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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖ and
let C be a nonempty, closed and convex subset of H. A mapping T : C → H is said
to be

i. γ− strictly pseudocontractive (Browder [4]) if there exists a positive real num-
ber γ such that

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 − γ‖(x− y)− (Tx− Ty)‖2, for all x, y ∈ C;

ii. pseudocontractive if

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2, for all x, y ∈ C; (1.1)

iii. Lipschitz continuous if there exists a constant L ≥ 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, for all x, y ∈ C.
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Remark 1.1. We observe from the above relations that every γ−strictly pseudocon-
tractive mapping is pseudocontractive.

The class of pseudocontractive mappings has a close connection with the class of
monotone mappings, where a mapping A: D(T ) ⊂ H → H is said to be monotone if
for all x, y ∈ D(A), we have

〈Ax−Ay, x− y〉 ≥ 0. (1.2)

Remark 1.2. One can see from the relations (1.1) and (1.2) that the mapping T is
pseudocontractive if and only if the mapping A := I − T is monotone, where I is the
identity mapping on H. Thus, it can be observed that the set of fixed points of T ,
denoted by F (T ), is equal to the set of zero points of A, N(A).

The theory of fixed points has been serving as a very powerful and important tool
in the study of nonlinear phenomena. Fixed point techniques have been applied in,
for instance, biology, chemical reactions, chemistry, etc.

Many authors have proposed and studied different iterative algorithms involving
fixed points of pseudocontractive mappings in Hilbert spaces (see, for instance, [23,
24, 25, 27] and the references therein).

In 2008, Zhou [27] introduced the following iterative algorithm and proved strong
convergence of the method. Let C be a nonempty, closed and convex subset of a
real Hilbert space H and let T : C → H be a κ−strictly pseudocontractive non-self
mapping with F (T ) 6= ∅. For , x1, u ∈ C, let {xn} be the sequence generated by{

yn = PC [αnxn + βnTxn] ,

xn+1 = βnu+ (1− βn)Tyn, n ≥ 1,
(1.3)

where {αn} and {βn} are sequences in (0, 1) satisfying some control conditions. He
proved that the sequence {xn} generated by (1.3) converges strongly to a point x∗ ∈
F (T ) with x∗ = PF (T )u, where PF (T ) is the metric projection onto F (T ).

In 2013, Zegeye and Shahzad [24] introduced the following iterative algorithm: Let
C be a nonempty, closed and convex subset of a real Hilbert space H and let T :
C → C be a Lipschitz pseudocontractive mapping. Assume that F (T ) 6= ∅. Let {xn}
be the sequence generated from arbitrary x0, x ∈ C by{

un = (1− cn)xn + cnTxn,

xn+1 = αnx+ (1− αn)(θnxn + γnTun), n ≥ 0,
(1.4)

where {cn}, {θn}, {γn} ⊂ (a, b) ⊂ (0, 1) and {αn} ⊂ (0, c) ⊂ (0, 1) are control
sequences satisfying some appropriate conditions. Then they proved that the sequence
generated by (1.4) converges strongly to some x∗ ∈ F (T ).

The other problem related to fixed point problems is the Split Fixed Point Problem
(SFPP), which was introduced by Censor and Segal [5]. It is defined as finding a point

x∗ ∈ F (T ) such that Ax∗ ∈ F (S), (1.5)

where H1 and H2 are real Hilbert spaces, T : H1 → H1 and S: H2 → H2 are nonlinear
mappings, A: H1 → H2 is a bounded linear mapping.
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Several authors have proposed different iterative algorithms for approximating so-
lutions of SFPP (see, for instance, [8, 15, 16] ) involving different types of mappings.

Another problem which is related to the fixed point problems is the Split Equality
Fixed Point Problem (SEFPP), which was introduced by Moudafi and Al-Shemas [17].
The SEFPP is defined as finding a point

(x∗, y∗) ∈ F (T1)× F (T2) such that B1x
∗ = B2y

∗, (1.6)

where H1 and H2 are real Hilbert spaces, T1: H1 → H1 and T2: H2 → H2 are
mappings, B1: H1 → H3 and B2: H2 → H3 are bounded linear mappings with
adjoints B∗1 and B∗2 , respectively, where H3 is another real Hilbert space.

The SEFPP is a more general problem which contains several other problems.
In fact, if, in (1.6), B2 = I, then the SEFPP reduces to SFPP (1.5). If we take
S1 = I1−T1 and S2 = I2−T2 in (1.6), then the SEFPP reduces to the Split Equality
Null Point Problem (SENPP).

Several authors have proposed and studied different iterative algorithms for solving
SEFPP (1.6) (see, for instance, [6, 7]).

In 2011, Moudafi and Al- Shemas [17] proposed the following algorithm which
approximates a solution of SEFPP (1.6): Let H1, H2 and H3 be real Hilbert spaces
and let T : H1 → H1 and S: H2 → H2 be firmly quasi-nonexpansive mappings. Let
{(xn, yn)} be the sequence obtained by the following iteration:{

xn+1 = T (xn − βnA∗(Axn −Byn)),

yn+1 = S(yn + βnB
∗(Axn −Byn)),

(1.7)

where {βn} is a real sequence satisfying some conditions and A: H1 → H3 and
B: H2 → H3 are bounded linear mappings. Then they proved that the sequence
{(xn, yn)} converges weakly to a solution of the SEFPP (1.6).

In 2014, Ma et al. [12] proposed a strongly convergent iterative algorithm which
approximates a solution of SEFPP (1.6) involving κ−strictly pseudocontractive map-
pings. We now raise the following important question.

Question 1.1. Can we find a method for approximating solutions of split equality
fixed point problems which involve uniformly continuous pseudocontractive self map-
pings in real Hilbert spaces?

Motivated and inspired by the aforementioned results, it is our purpose in this pa-
per to introduce and study a strongly convergent inertial algorithm for approximating
solutions of the split equality fixed point problems that involve uniformly continuous
pseudocontractive self-mappings in real Hilbert spaces.

2. Preliminaries

This section is devoted to present some basic definitions and important results that
will be used in the sequel.

