction energy and the relative entropy discussed,
e.g., in [3, §9.3, §9.4].

3. PROXIMAL MAPPINGS

In this section, we consider proximal mappings in Wasserstein spaces, which play an
important role in Wasserstein gradient flow methods. Let .F : Py(RY) — (—00, +00]
be proper, lower semicontinuous (Isc), coercive (in the sense of [3, (2.4.10)]) and convex
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along generalized geodesics. Then the proximal mapping #; : Pa(RY) — Po(R?)
given by

. 1
(1) i= argming e, gy { F (v) + S WA, wh >0 (3.1)

is well-defined, i.e., for every pu € D(%), the minimizer in (3.1) exits and is unique,
see [3, Theorem 4.1.2, Lemma 9.2.7]. Moreover, by [3, Theorem 4.1.2] (with A = 0),

for all p € D(&) and all v € D(#), the following inequality is satisfied

SWRI ). v) — 5 W) < F ) = F(F2(0) — 5-WE(Felp)o). (32)

Replacing v with _#,(v) and changing the roles of p with v in (3.2), we obtain for all
p,v € Po(R?) that

WA (), £ 0)) < 5 (W3 22 0)) + W (A1), ) (3.3)
— WE( (), 1) = WE( 2 (0),0)). (3.4)

As in Hilbert spaces, minimizers of .# : Pa(RY) — (—o0, +00] and fixed points of its
proximal mapping are closely related.

Proposition 3.1. Let .F : Po(R%) — (—oc0, +00] be proper, lsc, coercive and convex
along generalized geodesics. Then it holds

argming, e ppa) F (1) = Fix 7-.
Proof. Let fi be a minimizer of .#. Then, for all u € Py(R?),

P+ 5 W) = F(3) < F(u) < F(u) + 5 W3 s 1)

implying ft = _Z-(f1). The converse follows immediately from inequality (3.2) with p
replaced by i and using it = _Z;(j1),

0= - WE( S (), v) — 5= Wi v)

< F0) = F ()~ 5= W Fr(i). i) = F0) — F (),
ie. F(p) < F(v) for all v € D(F). O

4. QUASI a-FIRMLY NONEXPANSIVE MAPPINGS

Recall that for o € (0,1), an operator T : R? — R? is a-firmly nonexpansive, if we
have

]_ —
(@A -T)z — (Id-T)y|? forall z,y € RY. (4.1)
«

1Tz —Ty|* < |l —yl* -

If the fixed point set FixT := {z € R? : T(x) = x} is nonempty and (4.1) is restricted
toy € Fix F, i.e.,

1—
1Tz —y||* < ||z —y||* — JH(Id ~T)z||? forallz € RY y € FixT, (4.2)
a
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then T is called quasi a-firmly nonexpansive. We do not know how to translate the
definition of a-firmly nonexpansive operators on R? to Wasserstein spaces. However,
for quasi a-firmly nonexpansive operators this is possible. First, we say as usual that
a mapping .7 : P2(R9) — Pa(RY) is nonexpansive, if

Wo (T (1), T (v)) < Wa(p,v) for all pu,v € Py(RY). (4.3)

If the fixed point set Fix 7 := {u € Po(R?) : T () = p} is nonempty and (4.3) holds
for all 4 € P»(R?) and all v € Fix.7, then .7 is said to be a quasi nonexpansive
mapping. Finally, for a € (0,1), a mapping .7 : Po(R?) — Po(R?) is quasi a-firmly
nonexpansive, if Fix 7 # () and for all u € P(RY), v € Fix .7, the following inequality
holds true:

l1—«

W3 (7 (),v) < W3 (n,v) — W3 (11, 7 (). (4.4)

«

By the next proposition, proximal mappings are quasi 1/2-firmly nonexpansive.

Proposition 4.1. Let .7 : Po(R%) — (—o0, +0o0] be proper, lsc, coercive and convex
along generalized geodesics. Then, for every T > 0, the proximal mapping #- :
Pa(R?) — Py(R?) is quasi a-firmly nonexpansive on D(F) with o = 1/2.

Proof. The claim follows immediately from (3.3) using #Z-(v) = v. O

Next, we are interested in the behavior of push-forward operators of (quasi) a-
firmly nonexpansive operators T : RY — R¢. In other words, we consider Zr :
Py (RY) — Py(R?) defined by

Tr(p) = Typ=poT " (4.5)

Proposition 4.2. Let T : R* — R? be an a-firmly nonexpansie operator for some
a € (0,1). Then T : Po(R?) — Pyo(R?) in (4.5) with T :=1d —T satisfies

11—«

W3 (Fr(u), Tr(v)) < W3 (u,v) — W3 (Z5(), T5(v))  for all p,v € Pa(RY).

