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1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and induced norm || - || and
let C' be a nonempty, closed and convex subset of H. A mapping T: C' — H is said
to be

i. y— strictly pseudocontractive (Browder [4]) if there exists a positive real num-
ber v such that

(Tz —Ty,z —y) < |l —yl* = vl(z — y) = (Tz = Ty)|]?, for allz,y € C;
ii. pseudocontractive if
(Tz —Ty,z —y) < ||z —y|]?, for all z,y € C; (1.1)
iii. Lipschitz continuous if there exists a constant L > 0 such that

|ITx — Tyl < L|jz — y||, for all z,y € C.
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Remark 1.1. We observe from the above relations that every y—strictly pseudocon-
tractive mapping is pseudocontractive.

The class of pseudocontractive mappings has a close connection with the class of
monotone mappings, where a mapping A: D(T) C H — H is said to be monotone if
for all z,y € D(A), we have

(Ax — Ay, z —y) > 0. (1.2)

Remark 1.2. One can see from the relations (1.1) and (1.2) that the mapping T is
pseudocontractive if and only if the mapping A := I — T' is monotone, where [ is the
identity mapping on H. Thus, it can be observed that the set of fixed points of T,
denoted by F(T), is equal to the set of zero points of A, N(A).

The theory of fixed points has been serving as a very powerful and important tool
in the study of nonlinear phenomena. Fixed point techniques have been applied in,
for instance, biology, chemical reactions, chemistry, etc.

Many authors have proposed and studied different iterative algorithms involving
fixed points of pseudocontractive mappings in Hilbert spaces (see, for instance, [23,
24, 25, 27] and the references therein).

In 2008, Zhou [27] introduced the following iterative algorithm and proved strong
convergence of the method. Let C' be a nonempty, closed and convex subset of a
real Hilbert space H and let T : C' — H be a k—strictly pseudocontractive non-self
mapping with F(T) # (). For ,z1,u € C, let {z,,} be the sequence generated by

Yn = Pc [anxn + BnTxn} y (1 3)

Tnit1 = 611“ + (1 - ﬂn)Tyn; n>1, .
where {a,} and {3,} are sequences in (0, 1) satisfying some control conditions. He
proved that the sequence {x,} generated by (1.3) converges strongly to a point z* €
F(T) with o* = Pp(ryu, where Pp(py is the metric projection onto F/(T).

In 2013, Zegeye and Shahzad [24] introduced the following iterative algorithm: Let
C be a nonempty, closed and convex subset of a real Hilbert space H and let T
C — C be a Lipschitz pseudocontractive mapping. Assume that F'(T) # 0. Let {z,}
be the sequence generated from arbitrary zg,z € C by

{un =(1—cp)an + cnTan,

1.4
Tnt1 = anZ + (1 — o) Oy, + v Tuyn), n >0, (1.4)

where {c,}, {0n}, {7} C (a,b) C (0,1) and {a,,} C (0,¢) C (0,1) are control
sequences satisfying some appropriate conditions. Then they proved that the sequence
generated by (1.4) converges strongly to some z* € F(T).

The other problem related to fixed point problems is the Split Fixed Point Problem
(SFPP), which was introduced by Censor and Segal [5]. It is defined as finding a point

x* € F(T) such that Az™ € F(95), (1.5)

where H, and Hs are real Hilbert spaces, T: H; — Hy and S: Hy — H, are nonlinear
mappings, A: Hy — Hs is a bounded linear mapping.
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Several authors have proposed different iterative algorithms for approximating so-
lutions of SFPP (see, for instance, [8, 15, 16] ) involving different types of mappings.

Another problem which is related to the fixed point problems is the Split Equality
Fized Point Problem (SEFPP), which was introduced by Moudafi and Al-Shemas [17].
The SEFPP is defined as finding a point

(z*,y*) € F(T1) x F(T») such that Byz* = Byy”, (1.6)

where H; and H, are real Hilbert spaces, Ty: Hy — Hy and Ty: Hy — Hy are
mappings, By: H; — Hs and By: Hs — Hj are bounded linear mappings with
adjoints B} and Bj, respectively, where H3 is another real Hilbert space.

The SEFPP is a more general problem which contains several other problems.
In fact, if, in (1.6), By = I, then the SEFPP reduces to SFPP (1.5). If we take
S1=1; =Ty and Sy = I, — T, in (1.6), then the SEFPP reduces to the Split Equality
Null Point Problem (SENPP).

Several authors have proposed and studied different iterative algorithms for solving
SEFPP (1.6) (see, for instance, [6, 7]).

In 2011, Moudafi and Al- Shemas [17] proposed the following algorithm which
approximates a solution of SEFPP (1.6): Let Hy, Ho and Hs be real Hilbert spaces
and let T: Hy — H; and S: Hy — Hs be firmly quasi-nonexpansive mappings. Let
{(2n,yn)} be the sequence obtained by the following iteration:

{$n+1 = T(xn - BnA*(Axn - Byn))v

1.7
Yn+1 = S(yn + BnB*(Axn - Byn))a ( )

where {f,} is a real sequence satisfying some conditions and A: H; — Hj and
B: Hy — Hj are bounded linear mappings. Then they proved that the sequence
{(zn,yn)} converges weakly to a solution of the SEFPP (1.6).

In 2014, Ma et al. [12] proposed a strongly convergent iterative algorithm which
approximates a solution of SEFPP (1.6) involving k—strictly pseudocontractive map-
pings. We now raise the following important question.

Question 1.1. Can we find a method for approximating solutions of split equality
fized point problems which involve uniformly continuous pseudocontractive self map-
pings in real Hilbert spaces?

Motivated and inspired by the aforementioned results, it is our purpose in this pa-
per to introduce and study a strongly convergent inertial algorithm for approximating
solutions of the split equality fixed point problems that involve uniformly continuous
pseudocontractive self-mappings in real Hilbert spaces.

