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1. Introduction

The notion of a probabilistic metric space was introduced by K. Menger [9] and
its main idea consists in the substitution of the distance between two points with
the distribution function assigning to each nonnegative number the probability that
the distance between these points does not exceed mentioned number. Since that
time, this notion was systematically studied in many works and found significant
applications in various branches of mathematics, in the theory of information and
physics (see monographs [5], [6], [12] and the bibliography therein). In particular, let
us mention the interesting notion of a probabilistic normed space suggested by A.N.
Sherstnev [15].

In paper [14] the notion of a contractive map in a probabilistic metric space was
defined and the extension of the Banach fixed point principle was proved. Later on,
a significant number of fixed point theorems in probabilistic metric spaces for single-
valued and multivalued maps of contractive type was investigated (see, e.g., [1], [4] -
[7], [10], [11], [12] and the bibliography therein).
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In the present paper we define the notion of a covering (single-valued and multival-
ued) map of probabilistic metric spaces and prove analogs of the results of papers [2],
[3] on coincidence points of Lipschitz and covering maps. As application, we consider
the solvability of a system of equations and the existence of a solution for a feedback
control system in a probabilistic normed space.

2. Preliminaries

In this section we will collect necessary definitions and results from the theory of
probabilistic metric spaces (details can be found, for example, in [5], [6], [12], [13]).

A function F : R → [0, 1] is called the distribution function if it is nondecreasing,
left continuous and inf F = 0, supF = 1. The set of all distribution functions will be
denoted by D. Choose D+ = {F : F ∈ D, F (0) = 0} and denote by H0 ∈ D+ : H0(t) =
1, if t > 0.

Definition 1. A map T : I × I → I, where I = [0, 1] is called t-norm if it satisfies
the following conditions:

(T1) T (a, 1) = a;
(T2) T (a, b) = T (b, a);
(T3) T (a, b) ≤ T (c, d), if a ≤ c and b ≤ d;
(T4) T (T (a, b), c) = T (a, T (b, c)).

As an example, let us take the t-norm

TM (a, b) = min{a, b}. (2.1)

This t-norm will be used in the sequel.

Definition 2. A probabilistic metric space of Menger type (or simply Menger space)
is a triple (X,F , T ), where X is a nonempty set; F : X ×X → D+ is a map (we will
denote F(x, y) = Fx,y); T is a t-norm and the following conditions are satisfied:

(F1) Fx,y = H0 is equivalent to x = y;
(F2) Fx,y = Fy,x, ∀x, y ∈ X;
(F3) Fx,y(t1 + t2) ≥ T (Fx,z(t1), Fz,y(t2)), ∀x, y, z ∈ X, t1, t2 ≥ 0.

An important example of a Menger space is the probabilistic normed space which
means a triple (E,F, T ), where E is a real linear space; F : E → D+ is a map (F(x) is
denoted by Fx); T is a t-norm and the following conditions are satisfied:

(N1) Fx = H0 is equivalent to x = 0;
(N2) Fλx(t) = Fx( t

|λ| ), ∀t > 0, λ 6= 0, x ∈ E;

(N3) Fx+y(t1 + t2) ≥ T (Fx(t1), Fy(t2)), ∀x, y ∈ E, t1, t2 > 0.

Proposition 1. Let (X,F , T ) be a Menger space such that

sup
0<t<1

T (t, t) = 1. (2.2)
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Then (X,F , T ) is a Hausdorff topological space whose topology T is generated by a
family of (ε, λ)-neighborhoods {Ux(ε, λ) : x ∈ X, ε > 0, λ > 0}, where

Ux(ε, λ) = {y ∈ X : Fx,y(ε) > 1− λ}.

It is worth noting that, in general, a Menger space is not metrizable.

Let (X,F , T ) be a Menger space for which condition (2.2) holds true. We will use
the following notions.