(4.6)
In particular T is nonexpansive.

Proof. Let m € Iope (1, v). Then

W2 (T (), Fr(v)) < /

Re x

y lz = ylI* d (T, T) ) ()

= [ 7= Tyl dr(a.n)
X
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By assumption 7' : R? — R? is a-firmly nonexpansive for some a € (0,1), so that

/Rd RdHTx — Ty||2 dm(x,y)
X

11—«

< / iz — gl dn(z,y)
Rd xRd «

/ 114 ~T)z — (1d—T)y|]? dr(z, )
R4 x R4

l-«a ~ ~
— W) - [ e ulPd (D)) (20)
R4 xR4
2 I—a o
< Wi, v) = —— W5 (75(n), T5(v))-
This proves (4.6) and in particular that Zr is a nonexpansive mapping. O

The next result describes the relationships between Fix T and Fix .

Proposition 4.3. Let T : R — R? be a quasi a-firmly nonexpansive operator. Then
Fix Ir # 0 and in particular v € Fix I if supp(v) C FixT.

Proof. Let T : R? — R? be quasi a-firmly nonexpansive mapping. By [11, Lemma
4.1] it follows that Fix T" is nonempty, closed and convex. Let u € Po(R9) be arbitrary.
Let f(z) := Prixr(z) for 2 € R? where Pgi,r denotes the metric projection onto
FixT. Then we have for v := fup that supp(v) C FixT. If a measure v fulfills the
later condition, then we obtain for every B € B(R?) that

TIr(v)(B) = (Tyv)(B) = v(T"'(B)) = v(T"*(B) NFixT) = v(BNFixT) = v(B),

i.e. v € Fix Zp. It remains to show that v € Py(R?). By definition of f, we have
for any B € B(RY) that v(B) = u(f~Y(B)) = u(f~H(BNFixT)). It is evident that
v(B) > 0 and that v(RY) = pu(f~}(FixT)) = u(R?) = 1. Moreover, if (B, )nen is
a countable family of disjoint Borel sets, then so is the family (B, N FixT),cy and
consequently

v(J Bn) = u(f (| B.NFixT))

neN neN

=p({J 1 BuNFixT) =D u(f (B, NFixT)) = > v(By).

neN neN neN
Therefore v is indeed a probability measure. Next, consider

/ 2|12 do(e) = / 2|12 dya(z) + / | Peser |2 dia(z).
R4 FixT

RA\Fix T

The second integral can be estimated with an arbitrary fixed zy € Fix T as follows:

/ | Pessra? du(a) < / (1 Pescra — ol + llzo])? du(x)
RI\Fix T RI\Fix T

<2( [ IPere-wolPduta)+ [ ool duo)
RA\Fix T RI\Fix T

<2( [ Je-mlPdut@) [ el du).
R4\ Fix T R4\ Fix T
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Since p € P2 (R?) this completes the proof. O
In particular we have showed the following relation.

Corollary 4.4. If T : R? — R? is a quasi a-firmly nonexpansive mapping, then it
holds (PFiXT)#PQ (Rd) C Fix Jr.

Let p,v € P2(R?) and m € T (i, v). Let {v,} ere be the family of disintegrations
of m with respect to u , i.e.

(A x B) = /A ( /B Va(y) dy) du(z) for all A, B € B(RY), (4.7)

Proposition 4.5. Let T : R — R? be a quasi a-firmly nonexpansive operator. Sup-
pose that for every v € Fix I there is a family of disintegrating measures {Vy },cpa
satisfying v, (FixT) > CrixT for some positive uniform constant Crixr possibly de-
pending on FixT. Then Jr : Po(RY) — Pa2(RY) is a quasi B-firmly nonexpansive
operator for some B depending on a.