2. PRELIMINARIES

This section is devoted to present some basic definitions and important results that
will be used in the sequel.
Consider the bi-function ¢: H x H — R, introduced by Alber [2] and defined as

o(y,x) = ||y||2 —2(y,x) + ||;1c||27 for all z,y € H. (2.1)
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The function ¢ in (2.1) is called the Lyapunov function and it satisfies the following
identities:

¢(z,y) + ¢y, w) — ¢(z,w) = 2(y —w,y — x), for all v, y,w € H;

(2.2)
¢(y,2) + (b(wi) - QS(yﬂU) - ¢($,Z) = 2<w — Y- 1.>7 for all T,Y,w,z € H. (2

D):

2.

2

3)

Moreover, the Lyapunov function has the following important property (see, [11
oz, 2%) + 2(y", 2" —z) < ¢(z, 2" +y*), forallx,z”,y" € H. (2.4)

Let C' be a nonempty, closed and convex subset of H. The metric projection of
the point x € H onto C is the unique point, Pox, of C' which satisfies:

¢(Pew,x) = inf{d(y,x) :y € C}.
Moreover, this projection has the following two properties:
z=Pexif andonlyif (x —z,y—2) <0, forally € C, and (2.5)
o(y, Pox) + ¢(Pox,x) < ¢(y,x), for allz € H,y € C.
Lemma 2.1. [21] Let H be a real Hilbert space. Then

1
¢(y7x) 2 5”1’ - y||27 fOT’ alll’,y € H. (27)

Let {w;} € H and {«a;} C (0,1) be such that Zi\il a; = 1. Then, we have by [19]

that for all x € H,
N N
0] (glc7 Zam&-) < Zaiqb(m,wi)‘ (2.8)
i=1 i=1

Lemma 2.2. [14] If the sequence {¢(xn,x0)} is bounded for any xo € H, then {z,}
1s bounded.

Lemma 2.3. [18] Let the sequences {zn} and {y,} be bounded in H. Then,

lim ¢(zn,yn) =0 if and only if lim ||z, — y,| = 0.

n—oo n—oo

Lemma 2.4. [22] Let {b,} be a sequence of non-negative real numbers such that

b1 < (1 —ap) by, + and,, where {a,} C (0,1) with Zan = oo and {d,} is a
n=1

sequence of real numbers with limsupd,, < 0. Then lim b, = 0.

n—oo n—00

Lemma 2.5. [13] Let {c,} be a sequence of non-negative real numbers. If {c,,} is

a sub-sequence of {cn} such that ¢,, < cp,41 for all i € N, then there exists a non-

decreasing sequence {my} of N such that klim my = oo and the following properties
— 00

are satisfied by all (sufficiently large) number k € N:
Cmy < Cmy+1 and cp < Cmyp+1-
In fact, mp=max{n <k :c, < chy1}.

Lemma 2.6. [9] Let H be a real Hilbert space and let C be a nonempty closed convex
subset of H. For allu € H and o > 8 > 0, the inequalities hold:
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u — Po(u — aAu) u — Po(u — fAu)

and

(0%

B
lu = Po(u = fAu)|| < [lu — Po(u — aAu).

Lemma 2.7. [3] If Hy and Hy are real Hilbert spaces, then H = Hy X Hy is also a
real Hilbert space with inner product

(x1,91), (T2,y2)) = (w1, 22) + (y1,¥2), for all (x1,y1), (v2,y2) € H = Hy x Hy, and

(T, yn) — (x,y) implies x, — = and y, — y.

Lemma 2.8. [3] Let H = Hy X Hy, where Hy and Hy are real Hilbert spaces, and let C
be a nonempty, closed and convex subset of H. If (u,v) € H and (u*,v*) = Po(u,v),
then ((u,v) — (u*,v"), (z,y) — (u*,v")) <0, for all (z,y) € C.

If H is a real Hilbert space, then we have the following relation:
2+ gl < |z +2(z +y,y), forallz,ye H. (2.9)

Let H be a real Hilbert space, C' be a nonempty, closed and convex subset of H.
A mapping T: C — C is said to satisfy the demiclosedness property if (I — T)
is demiclosed at 0, that is, if {z,} is any sequence in C such that z, — p and
(I = T)xy,|| — 0, then T'p = p.

Lemma 2.9. [26] Let H be a real Hilbert space, C' be a nonempty, closed and convex
subset of H and let T : C'— C be a continuous pseudocontractive mapping. Then

(1) F(T) is a closed and convex subset of C;
(2) (I —=T) is demiclosed at zero.

3. MAIN RESULT

In this section, we state our algorithm and discuss its convergence analysis. We
shall assume the following conditions in the sequel.
Conditions

(C1) Let C and D be nonempty, closed and convex subsets of real Hilbert spaces
H; and Hs, respectively;

(C2) Let T1: C — C and Ty: D — D be uniformly continuous pseudocontractive
mappings;

(C3) Let By: Hy — Hjz and By: Ho — Hj be bounded linear mappings with
adjoints By and B3, respectively, where Hs is a real Hilbert space;

(C4) Let Q = {(a*,y*) € F(T1) x F(T3) : Byz* = Bay*} # 0;

(C5) Let {an} C (0,1) be such that nth;O ayn =0 and Z Oy, = 00;

n=1
1
(C6) Let {¢,} be a sequence of positive numbers such that ¢, € <0, 4) for all
nEO,andi—n%Oasn%oo.