Consider the bi-function φ: H ×H → R, introduced by Alber [2] and defined as

φ(y, x) = ‖y‖2 − 2〈y, x〉+ ‖x‖2, for all x, y ∈ H. (2.1)
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The function φ in (2.1) is called the Lyapunov function and it satisfies the following
identities:

φ(x, y) + φ(y, w)− φ(x,w) = 2〈y − w, y − x〉, for all x, y, w ∈ H; (2.2)

φ(y, z) + φ(x,w)− φ(y, w)− φ(x, z) = 2〈w − z, y − x〉, for all x, y, w, z ∈ H. (2.3)

Moreover, the Lyapunov function has the following important property (see, [11]):

φ(x, x∗) + 2〈y∗, x∗ − x〉 ≤ φ(x, x∗ + y∗), for all x, x∗, y∗ ∈ H. (2.4)

Let C be a nonempty, closed and convex subset of H. The metric projection of
the point x ∈ H onto C is the unique point, PCx, of C which satisfies:

φ(PCx, x) = inf {φ(y, x) : y ∈ C} .
Moreover, this projection has the following two properties:

z = PCx if and only if 〈x− z, y − z〉 ≤ 0, for all y ∈ C, and (2.5)

φ(y, PCx) + φ(PCx, x) ≤ φ(y, x), for all x ∈ H, y ∈ C. (2.6)

Lemma 2.1. [21] Let H be a real Hilbert space. Then

φ(y, x) ≥ 1

2
‖x− y‖2, for all x, y ∈ H. (2.7)

Let {wi} ⊆ H and {αi} ⊆ (0, 1) be such that
∑N

i=1 αi = 1. Then, we have by [19]
that for all x ∈ H,

φ

(
x,

N∑
i=1

αiwi

)
≤

N∑
i=1

αiφ(x,wi). (2.8)

Lemma 2.2. [14] If the sequence {φ(xn, x0)} is bounded for any x0 ∈ H, then {xn}
is bounded.

Lemma 2.3. [18] Let the sequences {xn} and {yn} be bounded in H. Then,
lim
n→∞

φ(xn, yn) = 0 if and only if lim
n→∞

‖xn − yn‖ = 0.

Lemma 2.4. [22] Let {bn} be a sequence of non-negative real numbers such that

bn+1 ≤ (1− αn) bn + αndn, where {αn} ⊂ (0, 1) with

∞∑
n=1

αn = ∞ and {dn} is a

sequence of real numbers with lim sup
n→∞

dn ≤ 0. Then lim
n→∞

bn = 0.

Lemma 2.5. [13] Let {cn} be a sequence of non-negative real numbers. If {cni
} is

a sub-sequence of {cn} such that cni
< cni+1 for all i ∈ N, then there exists a non-

decreasing sequence {mk} of N such that lim
k→∞

mk = ∞ and the following properties

are satisfied by all (sufficiently large) number k ∈ N:

cmk
≤ cmk+1 and ck ≤ cmk+1.

In fact, mk=max{n ≤ k : cn < cn+1}.
Lemma 2.6. [9] Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. For all u ∈ H and α ≥ β > 0, the inequalities hold:
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α

∥∥∥∥ ≤ ∥∥∥∥u− PC(u− βAu)

β

∥∥∥∥ and

‖u− PC(u− βAu)‖ ≤ ‖u− PC(u− αAu)‖.

Lemma 2.7. [3] If H1 and H2 are real Hilbert spaces, then H = H1 ×H2 is also a
real Hilbert space with inner product

〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉+ 〈y1, y2〉, for all (x1, y1), (x2, y2) ∈ H = H1 ×H2, and

(xn, yn) ⇀ (x, y) implies xn ⇀ x and yn ⇀ y.

Lemma 2.8. [3] Let H = H1×H2, where H1 and H2 are real Hilbert spaces, and let C
be a nonempty, closed and convex subset of H. If (u, v) ∈ H and (u∗, v∗) = PC(u, v),
then 〈(u, v)− (u∗, v∗), (x, y)− (u∗, v∗)〉 ≤ 0, for all (x, y) ∈ C.

If H is a real Hilbert space, then we have the following relation:

‖x+ y‖2 ≤ ‖x‖2 + 2〈x+ y, y〉, for all x, y ∈ H. (2.9)

Let H be a real Hilbert space, C be a nonempty, closed and convex subset of H.
A mapping T : C → C is said to satisfy the demiclosedness property if (I − T )
is demiclosed at 0, that is, if {xn} is any sequence in C such that xn ⇀ p and
‖(I − T )xn‖ → 0, then Tp = p.

Lemma 2.9. [26] Let H be a real Hilbert space, C be a nonempty, closed and convex
subset of H and let T : C → C be a continuous pseudocontractive mapping. Then

(1) F (T ) is a closed and convex subset of C;
(2) (I − T ) is demiclosed at zero.

3. Main result

In this section, we state our algorithm and discuss its convergence analysis. We
shall assume the following conditions in the sequel.

Conditions

(C1) Let C and D be nonempty, closed and convex subsets of real Hilbert spaces
H1 and H2, respectively;

(C2) Let T1: C → C and T2: D → D be uniformly continuous pseudocontractive
mappings;

(C3) Let B1: H1 → H3 and B2: H2 → H3 be bounded linear mappings with
adjoints B∗1 and B∗2 , respectively, where H3 is a real Hilbert space;

(C4) Let Ω = {(x∗, y∗) ∈ F (T1)× F (T2) : B1x
∗ = B2y

∗} 6= ∅;

(C5) Let {αn} ⊂ (0, 1) be such that lim
n→∞

αn = 0 and

∞∑
n=1

αn =∞;

(C6) Let {ζn} be a sequence of positive numbers such that ζn ∈
(

0,
1

4

)
for all

n ≥ 0, and
ζn
αn
→ 0 as n→∞.

We now state our proposed algorithm.
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Algorithm 3.1

Initialization: Let x0, x1 ∈ H1; y0, y1 ∈ H2; µ, σ ∈
(

0,
1

2

)
, l, γ ∈ (0, 1) and θ > 0.

For arbitrary points u ∈ H1 and v ∈ H2, calculate {xn} and {yn} as follows:

Step 1: Given xn−1, xn ∈ H1 and yn−1, yn ∈ H2, choose θn such that 0 ≤ θn ≤ σn,
where

σn =

 min

{
θ,

ζn
‖xn − xn−1‖+ ‖yn − yn−1‖

}
, if ‖xn − xn−1‖+ ‖yn − yn−1‖ 6= 0,

θ, otherwise.

Step 2: Compute
an = PC

(
xn + θn(xn − xn−1)

)
(3.1)

bn = PD

(
yn + θn(yn − yn−1)

)
.

Step 3: Compute
cn = PC

(
an − γnB∗1 (B1an −B2bn)

)
, (3.2)

dn = PD

(
bn − γnB∗2 (B2bn −B1an)

)
,

where 0 < ρ ≤ γn ≤ ρn with

ρn = min

{
ρ+ 1,

‖B1an −B2bn‖2

2[‖B∗1(B1an −B2bn)‖2 + ‖B∗2(B2bn −B1an)‖2]

}
,

for n ∈ Υ = {m ∈ N : B1am −B2bm 6= 0}, otherwise γn = ρ, for some ρ > 0.
Step 4: Compute

en = cn − λn(I1 − T1)cn, (3.3)

hn = dn − ηn(I2 − T2)dn,

where λn = γljn and jn is the smallest non negative integer j satisfying the relation

γlj‖(I1 − T1)en − (I1 − T1)cn‖ ≤ µ‖en − cn‖, (3.4)

and ηn = γlmn , where mn is the smallest non negative integer m satisfying the relation

γlm‖(I2 − T2)hn − (I2 − T2)dn‖ ≤ σ‖hn − dn‖. (3.5)

Step 5: Compute

pn = en − λn((I1 − T1)en − (I1 − T1)cn), (3.6)

qn = hn − ηn((I2 − T2)hn − (I2 − T2)dn).