Proof. Let 1 € P2(R?) and v € Fix Zr satisfying v, (FixT) > Crix7 uniformly for
some positive constant Crix 7. Let 7 € IL,p (p, v). From Proposition 4.3 we have that
supp(v) C Fix T, therefore

W2 (T (1), Fo () < / | T — Ty|P? dn(z, )
RexFix T
2 1-a 2
< le —yl2dr(a,y) — =2 e — Ta|)? dn(z,y).
R xFix T « RexFix T

From the assumption on the disintegration we estimate the second integral from below
as

[ e-relPany = [ Jo-1alP( [ v(dy)duto)
RexFix T R4 FixT

:/ lz — Ta|Pvy (Fix T) dp(z) > cFixT/ |z — Ta|)? dyu(z).
R4 R4

Together with v € Fix 7, this implies

W), 70(0) = WH T (1)) € Wipow) =+ Crr [ o =Tl dp(o)

d
-«
< W3 (p,v) — o Crisxt W (1, T ().
Taking B = (1 + Crix7(1 — a)/a) ™!, this completes the proof. 0

In the particular case when Fix T' consists of a unique element zo € R, the previous
result holds without any disintegration condition as shown below.

Corollary 4.6. Let T : R? — R? be a quasi a-firmly nonexpansive operator such
that FixT = {xo} for some x9 € R, Then vy := 6., € P2(R?) is a fived point of the
push-forward operator I and fulfills

W2(Tr(p), Tr(n0)) < W (1, vo) — — WE(p, Tr(p).

«
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Proof. Let FixT = {x0} for some 2o € R%. Then, by the proof of Proposition 4.3,
there is vy € Fix Zp with supp(vo) C {z0}, i.e. 1o = dy,. For any p € Pa(R?) the
only transport plan between p and v is m = p ® d,,. By similar calculations as in
Proposition 4.5 we obtain

W2(Fr (1), Tr(m)) < /

R4 x {Io}

< ol du(a) — 122 Tz —z|d

< [z = ol du(z) [Tz — ||” du(x)
Rd « Rd

1—
< W3 (s v0) = = W3 (1, T ().

[T = Tao | dn(a,a0) = [ [T~ ol duo)
R

O

We conclude this section by showing that quasi a-firmly nonexpansiveness is well
behaved under the composition of mappings that share at least a common fixed point.
The proofs are modifications of arguments from [9] for our setting.

Lemma 4.7. Let ., 7 : P2(RY) — P2(RY) satisfy Fix 7 NFix.s # 0. If S
is quasi a-firmly nonexpansive and J is quasi nonexpansive, then Fix(7 o ) =
Fix 7 NFix <.

Proof. The inclusion Fix 7 NFix . C Fix(.7 0.7) is obvious. Now let p € Fix(J 0.7).
First, suppose that .“(u) € Fix.7. Then (u) = J(S(n)) = p implies p €
Fix 7 NFix .. Next, let .7 (1) ¢ Fix 7. Then we distinguish two subcases p € Fix.7
and p ¢ Fix.. If p € Fix., then p = 7 (. (n)) = 7 (p) implies p € Fix 7 NFix.~.
Finally, let p ¢ Fix . and take v € Fix 7 NFix .. This yields

WE(,v) = WE(T (S (1), T () < WE(S (), v) < W (p,v) — ——WE(p, 7 (1),

o
which implies . (u) = u, a contradiction. O

Proposition 4.8. Let .7 : Po(RY) — Py(RY) be quasi a-firmly nonexpansive and let
T : Pa(RY) — Pa(RY) be quasi B-firmly nonexpansive. Suppose that Fix 7 NFix.# #
(. Then T o.7 is quasi vy-firmly nonexpansive with

a+ 8 —2af
= 4.8
ol [ ab (4.8)
Proof. By Lemma 4.7, assumption Fix .7 N Fix.¥ # 0 implies that Fix(J o &%) =
Fix 7 NFix.#. Let v € Fix(7 0 .#) and p € Po(R?). Then an application of (4.4)
yields

WHT(0).v) < WHS (0.0) — =2 WES (), (7 ()

< W3 (n,0) — +CWE 7 () ~ LW (), T( ()
It suffices to show that
W1 7 ) € WR S )+ WS ), T (). (49
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With 7 := (1 — a)/a+ (1 — 8)/8 inequality (4.9) is equivalent to

(F52) Wit 2 0) + () WE (), 7 ()

* (1 ) (1 - 5) (W 1, () + WE (S (10), () = WE (1, T (S () ) = 0.

T T8
l—a , 1-
/ 7'6, this is equivalent to

B

(5 + )W3 (1,7 (1) +

Setting x :=

k+1

W3 (S (), T( () = W3 (p, T (L (1)) > 0.
The elementary inequality

KW (1, (1)) + %Wf(f(u), TS (W) = 2Wa(p, & (1)) W2 (1), T (F (1))
for all k > 0 together with the triangle inequality

Wa(p, 7 () + Wa (S (1), 7 (L () = Wa(u, 7 (S (1))
implies
(5 + DWE (s 7 () + "W (1), 7 (7 (1)
> (Walp, (1)) + Wa (S (1), T (S (0))?* = W3 (1, 7 (S (w))-

O

The following corollary is an immediate consequence of the above proposition.