We now state our proposed algorithm.
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Algorithm 3.1

1
Initialization: Let xg,x1 € Hy; yo,y1 € Ho; pu,0 € <O, 2), I,y € (0,1) and 6 > 0.

For arbitrary points u € H; and v € Hs, calculate {z,} and {y,} as follows:

Step 1: Given z,,_1,x, € Hy and y,_1,y, € Hs, choose 8, such that 0 < 0,, < o,
where

. C'”/ } -
min < 6, o if |len — x| + — Yn— 0,
Op= { [Zn — Zn_1|| + [[Yr — Y1 [ llzn n—tll + 1Yn — yn-1ll #
, otherwise.
Step 2: Compute
an :PC(anan(:En fxn_l)) (3.1)

bn = PD (yn + en(yn - yn—l))~
Step 3: Compute
Cp = Pc(an — Y BY (Bia, — Baby,) ), (3.2)

dn = PD (bn - ’YnBék (Ban - Blan) )7
where 0 < p <7, < p, with

||B1an — ngnHQ }
| B (Bian — Baby)||? + || B3 (Babn, — Bian)|?] ]~
forn € ¥ = {m € N: Bya,, — Bab,, # 0}, otherwise ~,, = p, for some p > 0.
Step 4: Compute

Pn = min {P +1, 2[

en =¢n — A\p(Ih — Th)en, (3.3)
hn = dn - 7771(]2 - TQ)dnv

where A\, = vl and 7, is the smallest non negative integer j satisfying the relation

WL = T)en — (I = To)eal < pllen — enll, (3.4)
and n,, = yI™», where m,, is the smallest non negative integer m satisfying the relation
N"|[(Iz = To)hy — (I = To)dn || < of|hy — do]- (3.5)

Step 5: Compute
Pn =en — A ((I1 —Th)en — (I1 — T)cy), (3.6)

Gn = hn = ((l2 = T2)hy — (12 — T2)dy).
Step 6: Compute
Tnt1 = (1 — ap)pn + apu, (3.7)
Ynt+1 = (1 — an)qn + anv.
Set n =n+ 1 and go to Step 1.

Lemma 3.1. Assume that Conditions (C1)—(C6) hold. Then the Armijo line-search
rules (3.4) and (3.5) are well defined.
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Proof. The line search rule (3.4) can be rewritten as

[(Ir = T)(en = (Ir = T1)en) = (I = T)enll < pll(li = To)enl. (3:8)

Thus, it is sufficient to show that (3.8) is well defined. We now consider two cases
on ¢,. If ¢, is a fixed point of Ty, then obviously j = 0 satisfies the relation (3.8).
Assume on the contrary that ¢, is not a fixed point of 77. Then the right hand side
of (3.8) is always positive. On the other hand, we have from the continuity of 7} and
the fact [ € (0, 1) that hIIlJ_HX) ||(Il — Tl) (Cn — "}/l] (Il — Tl) Cn) — (Il — Tl)an =0.
Therefore, there exists a non negative integer j which satisfies the inequality (3.8)
and hence (3.4) is well defined. Similarly, there exists a non negative integer m which
satisfies the relation (3.5) and hence the proof is complete. 0

Theorem 3.1. Assume that conditions (C1) — (C6) hold. Then the sequences {x,}
and {yn} generated by Algorithm 3.1 are bounded.

Proof. Let (z,9) € Q. From (3.7) and (2.8), we obtain

(2, CErl+1) = ¢(, (1 — Q)P + Qnu)
< (1 - an)(b(‘%apn) + an¢(i‘7 u) (39)

From (3.6) and (2.1), we get
¢ (2,pn) = ¢ (&, en — An((ly = Th)en — (I1 = T1)cn))
= [|2[1” + [pall?® = 2{en, 2) + 20 (I = Th)en — (I = Th)en, &)
= 1212 +lleall = llenll® = 2(en, &) + llpall?
+ 20, ((I1 —Ty)en — (It — Th)ep, 2)
= ¢(&,en) = lenll® + [pall® + 20 (I = Th)en — (It = Th)cn, &)

= (2, en) — llenll® = Ipall® + 2[pall® = 2{en, pn) + 2{(en, Pn)
+ 20 (I = Th)en — (It — T1)cp, T)

) —
) —
(x, en) & (Pn, en) + 2||pn||2 - 2<€napn>
)\n< Il T )en - (Il - Tl)C",J?)

) —

) —

(
?(Z,en) — ¢(Pn,en) + 2(Pn, Pn) — 2{€n, Pn)
+ 20, ((I1 —T1)en — (I1 — Th)cp, T)
(CC, en) = G(Pnsen) = 2(pns An [(I1 — Th)en — (It — Th)cal)
+ 20, ((I1 —Th)en, — (I1 — Th)ep, T,

that is,
(b (-%7}771) = (b(.’i', en) - ¢<pn7 en) + 2)\n<(11 - Tl)en - (Il Tl)c'ru pn> (310)
By (2.3), we have

(2, en) — B(Pn,en) = G(F, ) — A(DPn, cn) + 2(€n — Cny P — T). (3.11)
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Substituting (3.11) into (3.10), we obtain

¢ (japn) = d)(fvcn) - ¢(pnvcn) + 2<€n — CnyPn — 5&>

+ 20, (I = T)en — (It — Ty)cp, & — pr). (3.12)
By (2.2), we have
P(Pn; cn) = G(Pns €n) + Gen, cn) — 2(en — Cn, €0 — Pn)- (3.13)
Substituting (3.13) into (3.12), we obtain
¢ (Z,pn) = &%, ¢n) — O(pn, enA) — ¢(en, cn) +2(en = Cnyn — Pn) A (3.14)
+2(en — Cnypn — ) + 20, (I — Th)en — (It — Th)Cn, & — o).
From (3.2), (2.6) and (2.4), we have
¢ (&, cn) = ¢ (&, P (an — 1 B] (Bian — Baby))) (3.15)

< ¢ (Z,an) — 2{yn By (B1an — Baby), s, — I),
where s, = a,, — v, BT (B1a, — B2b,). Combining (3.14) and (3.15), we obtain