Definition 3. (i) A sequence {xn} ⊂ X is called convergent to x ∈ X (xn −→
T
x),

if for each ε > 0, λ > 0 there exists an integer N = N(ε, λ) such that
Fx,xn

(ε) > 1− λ, ∀n ≥ N ;
(ii) A sequence {xn} ⊂ X is called fundamental if for every ε > 0, λ > 0 there

exists an integer N = N(ε, λ) such that Fxn,xm
(ε) > 1− λ, ∀n,m ≥ N ;

(iii) A Menger space (X,F , T ) is called complete if every its fundamental sequence
converges to a certain point x ∈ X.

Let (X,F , TM ) is a Menger space, where the t-norm TM is defined by (2.1). For a
given x, y ∈ X and c ∈ (0, 1), let

dc(x, y) = sup{t ∈ R : Fx,y(t) < c}. (2.3)

Proposition 2. For each c ∈ (0, 1) the function dc : X ×X → R is a pseudometric
on X (i.e., it obeys the symmetry condition and the triangle inequality but it can take
zero value while x 6= y). For each x, y ∈ X, x 6= y there exists c ∈ (0, 1) such that
dc(x, y) 6= 0.

The family of pseudometrics {dc}c∈(0,1) generates the topology T in the following
sense.

Proposition 3. A sequence {xn} ⊂ X converges to x ∈ X or is fundamental if and
only if dc(xn, x)→ 0 or, respectively, dc(xn, xm)→ 0 for each c ∈ (0, 1).

Notice that from this statement it does not follow that each of the pseudometric
spaces (X, dc) is complete whenever the space (X,F , TM ) is complete.

3. Theorem on the coincidence for maps of Menger spaces

Definition 4. Let (X,FX , TM ), (Y,FY , TM ) be Menger spaces. For β > 0, a map
ϕ : X → Y is called β-Lipschitz if for all x, x′ ∈ X and t ≥ 0 we have

FYϕ(x),ϕ(x′)(t) ≥ F
X
x,x′

( t
β

)
. (3.1)

It is easy to see that if dXc and dYc for c ∈ (0, 1) are pseudometrics generated in the
spaces X and Y by formula (2.3), then from (3.1) it follows that

dYc (ϕ(x), ϕ(x′)) ≤ βdXc (x, x′) (3.2)

for all x, x′ ∈ X and c ∈ (0, 1). Indeed, we have:

dYc (ϕ(x), ϕ(x′))
(2.3)
= sup{t : FYϕ(x),ϕ(x′)(t) < c}

(3.1)

≤ sup{t : FXx,x′
( t
β

)
< c}
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= β sup{τ : FXx,x′(τ) < c} (2.3)
= βdXc (x, x′),

where τ = t
β .

Notice that from here, by Proposition 3 it follows that a β-Lipschitz map is
continuous.

Now, let us introduce the following notion.

Definition 5. Let (X,FX , TM ), (Y,FY , TM ) be Menger spaces. For a given α > 0,
a map ψ : X → Y is called α-covering if for every x ∈ X, y ∈ Y there exists x′ ∈ X,
y = ψ(x′) such that

FXx,x′(t) ≥ FYψ(x),y(αt), ∀t ≥ 0. (3.3)

Notice that by definition, an α-covering map is surjective. The geometrical sense
of this definition is revealed by the following assertion,

Lemma 1. If ψ : X → Y is an α-covering map then for each x ∈ X, y ∈ Y there
exists x′ ∈ X, y = ψ(x′) such that for every c ∈ (0, 1) we have

αdXc (x, x′) ≤ dYc (ψ(x), y). (3.4)

Proof. By using (3.3), we get

dYc (ψ(x), y)
(2.3)
= sup{t : Fψ(x),y(t) < c}

(3.3)

≥ sup{t : Fx,x′
( t
α

)
< c}

= α sup{τ : Fx,x′(τ) < c} (2.3)
= αdXc (x, x′),

where τ = t
α . �

The following version of the theorem on a coincidence point ([2] of maps of metric
spaces for the case of maps of probabilistic metric spaces holds true.

Theorem 1. Let (X,FX , TM ), (Y,FY , TM ) be Menger spaces. Let the space X is
complete, for given α > β, a map ψ : X → Y is α-covering and closed (i.e., it has
the closed graph), a map ϕ : X → Y is β-Lipschitz. Then for each x ∈ X there exists
ξ = ξ(x) such that

ψ(ξ) = ϕ(ξ) (3.5)

and, moreover,

dXc (x, ξ) ≤ dYc (ψ(x), ϕ(x))

α− β
for each c ∈ (0, 1), (3.6)

where dXc and dYc are the pseudometrics in X and Y respectively.