Corollary 4.9. Let (7)Y, be a finite family of quasi a;-firmly nonexpansive map-
pings. Suppose that their fized point sets have a nonempty intersection. Then
T =59,0, 0.0, wherei; € {1,2,...,n} are distinct, is also quasi a-firmly
nonexpansive for some « € (0,1) dependent on «;.

5. FIXED POINT THEORY OF QUASI a-FIRMLY NONEXPANSIVE MAPPINGS

5.1. Opial’s property and Fejér monotonicity. A mapping 7 : Po(R?) —
Po(R?) is asymptotic regular at p € Po(RY), if

Jm W (T (), 77 () = 0. (5.1)

Here " := J o---0 7. If the limit in (5.1) holds for every u € P2(R%), then  is
~—_——
n—times
said to be asymptotic reqular on P2(R?). An immediate consequence of quasi a-firmly
nonexpansiveness is the following evident lemma.

Lemma 5.1. Let 7 : Po(RY) — Po(R?) be a quasi a-firmly nonexpansive mapping.
Then 7 is asymptotic reqular on Pa(RY).
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Let (fin)nen be a sequence in Po(R?). An element u € Po(RY) is a narrow cluster

—~

keN such that g, ﬂ .

~

point of (p, )nen if and only if there exists a subsequence (g,
Recently, it has been shown [28, Theorem 5.1] that if p,
inequality holds true

lim inf Wa (pp, 1) < liginf Wa(pin,v), for all v € Py(RY)\ {u}. (5.2)
n o0

n—-+00

k

1=

1, then the following

This is known as the Opial’s property. It implies, for all v € Po(R?) \ {u}, that
limsup Wa(pn, 1) = lm Wa(pn,, ) < iminf Wa(uy,,,v) < limsup Wa(pn, v).
k—+o0 k—+o0 n——+oo

n—-+o0o
(5.3)
A sequence (fin)nen C P2(R%) is Fejér monotone with respect to a set S C Pa(R9)
if Wo(pnt1,v) < Wa(pn,v) for all v € S and for all n € N.

Lemma 5.2. Let (fin)nen C P2(R?) be Fejér monotone with respect to a set S C

Po(RY). If all narrow cluster points of (fin)nen belong to S, then i, N u for some
e Po (Rd)

Proof. The proof follows similar lines as in [11, Lemma 5.3]. O

5.2. Opial’s Theorem. A well-known result of Opial [29] for uniformly convex Ba-
nach spaces X satisfying Opial’s property states that the iterations z,11 = Tz, of
a nonexpansive and asymptotic regular operator T : X — X with FixT # () always
converge weakly to an element in FixT. Recently, in [28, Theorem 6.9], it was shown
that such a result holds true as well in the Wasserstein space Po(R?) for mappings
that are nonexpansive, asymptotic regular and have a nonempty fixed point set. This
is because the space P;(R?) satisfies Opial’s property with respect to the narrow
convergence.

Theorem 5.3. [28, Theorem 6.9] Let 7 : Po(RY) — Pa(R?) be a nonexpansive
mapping that is asymptotic reqular on Po(R?). Then Fix 7 # O if and only if for
some po € P2(RY) (hence any po € P2(R?)) the iterates jin1 = T (1n) are bounded
in P2(R9), in which case they narrowly converge to some u € Fix 7.

As a consequence of this theorem we have the following corollary.

Corollary 5.4. Let T : Po(R%) — Py(R?) be a nonexpansive, quasi a-firmly none-
pansive mapping. Then, for any po € P2(R?), the iterates piny1 = 7 (itn) converge
narrowly to some element p € Fix 7.