¢ (2,pn) < ¢ (2,an) — ¢(pn,en) — dlen, cn) +2(en — Cn, €n — Pn)
+ 2<en — CnyPn — i) + 2)\n<(Il - Tl)en - (Il - Tl)cnw% - pn> (316)
— 2<’}/an (Blan — ngn), Sn — QAI‘>

From (3.1) and (2.1), we obtain

¢ (2, an) = ¢ (&, Po [wn + On(2n — 2n1)])
<21 = 202, 2n) — 28, 0n (@0 — Tn—1)) + anll?
= 1217 = 2(&, @a) + llzall® = llzall?* = 202, 0n(2n — 2n-1)) + [lan]?
= 0(&,2n) = [[wnll® = 22, 0n (20 — p—1)) + [lan]]?
= ¢(&,2n) = l|lznll* = 2(2, 0n (20 — 2a-1))

- ||an||2 + 2||anH2 = 2(xn, an) + 2(xn, an)

= O(&,20) = Plan, tn) = 2(&, 0n(2n — Tn1)) + 2llan|® = 2(2n, an)

= ¢, 20) — Plan, Tn) — 2(&, 0n(2n — Tp_1)) — 2(Tp — an, an)

= (2, 2n) — O(an, Tn) — 202,00 (T — Tn—1)) + 2(0n(Tn — Tp_1),an)

= (&, 2n) — Plan, Tn) — 2(0n (T — Tp_1),& — an). (3.17)
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Now, substitution of (3.17) into (3.16) gives
¢ (i'vpn) < (b(i‘vxn) - (b(anaxn) - ¢(pna en) - ¢(€n, Cn) + 2<en — Cn,En _pn>
+ 2<6n —CnyPn — j> + 2>\n<(11 - Tl)en - (Il - Tl)cnai 7pn>
— 2(y, By (B1a, — Baby,), s, — &) — 2(0p (), — p—1), & — ayp)
= (b(ii‘,l‘n) - (b(anaxn) - (b(pna en) - ¢(en7 Cn) + 2<en —Cn,€n — -'i‘>
+2/\n<(ll —Tl)en I —Tl)cn,i"—en>
+2/\n<(ll _Tl)en I _Tl)cvuen _pn> (318)
— 2{(y, By (B1an — Baby,), s, — &) — 2(0p (), — p—1), & — ayp)
= ¢(§37xn) - (b(anaxn) - (b(pna en) - (15(67“ Cn)
+ 20, (1 —Th)en — (I = T1)en — (en — cn), & — €5)
+ 2/\n<(]1 - Tl)en - (Il - Tl)crm €En _pn>
— 2{(v, By (B1a, — Baby,), s, — ) — 2(0, (s, — Tp—1), & — ap).
But, e, = ¢, — A\p(I1 — Th)cn. Let 7, = (I1 — T1)ey,. Then we have
en + )\nTn =cp+ )\n [(Il - Tl)en - (Il - Tl)cn] P
which implies that

—(
—(

= % Ao (I = Th)en — (I = Th)en) — (en — )] (3.19)
Since (I; —T1)& = 0 and I; — T is monotone, we have that
(T, €n — &) 2 0. (3.20)
Thus, substituting (3.19) into (3.20), we obtain
M (I —Th)en — (It = Th)cn) — (e — Cn), €0 — &) > 0. (3.21)

From (3.18) and (3.21), we get
¢ (2,pn) < A&, 20) — P(an, Tn) — G(pnsen) — D(en, cn)
+ 20 (([1 —Th)en — (I1 — Th)cp, en — Pn) (3.22)
— 2{(yn By (B1an, — Baby), $n — &) — 2(0n (s — Tp—1),& — an).
Moreover, we obtain from the Cauchy Schwarz inequality and Lemma 2.7 that

_<9n(xn - ‘rnfl)vij - an> S gnHwn - mnfln ”i' - an”

On .

< ?Hxn | [Hx - 6Ln||2 + 1]
0 ;

= ?”Hxn — Tnot1| [[|8 = 2y + 20 — an|* + 1]
On

< ?Hxn | [2||£ - mnHQ + 2|z, — anH2 + 1]
= 20|70 — Tn—1l|@(2, 20) + 2007 — Tp1][@(an, Tn)

6
t+ 5 llzn =zl (3.23)
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From (3.22), (3.23), (3.19) and using the fact that 0, ||z, — zn—1] < {n, we obtain
¢ (2,pn) < G(2,7n) — ¢(an, Tn) — (P, en) — ¢(en, cn)

+ 40|20 — Tn-1|6(E, 2n) + 405 |20 — Tn—1lld(an, Tn)
+20 (I —T)en — (I —Th)cn,en — Dn) + Onl|Tn — zrn-1]|
— 2(vn By (B1an, — Baby,), $n — &)

< O3, 20) — Han, Tn) — O(Pnsen) — @(€n;cn) (3.24)
+ 46 (2, zn) + 4Cnd(an, Tn) + 2pllen — cnll Ipn — enll + Cn
— 2(y, By (Bran — Baby), s, — T)

< (1 +4G) A&, 20) — (1 = 4G) @lan, 7)) — (1 — 2p) d(pn, en)
— (1 =2u) ¢p(en, cn) + Cn — 2(yn BY (Bran — Baby), sp — ).