Step 6: Compute
xn+1 = (1− αn)pn + αnu, (3.7)

yn+1 = (1− αn)qn + αnv.

Set n = n+ 1 and go to Step 1.

Lemma 3.1. Assume that Conditions (C1)−(C6) hold. Then the Armijo line-search
rules (3.4) and (3.5) are well defined.
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Proof. The line search rule (3.4) can be rewritten as

‖(I1 − T1)(cn − γlj(I1 − T1)cn)− (I1 − T1)cn‖ ≤ µ‖(I1 − T1)cn‖. (3.8)

Thus, it is sufficient to show that (3.8) is well defined. We now consider two cases
on cn. If cn is a fixed point of T1, then obviously j = 0 satisfies the relation (3.8).
Assume on the contrary that cn is not a fixed point of T1. Then the right hand side
of (3.8) is always positive. On the other hand, we have from the continuity of T1 and
the fact l ∈ (0, 1) that limj→∞ ‖(I1 − T1)

(
cn − γlj (I1 − T1) cn

)
− (I1 − T1)cn‖ = 0.

Therefore, there exists a non negative integer j which satisfies the inequality (3.8)
and hence (3.4) is well defined. Similarly, there exists a non negative integer m which
satisfies the relation (3.5) and hence the proof is complete. �

Theorem 3.1. Assume that conditions (C1)− (C6) hold. Then the sequences {xn}
and {yn} generated by Algorithm 3.1 are bounded.

Proof. Let (x̂, ŷ) ∈ Ω. From (3.7) and (2.8), we obtain

φ(x̂, xn+1) = φ(x̂, (1− αn)pn + αnu)

≤ (1− αn)φ(x̂, pn) + αnφ(x̂, u).
(3.9)

From (3.6) and (2.1), we get

φ (x̂, pn) = φ (x̂, en − λn((I1 − T1)en − (I1 − T1)cn))

= ‖x̂‖2 + ‖pn‖2 − 2〈en, x〉+ 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂〉
= ‖x̂‖2 + ‖en‖2 − ‖en‖2 − 2〈en, x̂〉+ ‖pn‖2

+ 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂〉
= φ(x̂, en)− ‖en‖2 + ‖pn‖2 + 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂〉
= φ(x̂, en)− ‖en‖2 − ‖pn‖2 + 2‖pn‖2 − 2〈en, pn〉+ 2〈en, pn〉

+ 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂〉
= φ(x̂, en)− φ(pn, en) + 2‖pn‖2 − 2〈en, pn〉

+ 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂〉
= φ(x̂, en)− φ(pn, en) + 2〈pn, pn〉 − 2〈en, pn〉

+ 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂〉
= φ(x̂, en)− φ(pn, en)− 2〈pn, λn [(I1 − T1)en − (I1 − T1)cn]〉

+ 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂〉,

that is,

φ (x̂, pn) = φ(x̂, en)− φ(pn, en) + 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂− pn〉. (3.10)

By (2.3), we have

φ(x̂, en)− φ(pn, en) = φ(x̂, cn)− φ(pn, cn) + 2〈en − cn, pn − x̂〉. (3.11)
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Substituting (3.11) into (3.10), we obtain

φ (x̂, pn) = φ(x̂, cn)− φ(pn, cn) + 2〈en − cn, pn − x̂〉
+ 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂− pn〉.

(3.12)

By (2.2), we have

φ(pn, cn) = φ(pn, en) + φ(en, cn)− 2〈en − cn, en − pn〉. (3.13)

Substituting (3.13) into (3.12), we obtain

φ (x̂, pn) = φ(x̂, cn)− φ(pn, en)− φ(en, cn) + 2〈en − cn, en − pn〉
+ 2〈en − cn, pn − x̂〉+ 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂− pn〉.

(3.14)

From (3.2), (2.6) and (2.4), we have

φ (x̂, cn) = φ (x̂, PC (an − γnB∗1(B1an −B2bn)))

≤ φ (x̂, an)− 2〈γnB∗1(B1an −B2bn), sn − x̂〉,
(3.15)

where sn = an − γnB∗1(B1an −B2bn). Combining (3.14) and (3.15), we obtain

φ (x̂, pn) ≤ φ (x̂, an)− φ(pn, en)− φ(en, cn) + 2〈en − cn, en − pn〉
+ 2〈en − cn, pn − x̂〉+ 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂− pn〉
− 2〈γnB∗1(B1an −B2bn), sn − x̂〉.

(3.16)

From (3.1) and (2.1), we obtain

φ (x̂, an) = φ (x̂, PC [xn + θn(xn − xn−1)])

≤ ‖x̂‖2 − 2〈x̂, xn〉 − 2〈x̂, θn(xn − xn−1)〉+ ‖an‖2

= ‖x̂‖2 − 2〈x̂, xn〉+ ‖xn‖2 − ‖xn‖2 − 2〈x̂, θn(xn − xn−1)〉+ ‖an‖2

= φ(x̂, xn)− ‖xn‖2 − 2〈x̂, θn(xn − xn−1)〉+ ‖an‖2

= φ(x̂, xn)− ‖xn‖2 − 2〈x̂, θn(xn − xn−1)〉
− ‖an‖2 + 2‖an‖2 − 2〈xn, an〉+ 2〈xn, an〉

= φ(x̂, xn)− φ(an, xn)− 2〈x̂, θn(xn − xn−1)〉+ 2‖an‖2 − 2〈xn, an〉
= φ(x̂, xn)− φ(an, xn)− 2〈x̂, θn(xn − xn−1)〉 − 2〈xn − an, an〉
= φ(x̂, xn)− φ(an, xn)− 2〈x̂, θn(xn − xn−1)〉+ 2〈θn(xn − xn−1), an〉
= φ(x̂, xn)− φ(an, xn)− 2〈θn(xn − xn−1), x̂− an〉. (3.17)
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Now, substitution of (3.17) into (3.16) gives

φ (x̂, pn) ≤ φ(x̂, xn)− φ(an, xn)− φ(pn, en)− φ(en, cn) + 2〈en − cn, en − pn〉
+ 2〈en − cn, pn − x̂〉+ 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂− pn〉
− 2〈γnB∗1(B1an −B2bn), sn − x̂〉 − 2〈θn(xn − xn−1), x̂− an〉

= φ(x̂, xn)− φ(an, xn)− φ(pn, en)− φ(en, cn) + 2〈en − cn, en − x̂〉
+ 2λn〈(I1 − T1)en − (I1 − T1)cn, x̂− en〉
+ 2λn〈(I1 − T1)en − (I1 − T1)cn, en − pn〉
− 2〈γnB∗1(B1an −B2bn), sn − x̂〉 − 2〈θn(xn − xn−1), x̂− an〉

= φ(x̂, xn)− φ(an, xn)− φ(pn, en)− φ(en, cn)

+ 2λn〈(I1 − T1)en − (I1 − T1)cn − (en − cn), x̂− en〉
+ 2λn〈(I1 − T1)en − (I1 − T1)cn, en − pn〉
− 2〈γnB∗1(B1an −B2bn), sn − x〉 − 2〈θn(xn − xn−1), x̂− an〉.