Proof. By Lemma 5.1 the operator .7 is asymptotic regular, whenever it is quasi
a-firmly nonexpansive. Moreover, by Definition (4.4), the fixed point set Fix .7 is
nonempty. Hence the result follows directly from Theorem 5.3. 0

A function ¢ : Po(R?) — (—o0,+oc0] is a characteristic function of a mapping
T Pg(Rd) — PQ(Rd)7 if

argmin{p(v) : v € Po(R%)} = Fix 7

whenever the latter is nonempty. Let %5 denote the set of all characteristic functions
associated to the mapping 7. Note that €z # 0 since ¢(n) = Wa(p, 7 (1)) is a
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characteristic function for any mapping 7 satisfying Fix 7 # (. A mapping 7 :
Pa(RY) — Po(R?) is said to satisfy the quadratic growth condition, if there exist a
constant C' > 0 and a proper, narrow lower semicontinuous function ¢ € % satisfying

W2(T (0),v) = W(,v) < C(6(v) — 6(F () for all ji,v € Py(RY).  (5.4)

Theorem 5.5. Let 7 : Po(R?) — Po(R?) be a quasi a-firmly nonexpansive mapping
satisfying the quadratic growth condition (5.4). Then, for any po € P2(R?), the
iterates pn11 = 7 (n) converge narrowly to some element p € Fix .

Proof. Since .7 is quasi a-firmly nonexpansive, then, by similar arguments as in
Proposition 5.4, it follows that, for any 1o € P2(R?), the sequence (i, )nen defined by
tnt1 = 7 (un) is bounded and therefore it contains a subsequence (pi, )ken narrowly
converging to a certain element p € Po(R?). The assumption that .7 satisfies the
quadratic growth condition implies that there is a constant C' > 0 and a proper narrow
Isc function ¢ € €5 such that inequality (5.4) is satisfied. In particular, it follows
that ¢(7 (1)) < ¢(p) for all u € Py(RY). Consequently, we obtain ¢(it,11) < ¢(pn)
for every n € N. Again, from condition (5.4) for every v € Pa(R%) it follows

N N
S W3 (T (pn),v) = W3, 1) < C D ($(1) = $(T (1n))) (5.5)
n=0 n=0
N
W3 (T (un),v) = W3 (po,v) <C (N +1)p(v) —C Y &(T (). (5.6)
n=0

Rearranging the terms and using the monotonicity of (¢(un))nen yields

1

m(wzz(ﬂNHv v) — Wi(uo,v)) < ¢(v) for all v € Po(RY).

d(puny1) +
Consequently, by narrow lower semicontinuity of ¢, we get

d(v) > limsup ¢(pun 1) > liminf ¢(un, ) > é(u) for all v € Py(R?).
N—+4o0 k—+o00
Therefore, 1 € argmin{¢(v) : v € Po(R)}.

Since ¢ is a characteristic function for the mapping 7 we have u € Fix.7. If
fi € Po(R?) is another narrow cluster point of (1, )nen, then by the same arguments
we conclude that i € Fix.7. By quasi a-firmly nonexpansiveness of the mapping
T, it holds that (p,)nen is Fejér monotone with respect to Fix . By Lemma 5.2 it
follows that the whole sequence (uy,)nen narrowly converges to p € Fix 7. (|

As a corollary, we obtain a result on the convergence of the so-called prozimal point
algorithm which is already known from the literature, see, e.g., [28, Theorem 6.7] .

Corollary 5.6. Let .7 : Po(RY) — (—oc + 00] be proper, Isc, coercive and convex
along generalized geodesics. For T > 0, let _Z; : P2(R?) — P2(R?) be the proximal
mapping defined in (3.1). Then, for any po € D(F), the iterates pini1 = _Zr(jin)
converge narrowly to some p € argmin{.Z (v) : v € Pa(R%)}.
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Proof. By Proposition 4.1, the proximal mapping _#; is quasi a-firmly nonexpan-
sive with a = 1/2. Moreover, from inequality (3.2) we know that _Z. satisfies the
quadratic growth condition with C' = 27 and ¢ = #. Then the result follows from
Theorem 5.5. U

6. CYCLIC PROXIMAL POINT ALGORITHM

Let .Z; : Po(RY) — (—o00, +00] be proper, lsc, coercive and convex along generalized
geodesics for ¢ = 1,2,--- , N. Consider the minimization problem

N
inf " Fi(u). (6.1)

HEP2(RY) ~—

The function . = ZZ]\LI Z; is itself proper, Isc, coercive and convex along generalized
geodesics, since it is the sum of finitely many such functions. Suppose further that
D(Z) C D(%;). A popular method to solve a problem of this kind is the proximal
point algorithm from the previous section. However, computing the proximal mapping
- might be complicated because it could happen that the function .# is difficult to
handle, both theoretically and computationally. One way out consists in considering
the functions .%; separately, that is one computes the proximal mapping ¢, for each

function, where 7; > 0 is the corresponding step size for ¢ = 1,2,--- | N. Then we
consider the iterates
st = Fry (in), where [n] = n (mod N) + 1€ {1,2,--- \N}.  (6.2)