1 1
Since ¢, € (O, 4) and p € <0, 2), we obtain from (3.24) that

¢ (2,pn) < (14 4C0) d(2,2n) + G — 2(1n By (Bran — Baby), s — 1). (3.25)
Substituting (3.25) into (3.9), we obtain

A&, 2p1) < and(Z,u) + (1 — an) (1+4G,) ¢(2,25) — (1 — an) (1 — 4¢) dlan, zn)
= (1= an) (1 =20) ¢(pn,€n) — (1 = an) (1 = 21) ¢(en, cn)
+ (1 — an)Cn — 2(1 — an) (B (Biay, — Baby), 5 — I). (3.26)
Similarly, we obtain
(G, Yn+1) < (G, 0) + (1 — an) (1 +46) ¢(y,yn) — (1 — o) (1 = 4Cn) ¢(bn, yn)
— (1= an) (1 =20) ¢(gn, hn) = (1 = an) (1 = 20) ¢(han, dy)
+ (1 - an)<n - 2(1 - an)<’ynB§(B2bn — Biay),mh — Z)>7

(3.27)
where 1, = b,, — v, B5(B2b, — Biray,).
n 1 .
Since Gn — 0 as n — oo, for any € € (O7 4) there exits ng € N such that (, <
Qi

eay, for all n > ng. This together with the properties of p and ¢ implies that
d)(jv zn-‘rl) < an¢(£7 U) + (1 - an) (1 =+ 45an) ¢(i’, xn) 3.98
+eayn — 2(1 — ap) (v BY (Bray, — Baby), sp — 1), (3.28)

and
O Yn+1) < om@(9,0) + (1 = an) (1 4 dean) $(y, yn)
+eay, — 2(1 — ap) (v B3 (Bab, — Biay), rm — 9).
Denote IT,, = ¢(£, 2,) + ¢(4, yn) and 3 = ¢(2,u) + ¢(§,v). Then the combination of
(3.28) and (3.29) gives
M1 <X+ (1 —ap) (1 +4ea,) I, + 2ea,
—2(1 — ay) [yn{B1rayn — Baby, B1s, — Bary)] .

(3.29)

(3.30)
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Furthermore, we obtain by the Cauchy Schwarz Inequality that
—(B1ay, — Baby, B1sy, — Bary,)
= —(Byia, — Bab,, Bira, — Bab,) — (Bia, — Baby, B1Sn, — Biay)
— (Byay, — Baby,, Bab,, — Bary,)
= —||Bian — Boby||> — (Bj (Bian — Baby), $n — an)
— (B3(Biayn — Baby), by — 1)
< —||Bia, — B2an2 + Isn — anl| [| By (Bian — Baby)||
+ 1o = 7l |1 B3 (Bian — Baby)||. (3.31)
Moreover,
[$n — anll = lan — ¥ Bi (Bian — Baby) — anll = vn || Bi (Bia, — Baby)[l.  (3.32)
Similarly, we have
70 = bull = ll B (Babn — Bran)|l. (3.33)
Combining (3.31), (3.32) and (3.33), we obtain
—2v,(B1ay, — Baby, B1S, — Bary,)
< =29n||Bran — Babn|* + 29| B (Bian — Babn)|*
+ 27, B3 (Bzb, — Biay)|?
< —plBiay, — Bobyl|* = vn || Bran — Babyl|®
+ 9 {27 [IIB1 (Biay — B2ba)||* + || B3 (B2bn — Bian)|*] }
< —pl|Bran — Baby|*. (3.34)
Substituting (3.34) into (3.30), we obtain
M1 < @Y+ (1 —ay) (1 +4ea,) 0, + 2ca,, — (1 — ay,)pl|Bian — Bab,|?
<apnX+ (1 —ay) (1+4ea,) I, + 2eay,
<[1—ap (1 —4e)| 1, + oy [Z + 2¢] (3.35)

Y49 Y+2
=u—%u—%mh+%ﬂ—@[{lﬂSm“§%1+£}

which implies by the Principle of Mathematical Induction that

X+ 2

1—4e [~

Thus, we conclude that {II,,} is bounded and hence the sequences {¢(#,x,)} and

{&(4,yn)} are bounded, which implies together with Lemma 2.2 that {z,,} and {y,}
are bounded sequences. O

II,, < max {Ho,

Theorem 3.2. Assume that conditions (C1) — (C6) hold. Then, the sequence
{(xn,yn)} generated by Algorithm 3.1 converges strongly to (x*,y*), where

(z*,y*) = Pa(u,v).
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Proof. Let (z*,y*) = Po(u,v). Then we have by Lemma 2.8 that
((u,v) = (x*,y"), (s,t) — (z*,y")) <0, for all (s,t) € 2 (3.36)
From (3.7), (2.4) and (2.8) we get
Pz, Tny1) = ¢

(@", (1 = an)pn + anu)

< o(x*, (1 — an)pn + ant — ay (u— %)) + 20, (u — 2, Ty 1 — T°)
= ¢(z", (1 — an)pn + anx™) + 2a,(u — 2%, 2p1 — *)

< and(a®, 2%) + (1= an)d(a", pn) + 20 (u — 2%, Tpg1 — 27)

= (1= an)p(z™, pn) + 20 (u — %, Xy 1 — *). (3.37)
Combining (3.25) and (3.37) with = z*, we obtain

(@, wpt1) < (1= an) [(144C) d(2™, 2n) + G — 2{ym B1 (Bran — Baby), sp — ™))
+2ap(u — 2", 2y — ¥)
< (1= an)p(@™, zn) + 4Gd (2", 2n) + (1 — an)Cn
—2(1 — an) (v By (Bian — Baby), $p — *) + 2a(u — ™, 2y 1 — ).
(3.38)

n 1
Since C— — 0 as n — oo, for every € € <O, 1) there exists ng € N such that
ay,
Cn < €y, ¥Yn > mg. Thus, we obtain from (3.38) and the Cauchy Schwarz inequality
that
¢(x*7 xn-i-l)
< (1= apn)o(z”, xn) + deand(z™, 2y)
—2(1 = an){ By (Bia, — Baby,), 8, — z*)
+ 20 ||lu — || |Tne1r — xnl| + 200 {u — 2™, 20 — ¥ +
=[1—a, (1 —4)] ¢z, xn) — 2(1 — apn) (v B (Bia, — Baby,), sp, — 2*)
angn
an,

— [1— a, (1 — 42)] 62", @) — 2(1 — @) {70 B (Bra, — Baby), s, — )