(3.18)

But, en = cn − λn(I1 − T1)cn. Let τn = (I1 − T1)en. Then we have

en + λnτn = cn + λn [(I1 − T1)en − (I1 − T1)cn] ,

which implies that

τn =
1

λn
[λn ((I1 − T1)en − (I1 − T1)cn)− (en − cn)] . (3.19)

Since (I1 − T1)x̂ = 0 and I1 − T1 is monotone, we have that

〈τn, en − x̂〉 ≥ 0. (3.20)

Thus, substituting (3.19) into (3.20), we obtain

〈λn ((I1 − T1)en − (I1 − T1)cn)− (en − cn), en − x̂〉 ≥ 0. (3.21)

From (3.18) and (3.21), we get

φ (x̂, pn) ≤ φ(x̂, xn)− φ(an, xn)− φ(pn, en)−D(en, cn)

+ 2λn〈(I1 − T1)en − (I1 − T1)cn, en − pn〉
− 2〈γnB∗1(B1an −B2bn), sn − x̂〉 − 2〈θn(xn − xn−1), x̂− an〉.

(3.22)

Moreover, we obtain from the Cauchy Schwarz inequality and Lemma 2.7 that

−〈θn(xn − xn−1), x̂− an〉 ≤ θn‖xn − xn−1‖ ‖x̂− an‖

≤ θn
2
‖xn − xn−1‖

[
‖x̂− an‖2 + 1

]
=
θn
2
‖xn − xn−1‖

[
‖x̂− xn + xn − an‖2 + 1

]
≤ θn

2
‖xn − xn−1‖

[
2‖x̂− xn‖2 + 2‖xn − an‖2 + 1

]
= 2θn‖xn − xn−1‖φ(x̂, xn) + 2θn‖xn − xn−1‖φ(an, xn)

+
θn
2
‖xn − xn−1‖. (3.23)
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From (3.22), (3.23), (3.19) and using the fact that θn‖xn − xn−1‖ ≤ ζn, we obtain

φ (x̂, pn) ≤ φ(x̂, xn)− φ(an, xn)− φ(pn, en)− φ(en, cn)

+ 4θn‖xn − xn−1‖φ(x̂, xn) + 4θn‖xn − xn−1‖φ(an, xn)

+ 2λn〈(I − T1)en − (I − T1)cn, en − pn〉+ θn‖xn − xn−1‖
− 2〈γnB∗1(B1an −B2bn), sn − x̂〉
≤ φ(x̂, xn)− φ(an, xn)− φ(pn, en)− φ(en, cn)

+ 4ζnφ(x̂, xn) + 4ζnφ(an, xn) + 2µ‖en − cn‖ ‖pn − en‖+ ζn

− 2〈γnB∗1(B1an −B2bn), sn − x̂〉
≤ (1 + 4ζn)φ(x̂, xn)− (1− 4ζn)φ(an, xn)− (1− 2µ)φ(pn, en)

− (1− 2µ)φ(en, cn) + ζn − 2〈γnB∗1(B1an −B2bn), sn − x̂〉.

(3.24)

Since ζn ∈
(

0,
1

4

)
and µ ∈

(
0,

1

2

)
, we obtain from (3.24) that

φ (x̂, pn) ≤ (1 + 4ζn)φ(x̂, xn) + ζn − 2〈γnB∗1(B1an −B2bn), sn − x̂〉. (3.25)

Substituting (3.25) into (3.9), we obtain

φ(x̂, xn+1) ≤ αnφ(x̂, u) + (1− αn) (1 + 4ζn)φ(x̂, xn)− (1− αn) (1− 4ζn)φ(an, xn)

− (1− αn) (1− 2µ)φ(pn, en)− (1− αn) (1− 2µ)φ(en, cn)

+ (1− αn)ζn − 2(1− αn)〈γnB∗1(B1an −B2bn), sn − x̂〉. (3.26)

Similarly, we obtain

φ(ŷ, yn+1) ≤ αnφ(ŷ, v) + (1− αn) (1 + 4ζn)φ(y, yn)− (1− αn) (1− 4ζn)φ(bn, yn)

− (1− αn) (1− 2σ)φ(qn, hn)− (1− αn) (1− 2σ)φ(hn, dn)

+ (1− αn)ζn − 2(1− αn)〈γnB∗2(B2bn −B1an), rn − ŷ〉,
(3.27)

where rn = bn − γnB∗2(B2bn −B1an).

Since
ζn
αn
→ 0 as n → ∞, for any ε ∈

(
0,

1

4

)
there exits n0 ∈ N such that ζn <

εαn, for all n ≥ n0. This together with the properties of µ and σ implies that

φ(x̂, xn+1) ≤ αnφ(x̂, u) + (1− αn) (1 + 4εαn)φ(x̂, xn)

+ εαn − 2(1− αn)〈γnB∗1(B1an −B2bn), sn − x̂〉,
(3.28)

and

φ(ŷ, yn+1) ≤ αnφ(ŷ, v) + (1− αn) (1 + 4εαn)φ(y, yn)

+ εαn − 2(1− αn)〈γnB∗2(B2bn −B1an), rn − ŷ〉.
(3.29)

Denote Πn = φ(x̂, xn) + φ(ŷ, yn) and Σ = φ(x̂, u) + φ(ŷ, v). Then the combination of
(3.28) and (3.29) gives

Πn+1 ≤ αnΣ + (1− αn) (1 + 4εα
n
) Πn + 2εαn

− 2(1− αn) [γn〈B1an −B2bn, B1sn −B2rn〉] .
(3.30)



SPLIT EQUALITY FIXED POINT PROBLEMS 25

Furthermore, we obtain by the Cauchy Schwarz Inequality that

−〈B1an −B2bn, B1sn −B2rn〉
= −〈B1an −B2bn, B1an −B2bn〉 − 〈B1an −B2bn, B1sn −B1an〉
− 〈B1an −B2bn, B2bn −B2rn〉

= −‖B1an −B2bn‖2 − 〈B∗1(B1an −B2bn), sn − an〉
− 〈B∗2(B1an −B2bn), bn − rn〉
≤ −‖B1an −B2bn‖2 + ‖sn − an‖ ‖B∗1(B1an −B2bn)‖