Such a method is known as the cyclic proximal point method. For two operators,
it is also called backward-backward splitting method. Splitting methods in convex
analysis date back to papers of Lions, Mercier [25, Lions—Mercier, 1979] who studied
splitting algorithms for stationary and evolution problems involving the sum of two
monotone (multivalued) operators defined on a Hilbert space. In finite dimensional,
linear spaces cyclic proximal point algorithms go back to [13]. Since then splitting
algorithms have been applied to more general problems in the setting of both linear
and non-linear spaces. For example, in the context of complete CAT(0) spaces, this
proximal point algorithms were studied in [4], see also [21] and their cyclic version in
[5]. In this paper, we introduce the cyclic proximal point algorithm in Py(R%). For
recent papers on related algorithms, see e.g. [20, 31].

Theorem 6.1. Let .%; : Po(R?) — (—o0,+00] be proper, Isc, coercive and convex
along generalized geodesics. Denote by F = Zf\il F; and suppose that O # D(F) C
D(Z;) fori=1,2,--- ,N. Let #.. : P2(R?) — P2(R?) be the prozimal mapping of
F; fori=1,2,--- ,N. Assume that ﬂfil Fix 7., # 0. Then, for any po € D(.F),
the iterates jin1 = Zn)(in) converge narrowly to a solution of (6.1).

Proof. Let ¢ = g, 0 Fr, ,0---0 .. Assumption ﬂfil Fix 7., # 0 implies
by Lemma 4.7 that Fix ¢ = ﬂf\]:l Fix #;,. Given pg € D(F), we define i1 =
7 (). By Proposition 4.1, the mapping 77, is quasi 1/2-firmly nonexpansive
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for every i = 1,2,--- , N and in particular _Z;, is quasi nonexpansive for every ¢ =
1,2,---, N. Therefore, we get for every v € Fix ¢ that

W2(;un+17 V) = WQ(fT[n] (:un)7 V) < WQ(Mm V)'

Consequently, the sequence (un)nen is bounded. Hence, by Lemma 2.4 and
Prokhorov’s Theorem 2.3 it has a subsequence (g, )ken narrowly converging to some
measure p € Pa(R?). Since there are finitely many indices i € {1,2,---, N}, we get
by the pigeonhole principle that p,, = _#r, (tin,—1) for infinitely many & € N, for
some j € {1,2,---, N}. Moreover, by inequality (3.2), we have for all [ € N and all
v € D(.F) that
1 2 1 2 T
TQWQ (/‘nw)ﬂ V) - %W2 (/‘nku)*lv V) < yj(”) - ‘jj(ﬂnk(z))'

From Fejér monotonicity, we get Wa(pin,,,v) > Walpin, ., ,,—1,v) for any v € Fix ¢

and every [ € N. Then, rearranging terms in the last inequality, yields for all [ € N
and all v € Fix ¢ that

1
2Tj

1

yj(/"nk(n)gﬂ\j(y)"‘r 27
75

Wg(ﬂnk(l71)7y) - W;(Nnk(zw’/)'

Passing to the limit as I — +oo and from Fejér monotonicity of (i, )nen with respect
to Fix ¢, we obtain for all v € Fix ¢ that

o 1
IIILHJFIEE yj (Nnm)) < <gfj(y) + % lllfrnoo (Wg(ﬂnk(zq) ’ V) - W;(ﬂnk(zw V)) = <97]'(”)'
On the other hand, Fix ¢ C Fix ¢, = argmin{.%;(v) : v € P>(R%)} implies that
the last inequality holds for all v € argmin{.Z;(0) : ¢ € P2(R?)} and so for all
v € P2(RY). Narrow lsc of .7, gives

Fj(p) < liminf F; (up, ) < F;(v) forallve Py (RY),
l—+o00

and therefore p € argmin{.Z;(v) : v € P2(R%)}. Now consider the sequence
(#tnyqy, Jien that by construction satisfies pn, ., , = v (kn, ).  Since

(lunk(l)—l)leN is bounded, let jin,, A@ i € Py(RY), else by Lemma 2.4 and

Prokhorov’s Theorem 2.3, we can always pass to a subsequence of (fin, _,)ien
with this property. By similar arguments as above, we find that the limit pu’ €
argmin{.Z;_1(v) : v € Po(R%)}. By inequality (3.2) we have
1 1