+2an|lu =2 f#na = wnll + 200 (u = 2% 2 — 27) +

2([lu — 2| [#ns1 = wnll + (u — 2", 20 — 27)] Gn
n(l—4
+an 5)[ 1—4e +(1—45)an
(3.39)
Similarly, we have
D(y*vyn+1)
< [1 — Qn (1 - 45)] ¢(y*ayn) - 2(1 - an)<'7nB§(B2bn - B1an),rn —y")
2[llv = y*[l llyn+1 — yall + (0 = ¥* yn — y")] Cn
n 1-4 .
+an E)[ 1—de T U 49)an,
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Now, denote II} = ¢(z*,z,) + ¢(y*,yn) and * = ¢(a*,u) + ¢(y*,v). Combining
(3.39) and (3.40) and using the relation (3.34), we obtain

I < [1—ay (1 —49) 1L, + ap (1 — 4e) (An +17,), (3.41)
where
2[lu — 2| lents — @nll + (u — 2", @y — a7)] Gn
A, = 7 3.42
1—4e T (1—4e)ay, (342)
and
2[[lv = y*[ lyn+1 — ynll + (0 = y" yn — y")] Gn
r, = . 3.43
1—4e + (1—-4e)ay, (343)

Combining (3.26) and (3.27) and using the relation (3.34) gives

(1= an) (1 =4¢) dlan, v,) + (1 = an) (1 = 21) ¢(pn, €n)
+ (1 - Oén) (1 - 2/”') (b(ena Cn) + (1 - an) (1 - 4(71) ¢(bna yn)
+ (1= an) (1 =20) ¢(qn, hn) + (1 — an) (1 = 2p) ¢(hn, dn)
2Cn

(1 — an)pl|Bran — Baby||® < IO, — 115 4 a | SF + (de — DI + 20| . (3.44)
(e70)
Now, we show that the sequence of real numbers {IT* } converges to zero by considering
two cases:
Case I. If there exists a natural number ng such that II , | <II}, for all n > ng, then
{II* } converges. So, taking the limit of (3.44) as n — oo, we obtain

ILm ||B1as, — Baby,|| = 0. (3.45)
and
lim ¢(an,x,) = lim ¢(pp,e,) = lim ¢(en,c,) =0,
lim (b(bnvyn) = lim d)(qna hn) = lim ¢(hn7dn) =0,
n—oo n—o0 n—r00
which implies by Lemma 2.3 that
le llan — an| = le [pn — €nll = ILm llen —cnll =0,
n [o ] n [o ] n oo 3.47
lim ||by, — ynl|| = lm |lgn — hyu|l = lim ||k, —dy] = 0. (347)
n—oo n—oo n—oo

From (3.2) and the property of metric projection, we have
lan — cnll = llan — Pc lan — v Bi (Bian — Baby, )] ||
< llan = [an — BT (Bian — B2by)] | (3.48)
< (p+1)||Bf|| |Bian — Ba2b,|| = 0, as n — cc.
From (3.7), we have
Jim [z — pall = ot (1= a)pn = pall = o u—pa| = 0. (3.49)
From (3.47), (3.48) and (3.49), we obtain

[Znt1 = Zull < | Tny1 — pull + IPn — enll + llen — call

3.50
+llen — anll + ||an — zn]] = 0, asn — oc. (3:50)
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Similarly, we have
lim [lgns — ynll = 0. (3.51)
n—oo

Since the sequence {(z,,yn)} is bounded in H; x Ha, there exists a sub-sequence

{(Tny+Yny)} of {(zn,yn)} and an element (Z,y) of Hy x Hy such that (@, ,yn,) —
(z,y) and

limsup((u,v) — (", y"), (n,yn) — (", y%))
n—oo 3.52
= lim <(U,’U) - (x*vy*)a (xﬂk7ynk) - (gc*,y*)>, ( )

k—o0

Moreover, we have by Lemma 2.7 that z,, — Z and y,, — §. Now, we show that
(z,9) € Q. Put s, = ¢ — Ml (1 — Th)cpn. From (3.47) and (3.48), we obtain
¢n — Z. By Lemma 2.6 and (3.47), we have

1
len — sull < 7||cn —epll = 0, as n — oo. (3.53)
Therefore, s, — Z. Thus, we have that {s,} is bounded. Since I; — T} is uniformly
continuous, we have
||(Il — Tl)cn — (Il — TI)SnH — 0, as n — oQ. (354)
By the Armijo line-search rule (3.4), we have
Al THIT =T (en = Ml (I = Th)en) — (I = T)ea]l > pl Al ™ (I = Th)en)
which implies
1
;ll(h —T)(en = Ml (I = Th)en) = (I = To)en] > (I = Th)en)ll. - (3.55)
We conclude from (3.54) and (3.55) that li_>m (I — T1)en, = 0 which implies from
n oo

the demiclosedness of T7 and the fact that ¢, — Z that (I; — 71)z = 0 and hence
Z € F(T1). One can show in a similar fashion that § € F(T3). Next we show that
B1Z = Byj. Indeed, we have by (2.9) that

||Bli‘ — Bgﬂ”g = ||B1ank — Bank + B1T — Blank =+ Bank — BQQHQ (3 56)
S HBlank - B2bnk”2 + 2<-BlfE - B2g7 Bl‘CE - -Bla71;C + Bank - BQg>» '

and from the fact that Bia,, — Bi1Z and Bsb,, — B2y as k — 0o, we obtain that
B1Z = Byg and so (Z,7) € Q. Consequently, we obtain using Lemma 2.8, (3.36) and
(3.52) that

lim sup((u, v) = (27, 4"), (@n, yn) — (27,7)
= i () — (& 0). () — (a57)) (357)
= ((u,0) = (¢7,y%), (z,9) — (27,97)) < 0.
Combining (3.42), (3.43) and (3.57), we obtain
limsup(A,, +T,) <O0. (3.58)

n— oo
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From (3.41), (3.58) and Lemma 2.4, we conclude that lim II} = 0, which implies
n—oo
that
lim ¢(a*,z,) = lim ¢(y*, yn) =0,
n—oQ n— oo

which in turn implies by Lemma 2.3 that
lim ||z, —2*|| =0and lim |y, —y*| = 0.
n—oo n—oo
Case II. Suppose now that there exists a sub-sequence {II; } of {II;} such that