+ ‖bn − rn‖ ‖B∗2(B1an −B2bn)‖. (3.31)

Moreover,

‖sn − an‖ = ‖an − γnB∗1(B1an −B2bn)− an‖ = γn‖B∗1(B1an −B2bn)‖. (3.32)

Similarly, we have

‖rn − bn‖ = γn‖B∗2(B2bn −B1an)‖. (3.33)

Combining (3.31), (3.32) and (3.33), we obtain

−2γn〈B1an −B2bn, B1sn −B2rn〉
≤ −2γn‖B1an −B2bn‖2 + 2γ2

n‖B∗1(B1an −B2bn)‖2

+ 2γ2
n‖B∗2(B2bn −B1an)‖2

≤ −ρ‖B1an −B2bn‖2 − γn‖B1an −B2bn‖2

+ γn
{

2γn
[
‖B∗1(B1an −B2bn)‖2 + ‖B∗2(B2bn −B1an)‖2

]}
≤ −ρ‖B1an −B2bn‖2. (3.34)

Substituting (3.34) into (3.30), we obtain

Πn+1 ≤ αnΣ + (1− αn) (1 + 4εαn) Πn + 2εαn − (1− αn)ρ‖B1an −B2bn‖2

≤ αnΣ + (1− αn) (1 + 4εα
n
) Πn + 2εαn

≤ [1− αn (1− 4ε)] Πn + αn [Σ + 2ε]

= [1− αn (1− 4ε)] Πn + αn (1− 4ε)

[
Σ + 2ε

1− 4ε

]
≤ max

{
Πn,

Σ + 2ε

1− 4ε

}
,

(3.35)

which implies by the Principle of Mathematical Induction that

Πn ≤ max

{
Π0,

Σ + 2ε

1− 4ε

}
.

Thus, we conclude that {Πn} is bounded and hence the sequences {φ(x̂, xn)} and
{φ(ŷ, yn)} are bounded, which implies together with Lemma 2.2 that {xn} and {yn}
are bounded sequences. �

Theorem 3.2. Assume that conditions (C1) − (C6) hold. Then, the sequence
{(xn, yn)} generated by Algorithm 3.1 converges strongly to (x∗, y∗), where

(x∗, y∗) = PΩ(u, v).
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Proof. Let (x∗, y∗) = PΩ(u, v). Then we have by Lemma 2.8 that

〈(u, v)− (x∗, y∗), (s, t)− (x∗, y∗)〉 ≤ 0, for all (s, t) ∈ Ω. (3.36)

From (3.7), (2.4) and (2.8) we get

φ(x∗, xn+1) = φ(x∗, (1− αn)pn + αnu)

≤ φ(x∗, (1− αn)pn + αnu− αn (u− x∗)) + 2αn〈u− x∗, xn+1 − x∗〉
= φ(x∗, (1− αn)pn + αnx

∗) + 2αn〈u− x∗, xn+1 − x∗〉
≤ αnφ(x∗, x∗) + (1− αn)φ(x∗, pn) + 2αn〈u− x∗, xn+1 − x∗〉
= (1− αn)φ(x∗, pn) + 2αn〈u− x∗, xn+1 − x∗〉. (3.37)

Combining (3.25) and (3.37) with x = x∗, we obtain

φ(x∗, xn+1) ≤ (1− αn) [(1 + 4ζn)φ(x∗, xn) + ζn − 2〈γnB∗1(B1an −B2bn), sn − x∗〉]
+ 2αn〈u− x∗, xn+1 − x∗〉
≤ (1− αn)φ(x∗, xn) + 4ζnφ(x∗, xn) + (1− αn)ζn

− 2(1− αn)〈γnB∗1(B1an −B2bn), sn − x∗〉+ 2αn〈u− x∗, xn+1 − x∗〉.
(3.38)

Since
ζn
αn
→ 0 as n → ∞, for every ε ∈

(
0,

1

4

)
, there exists n0 ∈ N such that

ζn < εαn, ∀n ≥ n0. Thus, we obtain from (3.38) and the Cauchy Schwarz inequality
that

φ(x∗, xn+1)

≤ (1− αn)φ(x∗, xn) + 4εαnφ(x∗, xn)

− 2(1− αn)〈γnB∗1(B1an −B2bn), sn − x∗〉
+ 2αn‖u− x∗‖ ‖xn+1 − xn‖+ 2αn〈u− x∗, xn − x∗〉+ ζn

= [1− αn (1− 4ε)]φ(x∗, xn)− 2(1− αn)〈γnB∗1(B1an −B2bn), sn − x∗〉

+ 2αn‖u− x∗‖ ‖xn+1 − xn‖+ 2αn〈u− x∗, xn − x∗〉+
αnζn
αn

= [1− αn (1− 4ε)]φ(x∗, xn)− 2(1− αn)〈γnB∗1(B1an −B2bn), sn − x∗〉

+ αn (1− 4ε)

[
2 [‖u− x∗‖ ‖xn+1 − xn‖+ 〈u− x∗, xn − x∗〉]

1− 4ε
+

ζn
(1− 4ε)αn

]
.

(3.39)

Similarly, we have

D(y∗,yn+1)

≤ [1− αn (1− 4ε)]φ(y∗, yn)− 2(1− αn)〈γnB∗2(B2bn −B1an), rn − y∗〉

+ αn (1− 4ε)

[
2 [‖v − y∗‖ ‖yn+1 − yn‖+ 〈v − y∗, yn − y∗〉]

1− 4ε
+

ζn
(1− 4ε)αn

]
.

(3.40)
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Now, denote Π∗n = φ(x∗, xn) + φ(y∗, yn) and Σ∗ = φ(x∗, u) + φ(y∗, v). Combining
(3.39) and (3.40) and using the relation (3.34), we obtain

Π∗n+1 ≤ [1− αn (1− 4ε)] Π∗n + αn (1− 4ε) (∆n + Γn) , (3.41)

where

∆n =
2 [‖u− x∗‖ ‖xn+1 − xn‖+ 〈u− x∗, xn − x∗〉]

1− 4ε
+

ζn
(1− 4ε)αn

, (3.42)

and

Γn =
2 [‖v − y∗‖ ‖yn+1 − yn‖+ 〈v − y∗, yn − y∗〉]

1− 4ε
+

ζn
(1− 4ε)αn

. (3.43)

Combining (3.26) and (3.27) and using the relation (3.34) gives

(1− αn) (1− 4ζn)φ(an, xn) + (1− αn) (1− 2µ)φ(pn, en)

+ (1− αn) (1− 2µ)φ(en, cn) + (1− αn) (1− 4ζn)φ(bn, yn)

+ (1− αn) (1− 2σ)φ(qn, hn) + (1− αn) (1− 2µ)φ(hn, dn)

(1− αn)ρ‖B1an −B2bn‖2 ≤ Π∗n −Π∗n+1 + αn

[
Σ∗ + (4ε− 1) Π∗n +

2ζn
αn

]
. (3.44)