27; 27;
for all v € D(#) and in particular for all v € Fix _#. From narrow lsc of W, -) and
Fejér monotonicity of (1, )nen with respect to Fix ¢, passing to the limit as [ — 400,
we obtain

1
W22(:unk(z) ) Hnm),l) + ?Wg(unk(z) ) V) - W22(p“nk<z)71 ) V) < fj(y) - ﬁj (:unk(z))
J

1

2Tj
Since Fix ¢ C argmin{.%;(v) : v € Po(R9)}, the last inequality holds in particular
for all v € argmin{.Z;(v) : v € Po(R?)}. Therefore Wa(u, 1/') < 0 implies that pu = .

W3, p') < F;(v) — Fj(p) forall v e Fix 7.
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This means that x4 € argmin{.%;_1(v) : v € P2(R%)}. Repeating the same argument
for every index i € {1,2,--- , N} yields that u € argmin{.%;(v) : v € P2(R%)} for all
i=1,2,---, N, so that

N
e ﬂ argmin{.Z;(v) : v € Po(RY)} C argmin{.Z (v) : v € Po(RY)}.
i=1

Hence we obtain for the original subsequence fin, A ne ﬂf;l argmin{.%;(v) : v €
Pa(RY)}. If 1’ is another narrow cluster point of (i, )nen, then, by same arguments,

we obtain
N

w e m argmin{.Z;(v) : v € Po(R9)}.
i=1

We have that ﬂf\il argmin{.Z;(v) : v € Po(R%)} = Fix ¢ and that the sequence
(fn)nen is Fejér monotone with respect to Fix #. Consequently, by Lemma 5.2, the

whole sequence converges fi, ﬂ; w € Fix ¢ . This completes the proof. U

Since the our theory relies on the assumption that the intersection of the fixed
points sets of a finite collection of quasi a-firmly nonexpansive operators is nonempty,
the last results cannot be applied to a situation when this intersection is empty.
However, inspired by a result of Bacak [6, Theorem 6.3.7], we can provide a con-
vergence theorem, when the functions .%; do not have a common minimizer, which
essentially is the case when the corresponding proximal mappings ¢, have no com-
mon fixed point. However, we need to add two conditions. First, each function .%;
is Lipschitz continuous on D(.%;). This means that there exists L; > 0 such that
|Zi(pw) — Zi(v)| < L Wa(p,v) for all p,v € D(F;). Second, if _#; ;. is the proximal
mapping of .%; with step size 7, we require that (7x)ren, satisfies Y, 7 = +o0
and Y, o, Th < +00. Then we consider the iterations

HEN+n+1 = f[n],Tk(ukN+n)v [TL] = n(mOdN) +1le€ {1a27 7N}a k= 0,1,2,---.
(6.3)

Theorem 6.2. Let %; : Po(RY) — (—o0,+00] be proper, lsc, coercive and convex
along generalized geodesics. Denote by F = Zf\;l F; and suppose that ) # D(F) C
D(%;) fori =1,2,--- N. Assume that .F; is Lipschitz continuous on D(%;) for
every i € {1,2,--- ,N}. Denote by Z; -, the prozimal mapping of %, with step size
T > 0 satisfying D ey, Tk = +00 and oy, 2 < 4o00. Then, for any initial

measure jig € D(F), the iterates pgN1nt1 = Fn)m (HkN+n) converge narrowly to a
solution of problem (6.1).

The proof follows similar steps as in [6, Theorem 6.3.7].
Proof. First, we get from inequality (3.2) for each ¢ € {1,2,---, N} that

sz(MkN+i7 v) < WQZ(MMVH;h v) = 21 (Fi(prenti) — Fi(v)) for all v € D(.F).
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Summing on the both sides of this inequality yields

W3 (trnsnvsv) < W3lpen,v) = 27 Y Fiprni) + 27 F (v) (6.4)

i=1

= WZQ(:UkN; V) - 2Tk(§(NkN) - f(y)) + QTkﬁ(NkN) — 27 Z }\i(,uk]v_;,_i). (6.5)

The assumption that .%#; is Lipschitz continuous on D(.%#;) and hence on D(%) for
every i € {1,2,---, N} implies for all k£ € Ny that

N N N
F(in) = Y Filpansi) = Y _(Filpen) — Filpen4i)) < Y Li Walpen s ey +i)-
i=1 i=1 i=1
By definition of the proximum we have for all ¢ € {1,2,--- , N} and all k € Ny that
1
Fi(pen+i) + 2 W3 (N i1, kN ti) < Fi(penrio1)-