I, < I, 44, for all 4 > 0. Then by Lemma 2.5, there exists a non-decreasing
sequence {my} of positive integers such that mjy — oo as k — oo and

Iy, <1, ., and I <TI%, ., (3.59)
for all k£ € N. We have from (3.44) that
(1 - amk) (1 - 4ka) ¢(amwxmk) + (1 - amk) (1 - 2#) (b(pmk’emk)
+ (1 - amk) (1 - 2”) (b(emk’cmk) + (1 - amk) (1 - 4ka) (b(bmk’ymk)
+ (1 - amk) (1 - 20) d)(kavhmk) =+ (1 - amk) (1 - 2#) ¢(h’77lk7dmk)

* * * * 2 m
(1= G )Pl Brtm, — Babyo, |2 < Ty, — Ty |57 + (2 — 1T, 4 2o

mp

(3.60)

Making use of (3.59) and the conditions on a.,, and (,, and taking the limit as
k — oo of (3.60) we obtain that klim || B1@m,, — B2bm, || = 0. Following similar steps
— 00

as in Case I, we obtain that

lm || Zm,+1—Zm, || = UM ||Ymy+1—Ym, || = 0 and limsup(A,,, +Tp,) < 0. (3.61)
k—o00 k— oo k—oo

From (3.41) and (3.59), we have that
Ay, (1 - 45) Hrnk < H;knk - H:nkJrl + Ay, (1 - 45) (Amk + ka,)
< Qmy, (1 - 45) (Amk + ka) ’

and thus we have IT;, < A, + I'p,,. Since limsup (A, +T',) < 0, we have
k—o00

that klim IT}, = 0, which together with (3.41) implies that klim ITy, ., = 0. Since
— 00 — 00

mi+
I <TIIj,, .1, it follows that klgrolo IT;, = 0. Thus, we have

(3.62)

lim ¢(2", zx) = lim $(y*, yx) =0,
k—o0 k—o0
which implies by Lemma 2.3 that klim lxx —z*|| = 0 and klim llyx —v*|| = 0. Thus,
—00 oo
we have shown, in Cases I and II, that the sequence {(z,,y,)} generated by Algorithm
3.1 converges strongly to (z*,y~) = Po(u,v), and this completes the proof. O

Corollary 3.1. Assume that conditions (C1),(C3) — (C6) hold. If Ty : C — C and
T> : D — D are Lipschitz pseudocontractive mappings, then the sequence {(xn,yn)}
generated by Algorithm 3.1 converges strongly to (z*,y*), where (x*,y*) = Pq(u,v).
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4. APPLICATIONS

In this section, we present some specific applications of the main result.

4.1. Split fixed point problems. If in Theorem 3.2, we consider Ho = Hj3 and
By = Ip,, then the SEFPP reduces to split fixed point problem which is finding a
point (z*,y*) € Hy x Hy such that (z*,y*) € F(T1) x F(T3) : Biz* = y*. Denote
O = {(z*,y*) € F(T1) x F(Tz) : Byz* = y*}. Then we have the following corollaries.

Corollary 4.1. Assume that conditions (C1), (C2), (C5) and (C6), with Hy = Hy
and By = Iy, hold. If ©* £ 0, then the sequence {(Tn,yn)} generated by Algorithm
3.1 converges strongly to (x*,y*), where (z*,y*) = Po(u,v).

Corollary 4.2. Assume that conditions (C1), (C5) and (C6), with Hy = Hs and
By = Ig, hold. Let Ty: C — C and Ty: D — D be Lipschitz pseudocontractive map-
pings. If © # 0, then the sequence {(xn,yn)} generated by Algorithm 3.1 converges
strongly to (z*,y*), where (x*,y*) = Po(u,v).

4.2. Split equality null point problem. If in Theorem 3.2, we take C = H; and
D = Hs, then the SEFPP reduces to split equality null point problem which is defined
as finding a point (x*,y*) € Hy X Hy such that (z*,y*) € N(A;) X N(Ag) : Byz* =
Bgy*, where Ai = Il — T’z Denote & = {(x*,y*) S N(Al) X N(AQ) : Bllﬂ* = Bgy*}

Corollary 4.3. Let Hy, Hs and Hs be real Hilbert spaces and let Ay : Hi — Hy and
As : Hy — Hs be uniformly continuous monotone mappings. Assume that the set
® £ (. If the conditions (C3), (C5) and (C6) hold, then the sequence {(Tn,yn)}
generated by Algorithm 3.1, with T; = I; — A;, converges strongly to an element
(z*,y*), where (z*,y*) = Pp(u,v).

5. NUMERICAL EXAMPLES

In this section, we provide examples of uniformly continuous pseudocontractive
mappings which satisfy the conditions of Theorem 3.2. Besides, a numerical experi-
ment is provided to exhibit the applicability of the method.

Example 5.1. Let H; = [0,00) = C and Hy = H3; =R = D. Let T1: C — C and
1

Ty: D — D, be defined by Ti(z) = z — \/x + 3 and T5(y) = y — ¢/y — 2. The

mapping 77 is uniformly continuous pseudocontractive on C' which is not Lipschitz

1
continuous. In fact, let K > 0 be given and choose y = 0 and 0 < z < 2 so that

1
K < —. Now,
NG
i) =T _le—vEl | L
|z —y| |z| vz
Since K is arbitrary, one concludes that T is not Lipschitz continuous. Similarly, it
can be shown that T5 is uniformly continuous pseudocontractive on D which is not

—1‘>K—1.