Now, we show that the sequence of real numbers {Π∗n} converges to zero by considering
two cases:
Case I. If there exists a natural number n0 such that Π∗n+1 ≤ Π∗n for all n ≥ n0, then
{Π∗n} converges. So, taking the limit of (3.44) as n→∞, we obtain

lim
n→∞

‖B1an −B2bn‖ = 0. (3.45)

and

lim
n→∞

φ(an, xn) = lim
n→∞

φ(pn, en) = lim
n→∞

φ(en, cn) = 0,

lim
n→∞

φ(bn, yn) = lim
n→∞

φ(qn, hn) = lim
n→∞

φ(hn, dn) = 0,
(3.46)

which implies by Lemma 2.3 that

lim
n→∞

‖an − xn‖ = lim
n→∞

‖pn − en‖ = lim
n→∞

‖en − cn‖ = 0,

lim
n→∞

‖bn − yn‖ = lim
n→∞

‖qn − hn‖ = lim
n→∞

‖hn − dn‖ = 0.
(3.47)

From (3.2) and the property of metric projection, we have

‖an − cn‖ = ‖an − PC [an − γnB∗1 (B1an −B2bn)] ‖
≤ ‖an − [an − γnB∗1 (B1an −B2bn)] ‖
≤ (ρ+ 1)‖B∗1‖ ‖B1an −B2bn‖ → 0, as n→∞.

(3.48)

From (3.7), we have

lim
n→∞

‖xn+1 − pn‖ = lim
n→∞

‖αnu+ (1− αn)pn − pn‖ = lim
n→∞

αn‖u− pn‖ = 0. (3.49)

From (3.47), (3.48) and (3.49), we obtain

‖xn+1 − xn‖ ≤ ‖xn+1 − pn‖+ ‖pn − en‖+ ‖en − cn‖
+ ‖cn − an‖+ ‖an − xn‖ → 0, as n→∞.

(3.50)
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Similarly, we have

lim
n→∞

‖yn+1 − yn‖ = 0. (3.51)

Since the sequence {(xn, yn)} is bounded in H1 × H2, there exists a sub-sequence
{(xnk

, ynk
)} of {(xn, yn)} and an element (x̄, ȳ) of H1 × H2 such that (xnk

, ynk
) ⇀

(x̄, ȳ) and

lim sup
n→∞

〈(u, v)− (x∗, y∗), (xn, yn)− (x∗, y∗)〉

= lim
k→∞

〈(u, v)− (x∗, y∗), (xnk
, ynk

)− (x∗, y∗)〉,
(3.52)

Moreover, we have by Lemma 2.7 that xnk
⇀ x̄ and ynk

⇀ ȳ. Now, we show that
(x̄, ȳ) ∈ Ω. Put sn = cn − λnl

−1(I1 − T1)cn. From (3.47) and (3.48), we obtain
cn ⇀ x̄. By Lemma 2.6 and (3.47), we have

‖cn − sn‖ ≤
1

l
‖cn − en‖ → 0, as n→∞. (3.53)

Therefore, sn ⇀ x̄. Thus, we have that {sn} is bounded. Since I1 − T1 is uniformly
continuous, we have

‖(I1 − T1)cn − (I1 − T1)sn‖ → 0, as n→∞. (3.54)

By the Armijo line-search rule (3.4), we have

λnl
−1‖(I1 − T1)(cn − λnl−1(I1 − T1)cn)− (I1 − T1)cn‖ > µ‖λnl−1(I1 − T1)cn)‖,

which implies

1

µ
‖(I1 − T1)(cn − λnl−1(I1 − T1)cn)− (I1 − T1)cn‖ > ‖(I1 − T1)cn)‖. (3.55)

We conclude from (3.54) and (3.55) that lim
n→∞

(I1 − T1)cn = 0 which implies from

the demiclosedness of T1 and the fact that cn ⇀ x̄ that (I1 − T1)x̄ = 0 and hence
x̄ ∈ F (T1). One can show in a similar fashion that ȳ ∈ F (T2). Next we show that
B1x̄ = B2ȳ. Indeed, we have by (2.9) that

‖B1x̄−B2ȳ‖2 = ‖B1ank
−B2bnk

+B1x̄−B1ank
+B2bnk

−B2ȳ‖2

≤ ‖B1ank
−B2bnk

‖2 + 2〈B1x̄−B2ȳ, B1x̄−B1ank
+B2bnk

−B2ȳ〉,
(3.56)

and from the fact that B1ank
⇀ B1x̄ and B2bnk

⇀ B2ȳ as k → ∞, we obtain that
B1x̄ = B2ȳ and so (x̄, ȳ) ∈ Ω. Consequently, we obtain using Lemma 2.8, (3.36) and
(3.52) that

lim sup
n→∞

〈(u, v)− (x∗, y∗), (xn, yn)− (x∗, y∗)〉

= lim
k→∞

〈(u, v)− (x∗, y∗), (xnk
, ynk

)− (x∗, y∗)〉

= 〈(u, v)− (x∗, y∗), (x̄, ȳ)− (x∗, y∗)〉 ≤ 0.

(3.57)

Combining (3.42), (3.43) and (3.57), we obtain

lim sup
n→∞

(∆n + Γn) ≤ 0. (3.58)
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From (3.41), (3.58) and Lemma 2.4, we conclude that lim
n→∞

Π∗n = 0, which implies

that

lim
n→∞

φ(x∗, xn) = lim
n→∞

φ(y∗, yn) = 0,

which in turn implies by Lemma 2.3 that

lim
n→∞

‖xn − x∗‖ = 0 and lim
n→∞

‖yn − y∗‖ = 0.

Case II. Suppose now that there exists a sub-sequence
{

Π∗ni

}
of {Π∗n} such that

Π∗ni
< Π∗ni+1, for all i ≥ 0. Then by Lemma 2.5, there exists a non-decreasing

sequence {mk} of positive integers such that mk →∞ as k →∞ and

Π∗mk
≤ Π∗mk+1 and Π∗k ≤ Π∗mk+1, (3.59)

for all k ∈ N. We have from (3.44) that

(1− αmk
) (1− 4ζmk

)φ(amk
, xmk

) + (1− αmk
) (1− 2µ)φ(pmk

, emk
)

+ (1− αmk
) (1− 2µ)φ(emk

, cmk
) + (1− αmk

) (1− 4ζmk
)φ(bmk

, ymk
)

+ (1− αmk
) (1− 2σ)φ(qmk

, hmk
) + (1− αmk

) (1− 2µ)φ(hmk
, dmk

)

(1− αmk
)ρ‖B1amk

−B2bmk
‖2 ≤ Π∗mk

−Π∗mk+1 + αmk

[
Σ∗ + (4ε− 1) Π∗mk

+
2ζmk

αmk

]
.