This implies

Fi(penvi-1) — Fi(eN+i)
Wo(prN1i—1s HEN+i)

This upper estimate together with an iterative application of the triangle inequality

to the expression Wa(un, ten+i) < Walpen, tenv+1) + -+ + Wo(pen4i—1, HkN+i)
yields

S 2Tk Li-

Wo(pkN4im1s eN+i) < 2Tk

N N ;
> Filpen) — Filprn i) <216 Y Li» Ly <Ll N(N + 1),
=1

=1 j=1
where Lyax := max{L; :4=1,2,---, N}. Therefore, we obtain for all v € D(.#) the
inequality
W3 (penv,v) < Wi (pen, v) = 27(F (puen) = F () + 27 Lo N(N +1). (6.6)
In particular, (6.6) holds if v € argmin{.% (0) : o € Po(R?)}. Applying [6, Exercise
6.5] with ay := WZ(ugn,v), by == F(uen) — F(v) and ¢, == 272 L2, N(N + 1)
yields that the sequence (Wa(ugn,v))ken, converges to a certain number d(v) > 0.
In particular, the sequence (ugn)ken, is bounded. By Lemma 2.4 and Prokhorov’s

Theorem 2.3, there is a subsequence pug; § ﬁ@ p for some p € Po(R?). On the other
hand, again by [6, Exercise 6.5], it holds that

Z Te(F (upn) — F (V) < +oo  for all v € argmin{.Z () : 0 € Po(RY)}.
keNy
Therefore limy_, 4 o0 7% (F (rn) —Z (v)) = 0 implies that limy_, oo F (urn) = Z (v),
else we can always pass to a subsequence of (urn)ren, having this property. By
narrow lsc of % we get that
F (1) < limjnfﬂ(/ik,w) < limsup F (upn) = F(v)
j*} (o] -

k—+oco

for all v € argmin{.Z (c) : o € P2(R%)}.
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Thus, p € argmin{.Z () : ¢ € P2(R%)}. Let (i1, N)men be another narrowly con-

vergent subsequence of (N )ken,. Let pk,, N N i € P2(R?). Note that (6.6) acts as
a substitute in the argument of Lemma 5.2 for Fejér monotonicity of (uxn)ren, with
respect to argmin{.#(c) : o € Po(R%)}. Indeed, let 1 = limsup;_,, . Wa(ux,n, 1)
and rp = limsup,,_, . Wa(pik,, v, ¢'). Suppose w.l.o.g. that r < rp. From Opial’s
property (5.3) it follows that ry < limsup,,_, . Wa(uk, ~, ). For every e > 0,
there is jo € N such that Wo(ug,n, ) < 71 + €, whenever j > jo. In (6.6), let

€2 :=277L2  N(N +1). Then we have W3 (uy, v, p) < (r1 +¢)* + Z;Z"kjo e? when-
ever k,, > kj,. For a fixed difference A(m, jo) = km, — kj,, we let jo — +oo, ie.,
also m — +oo. Since & — 0 and the sum Zf;"kjo &7 is finite, we get for suffi-

ciently large jo and sufficiently large m that Wa(pug,, n, ) < r1 + 2e. Therefore
there exists m; € N such that Wa(uk,, v, ) < r2 + 2e, whenever m > my, implying
limsup,,,_, 1 oo Wo(ttk,,n, 1) < 72. This would raise a contradiction. Therefore the
sequence (fixN)ren, Must have a unique narrow cluster point. Following exactly the

same arguments as in Lemma 5.2, we get that the whole sequence converges pxn Af) .
Now consider (urn+i)ken, for i =1,2,--- N — 1. Repeating the same reasoning as

for (1rN)ken,, we conclude that pgnyi N pi € argmin{.# (o) : 0 € Pa(R4)} for each
i=1,2--- /N — 1. From the estimate Wa(ugn, penii) < 27k 22:1 L; and narrow
Isc of Wa(-,-), we obtain that

0 < Wo(p, 1) < lminf Wo(pen, penas) < lim (2 L) =0.
< Wa(p, i) < liminf Wa(pn ey ) < lim. ( Tk; i)

Hence p = p; for every ¢ = 1,2,--- | N — 1. This means that the whole sequence of
iterates pxNtnt1 = Fin),r, (MkN1n) converges narrowly to u € argmin{.# (o) : o0 €
P (RY)}. O
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