1
Lipschitz continuous. Clearly, * = 1€ F(Ty) and y* = —8 € F(Iz). Now, define
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1
Bi: Hy — Hjs and By: Hy — Hjz by Bi(z) = 8z and Bs(y) = —Zy. Then B,
1
and Bs are bounded linear mappings with adjoints B} (z) = 8z and Bj(y) = 1Y

1 1
Moreover, we have that B; <4> = By(—8) = 2. Thus, (z*, y*) = (47 —8) € Q. For

the control sequences (,, =

— ay = and the parameters o = 0.4, v =
n%+5 n + 100

0.5, 1 = 0.5, u = 0.4, 6 = 0.4, the conditions (C1) — (C6) are satisfied. A numerical
experiment was carried out by taking the points (u,v) = (—1,0), (29,20 = (0,0) and
(z1,9y1) = (0.5,0) and the results are shown in Table 1 and Figure 1.

TABLE 1. Comparison of rates of convergence for the inertial and
non inertial algorithms.

Non inertial (6,, = 0) Inertial (6,, # 0)
Error (E) Time(sec.) Time(sec.)
4.9 03568 0.3113
4.4 0.4279 0.3877
3.9 0.5432 0.4912
1.8 1.5955 1.4970
1.5 1.9915 1.9111
1.0 3.8809 3.6960
0.9 4.0038 3.8018

(x;.y,)=(0.5,0)
(X,¥,)=(0.25.4)
(x 1 ,yl):(0.25.—6)

Error term, ||E, — (z*,y")||

Elapsed time(sec.)

Parameters: v =1=0.5, p=0c=04, 0 =0.4.

FIGURE 1. Convergence of the sequence {(x,,y,)} for different ini-
tial points (z1,y1).
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Remark 5.1. Table 1 shows the comparison of rates of convergence for the inertial
and non inertial versions of the algorithm. The time taken for the inertial version
to reach the error value F = 1.0 is 3.6960 seconds, whereas the time taken by the
non inertial version to reach the same error value is about 3.8809 seconds. Thus, we
conclude that the inertial version of the algorithm is faster than that of the non inertial
version. Figure 1 shows the sequence {(x,, y,)} generated by Algorithm 3.1 converges
1

to the solution (z*,y*) = T —8& | for different initial points and the convergence gets
relatively faster as the initial point gets closer to the solution of the problem.

Example 5.2. Let H = Hy = Hy = H3 = L3[0, 1] with the inner product

(1), y(1)) = / £(t)y(t)de

], = (/01 |x(1t)|2dt>é .

Let T1: C — C and Tb: D — D be the mappings defined by
(T12)(t) = (t) — max {0,z(t)}, and (Toy)(t) = min{0,y(t)},

and norm

where
C=D={zxeH:|z|L, <1}.

It is proved in Tian and Xu [20] that the mapping (Az)(t) = max {0, z(¢)} a monotone
mapping. Thus, we have by Remark 1.2 that the mapping

(Th2)(t) = 2(t) — (Az)(t) = x(t) — max {0, 2(¢)}

is a pseudocontractive mapping. It is also shown in [20] that T} is a uniformly con-
tinuous mapping. Similarly, one can show that 75 is a uniformly continuous pseudo-
contractive mapping. Clearly,

2*(t)=0¢€ F(Ty) and y*(t) =0 € F(T»).
Let By, Ba: H — H be the bounded linear mappings defined by
(Br)(t) = 3x(t) and (Bay)(t) = 5y(t).
We note that B; (0) = By (0) = 0. Therefore,
(@*(8),y7 (1)) = (0,0) € Q.

If we take
1 1

and the conditions (C1) — (C6) are satisfied. Let E, = (x,,y,) be the sequence

generated by Algorithm 3.1. For the points (u,v) = (0,0), (zo,y0) = (0,0) and

(z1,91) = (0.5,0) and for different choices of the inertial parameter 6,, the figure

below reveals that the error term sequence {E,, — (z*,y*)} converges to zero.
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0.12

6,,=0, Non-inertial

0 =0
n~ “n
0 =0 /3
n

5

0.1

0 =0
n

n
n
008 f 0,=0,7

0.06 [

0.04 |

Error term, ||E, — (z7,y")]|

0.02

15 2 25 3 35 4
Elapsed time(sec.)

Parameters: v =1=0.5, p =0 =0.4.

FI1GURE 2. Convergence of the sequence {(xy,yn)} for different val-
ues of the inertial parameter 6,,.

Remark 5.2. From Figure 2 we observe that the method with nonzero inertial pa-
rameter (6,, # 0) has a faster rate of convergence than that of the non-inertial (8,, = 0)
version.

6. CONCLUSIONS

In this paper, we introduced an inertial algorithm for solving the split equality fixed
point problems in real Hilbert spaces. A strong convergence theorem is established
under the assumption that the mappings under consideration are pseudocontractive
self mappings which are uniformly continuous. A numerical example is also provided
to demonstrate the applicability of the method.

The main result in this paper generalizes and extends many of the results in the
literature in the sense that the problem considered is inertial and split equality, which
is more general than all of the results discussed in the literature.

Specifically, our result is more general than the results obtained by Jung [10] and
Zhou [12] because the mappings under consideration are relaxed from strictly pseu-
docontractive to uniformly continuous pseudocontractive. Moreover, our result gen-
eralizes the works of Akuchu [1] and Zegeye and Shahzad [24] in the sense that the
problem is a more general problem and the class of Lipschitz continuous mappings is
extended to the class of uniformly continuous mappings.

Acknowledgments. The first and second authors gratefully acknowledge the fund-
ing received from Simons Foundation based at Botswana International University of
Science and Technology (BIUST). The first author is grateful to Aksum University
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