(3.60)

Making use of (3.59) and the conditions on αmk
and ζmk

and taking the limit as
k →∞ of (3.60) we obtain that lim

k→∞
‖B1amk

−B2bmk
‖ = 0. Following similar steps

as in Case I, we obtain that

lim
k→∞

‖xmk+1−xmk
‖ = lim

k→∞
‖ymk+1−ymk

‖ = 0 and lim sup
k→∞

(∆mk
+Γmk

) ≤ 0. (3.61)

From (3.41) and (3.59), we have that

αmk
(1− 4ε) Π∗mk

≤ Π∗mk
−Π∗mk+1 + αmk

(1− 4ε) (∆mk
+ Γmk

)

≤ αmk
(1− 4ε) (∆mk

+ Γmk
) ,

(3.62)

and thus we have Π∗mk
≤ ∆mk

+ Γmk
. Since lim sup

k→∞
(∆mk

+ Γmk
) ≤ 0, we have

that lim
k→∞

Π∗mk
= 0, which together with (3.41) implies that lim

k→∞
Π∗mk+1 = 0. Since

Π∗k ≤ Π∗mk+1, it follows that lim
k→∞

Π∗k = 0. Thus, we have

lim
k→∞

φ(x∗, xk) = lim
k→∞

φ(y∗, yk) = 0,

which implies by Lemma 2.3 that lim
k→∞

‖xk − x∗‖ = 0 and lim
k→∞

‖yk − y∗‖ = 0. Thus,

we have shown, in Cases I and II, that the sequence {(xn, yn)} generated by Algorithm
3.1 converges strongly to (x∗, y=) = PΩ(u, v), and this completes the proof. �

Corollary 3.1. Assume that conditions (C1), (C3)− (C6) hold. If T1 : C → C and
T2 : D → D are Lipschitz pseudocontractive mappings, then the sequence {(xn, yn)}
generated by Algorithm 3.1 converges strongly to (x∗, y∗), where (x∗, y∗) = PΩ(u, v).



30 YIRGA ABEBE BELAY, H. ZEGEYE AND O.A. BOIKANYO

4. Applications

In this section, we present some specific applications of the main result.

4.1. Split fixed point problems. If in Theorem 3.2, we consider H2 = H3 and
B2 = IH2

, then the SEFPP reduces to split fixed point problem which is finding a
point (x∗, y∗) ∈ H1 × H2 such that (x∗, y∗) ∈ F (T1) × F (T2) : B1x

∗ = y∗. Denote
Θ = {(x∗, y∗) ∈ F (T1)× F (T2) : B1x

∗ = y∗}. Then we have the following corollaries.

Corollary 4.1. Assume that conditions (C1), (C2), (C5) and (C6), with H2 = H3

and B2 = IH2 hold. If Θ∗ 6= ∅, then the sequence {(xn, yn)} generated by Algorithm
3.1 converges strongly to (x∗, y∗), where (x∗, y∗) = PΘ(u, v).

Corollary 4.2. Assume that conditions (C1), (C5) and (C6), with H2 = H3 and
B2 = IH2

hold. Let T1: C → C and T2: D → D be Lipschitz pseudocontractive map-
pings. If Θ 6= ∅, then the sequence {(xn, yn)} generated by Algorithm 3.1 converges
strongly to (x∗, y∗), where (x∗, y∗) = PΘ(u, v).

4.2. Split equality null point problem. If in Theorem 3.2, we take C = H1 and
D = H2, then the SEFPP reduces to split equality null point problem which is defined
as finding a point (x∗, y∗) ∈ H1 ×H2 such that (x∗, y∗) ∈ N(A1) ×N(A2) : B1x

∗ =
B2y

∗, where Ai = Ii − Ti. Denote Φ = {(x∗, y∗) ∈ N(A1)×N(A2) : B1x
∗ = B2y

∗}.

Corollary 4.3. Let H1, H2 and H3 be real Hilbert spaces and let A1 : H1 → H1 and
A2 : H2 → H2 be uniformly continuous monotone mappings. Assume that the set
Φ 6= ∅ . If the conditions (C3), (C5) and (C6) hold, then the sequence {(xn, yn)}
generated by Algorithm 3.1, with Ti = Ii − Ai, converges strongly to an element
(x∗, y∗), where (x∗, y∗) = PΦ(u, v).

5. Numerical examples

In this section, we provide examples of uniformly continuous pseudocontractive
mappings which satisfy the conditions of Theorem 3.2. Besides, a numerical experi-
ment is provided to exhibit the applicability of the method.

Example 5.1. Let H1 = [0,∞) = C and H2 = H3 = R = D. Let T1: C → C and

T2: D → D, be defined by T1(x) = x −
√
x +

1

2
, and T2(y) = y − 3

√
y − 2. The

mapping T1 is uniformly continuous pseudocontractive on C which is not Lipschitz

continuous. In fact, let K > 0 be given and choose y = 0 and 0 < x <
1

K2
so that

K <
1√
x

. Now,

|T1(x)− T1(y)|
|x− y|

=
|x−

√
x|

|x|
=
∣∣∣ 1√
x
− 1
∣∣∣ > K − 1.

Since K is arbitrary, one concludes that T1 is not Lipschitz continuous. Similarly, it
can be shown that T2 is uniformly continuous pseudocontractive on D which is not

Lipschitz continuous. Clearly, x∗ =
1

4
∈ F (T1) and y∗ = −8 ∈ F (T2). Now, define
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B1: H1 → H3 and B2: H2 → H3 by B1(x) = 8x and B2(y) = −1

4
y. Then B1

and B2 are bounded linear mappings with adjoints B∗1(x) = 8x and B∗2(y) = −1

4
y.

Moreover, we have that B1

(
1

4

)
= B2(−8) = 2. Thus, (x∗, y∗) =

(
1

4
,−8

)
∈ Ω. For

the control sequences ζn =
1

n2 + 5
, αn =

1

n+ 100
and the parameters σ = 0.4, γ =

0.5, l = 0.5, µ = 0.4, θ = 0.4, the conditions (C1) − (C6) are satisfied. A numerical
experiment was carried out by taking the points (u, v) = (−1, 0), (x0, x0 = (0, 0) and
(x1, y1) = (0.5, 0) and the results are shown in Table 1 and Figure 1.

Table 1. Comparison of rates of convergence for the inertial and
non inertial algorithms.

Non inertial (θn = 0)
Error (E) Time(sec.)

4.9 03568
4.4 0.4279
3.9 0.5432
1.8 1.5955
1.5 1.9915
1.0 3.8809
0.9 4.0038

Inertial (θn 6= 0)
Time(sec.)

0.3113
0.3877
0.4912
1.4970
1.9111
3.6960
3.8018

0 5 10 15 20 25

Elapsed time(sec.)

0

1

2

3

4

5

6

7
(x

1
,y

1
)=(0.5,0)

(x
1

,y
1

)=(0.25,-4)

(x
1

,y
1

)=(0.25,-6)

Parameters: γ = l = 0.5, µ = σ = 0.4, θ = 0.4.

Figure 1. Convergence of the sequence {(xn, yn)} for different ini-
tial points (x1, y1).
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Remark 5.1. Table 1 shows the comparison of rates of convergence for the inertial
and non inertial versions of the algorithm. The time taken for the inertial version
to reach the error value E = 1.0 is 3.6960 seconds, whereas the time taken by the
non inertial version to reach the same error value is about 3.8809 seconds. Thus, we
conclude that the inertial version of the algorithm is faster than that of the non inertial
version. Figure 1 shows the sequence {(xn, yn)} generated by Algorithm 3.1 converges

to the solution (x∗, y∗) =

(
1

4
,−8

)
for different initial points and the convergence gets

relatively faster as the initial point gets closer to the solution of the problem.

Example 5.2. Let H = H1 = H2 = H3 = L2[0, 1] with the inner product

〈x(t), y(t)〉 =

∫ 1

0

x(t)y(t)dt

and norm

‖x‖L2
=

(∫ 1

0

|x(t)|2dt
) 1

2

.

Let T1: C → C and T2: D → D be the mappings defined by

(T1x)(t) = x(t)−max {0, x(t)} , and (T2y)(t) = min {0, y(t)} ,

where

C = D = {x ∈ H : ‖x‖L2
≤ 1} .

It is proved in Tian and Xu [20] that the mapping (Ax)(t) = max {0, x(t)} a monotone
mapping. Thus, we have by Remark 1.2 that the mapping

(T1x)(t) = x(t)− (Ax)(t) = x(t)−max {0, x(t)}

is a pseudocontractive mapping. It is also shown in [20] that T1 is a uniformly con-
tinuous mapping. Similarly, one can show that T2 is a uniformly continuous pseudo-
contractive mapping. Clearly,

x∗(t) = 0 ∈ F (T1) and y∗(t) = 0 ∈ F (T2).

Let B1, B2: H → H be the bounded linear mappings defined by

(B1x)(t) = 3x(t) and (B2y)(t) = 5y(t).

We note that B1 (0) = B2 (0) = 0. Therefore,

(x∗(t), y∗(t)) = (0, 0) ∈ Ω.

If we take

ζn =
1

n2 + 5
, αn =

1

n+ 100
, σ = 0.4, γ = 0.5, l = 0.5, µ = 0.4, θ = 0.4

and the conditions (C1) − (C6) are satisfied. Let En = (xn, yn) be the sequence
generated by Algorithm 3.1. For the points (u, v) = (0, 0), (x0, y0) = (0, 0) and
(x1, y1) = (0.5, 0) and for different choices of the inertial parameter θn, the figure
below reveals that the error term sequence {En − (x∗, y∗)} converges to zero.



SPLIT EQUALITY FIXED POINT PROBLEMS 33

1.5 2 2.5 3 3.5 4

Elapsed time(sec.)

0

0.02

0.04

0.06

0.08

0.1

0.12

n
=0, Non-inertial

n
=

n

n
=

n
/3

n
=

n
/5

n
=

n
/7

Parameters: γ = l = 0.5, µ = σ = 0.4.

Figure 2. Convergence of the sequence {(xn, yn)} for different val-
ues of the inertial parameter θn.

Remark 5.2. From Figure 2 we observe that the method with nonzero inertial pa-
rameter (θn 6= 0) has a faster rate of convergence than that of the non-inertial (θn = 0)
version.

6. Conclusions

In this paper, we introduced an inertial algorithm for solving the split equality fixed
point problems in real Hilbert spaces. A strong convergence theorem is established
under the assumption that the mappings under consideration are pseudocontractive
self mappings which are uniformly continuous. A numerical example is also provided
to demonstrate the applicability of the method.

The main result in this paper generalizes and extends many of the results in the
literature in the sense that the problem considered is inertial and split equality, which
is more general than all of the results discussed in the literature.

Specifically, our result is more general than the results obtained by Jung [10] and
Zhou [12] because the mappings under consideration are relaxed from strictly pseu-
docontractive to uniformly continuous pseudocontractive. Moreover, our result gen-
eralizes the works of Akuchu [1] and Zegeye and Shahzad [24] in the sense that the
problem is a more general problem and the class of Lipschitz continuous mappings is
extended to the class of uniformly continuous mappings.

Acknowledgments. The first and second authors gratefully acknowledge the fund-
ing received from Simons Foundation based at Botswana International University of
Science and Technology (BIUST). The first author is grateful to Aksum University
for the partial financial support provided during his study.



34 YIRGA ABEBE BELAY, H. ZEGEYE AND O.A. BOIKANYO

References

[1] B.G. Akuchu, Convergence of the Ishikawa iterative sequence to fixed points of Lipschitz pseu-
docontrative maps in Hilbert spaces, Nt. J. Sci. Eng. Res., 2015.

[2] Y.I. Alber, Metric and generalized projection operators in Banach spaces: Properties and ap-

plications, arXiv preprint funct-an/9311001, 1993.
[3] O.A. Boikanyo, H. Zegeye, The split equality fixed point problem for quasi-pseudocontractive

mappings without prior knowledge of norms, Numer. Funct. Anal. Optim., 41(2020), no. 7,

759–777.
[4] F.E. Browder, W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert

space, J. Math. Anal. Appl., 20(1967), no. 2, 197–228.
[5] Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex

Anal., 16(2009), no. 2, 587–600.

[6] S.S. Chang, L. Wang, L.J. Qin, Split equality fixed point problem for quasi-pseudo-contractive
mappings with applications, Fixed Point Theory Appl., 2015(2015), no. 1, 1–12.

[7] H. Che, M. Li, A simultaneous iterative method for split equality problems of two finite families

of strictly pseudononspreading mappings without prior knowledge of operator norms, J. Fixed
Point Theory Appl., 2015(2015), no. 1, 1–24.

[8] H. Cui, F. Wang, Iterative methods for the split common fixed point problem in Hilbert spaces,

Fixed Point Theory Appl., 2014(2014), 1–8.
[9] S.V. Denisov, V.V. Semenov, L. M. Chabak, Convergence of the modified extragradient method

for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51(2015), no. 5,

757–765.
[10] J.S. Jung, Some results on a general iterative method for k-strictly pseudocontractive mappings,

Fixed Point Theory and Appl., 2011(2011), no. 1, 1–11.
[11] F. Kohsaka, W. Takahashi, Strong convergence of an iterative sequence for maximal monotone

operators in a Banach space, Abstr. Appl. Anal., 2004(2004), no. 3, 239–249.

[12] Z. Ma, W. Duan, R. Liu, Split equality fixed point problem for strictly pseudocontractive map-
pings, International Mathematical Forum, 9(2014), no. 35, 1707–1718.
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