Proof. For a given x ∈ X, set x0 = x. According to condition (3.4), we can find
x1 ∈ X such that

ψ(x1) = ϕ(x0) (3.7)

and

dXc (x0, x1)
(3.4)

≤ 1

α
dYc (ψ(x0), ψ(x1))

(3.7)
=

1

α
dYc (ψ(x0), ϕ(x0)). (3.8)
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Further, by using conditions of α-covering for ψ and β-Lipschitzness for ϕ, we can
find x2 ∈ X such that

ψ(x2) = ϕ(x1) (3.9)

and

FXx1,x2
(t)

(3.4)

≥ FYψ(x1),ψ(x2)
(αt)

(3.9)
= FYϕ(x0),ϕ(x1)

(αt)
(3.1)

≥ FXx0,x1

(α
β
t
)
. (3.10)

Applying the construction by induction, we find the sequence {xn} ⊂ X such that
for n ≥ 1 we have

ψ(xn) = ϕ(xn−1) (3.11)

and

FXxn−1,xn
(t) ≥ FXx0,x1

((α
β

)n−1
t
)
, ∀t ≥ 0. (3.12)

But then for every c ∈ (0, 1) and i ≥ 1 we get

dXc (xi−1, xi)
(2.3)
= sup{t : FXxi−1,xi

(t) < c}
(3.12)

≤ sup{t : FXx0,x1

((α
β

)i−1
t
)
< c}

=
(β
α

)i−1
sup{τ : FXx0,x1

(τ) < c} =
(β
α

)i−1
dXc (x0, x1),

where τ =
(
α
β

)i−1
t.

This estimate means that the sequence {xn} is fundamental with respect to each
pseudometric dXc , c ∈ (0, 1), and hence, by Proposition 3 it is fundamental also in the
space (X, T ). By virtue of the completeness of the space (X, T ) we have xn −→

T
ξ ∈ X.

Again applying Proposition 3, we have

dXc (xn, ξ)→ 0 for each c ∈ (0, 1). (3.13)

From the continuity of the map ϕ we get

ϕ(xn) −→
T
ϕ(ξ),

but then also

ψ(xn) −→
T
ϕ(ξ).

The closedness of the map ψ yields

ψ(ξ) = ϕ(ξ).

Applying the above estimate for dXc (xi−1, xi) and relation (3.8) we get for k ≥ 1 for
each c ∈ (0, 1) :

dXc (x, xk) = dXc (x0, xk) <
α

α− β
dXc (x0, x1)

(3.8)

≤ dXc (ψ(x), ϕ(x))

α− β
.

Passing to the limit as k →∞ and applying (3.13) we have the desired estimate

dXc (x, ξ) ≤ dYc (ψ(x), ϕ(x))

α− β
. �
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4. Theorem on the coincidence
for multivalued maps of Menger spaces

Let (X,FX , TM ), (Y,FY , TM ) be Menger spaces. By C(Y ) we denote the collection
of all nonempty subsets of Y closed in the topology T .

Definition 6. A multivalued map (multimap) Φ: X → C(Y ) is called β-Lipschitz,
β > 0, if for each x, x′ ∈ X and every y ∈ Φ(x) there exists y′ ∈ Φ(x′) such that

FYy,y′(t) ≥ FXx,x′
( t
β

)
, t ≥ 0. (4.1)

In terms of pseudometrics dXc and dYc in spaces X and Y the last condition can be
written as

dYc (y, y′) ≤ βdXc (x, x′), ∀c ∈ (0, 1). (4.2)

We will use the following property of β-Lipschitz maps.

Lemma 2. If a multimap Φ: X → C(Y ) is β-Lipschitz, then it is closed, i.e., it has
a closed graph.

Proof. Consider sequences {xn} ⊂ X, {yn} ⊂ Y such that xn −→
T

x, yn ∈ Φ(xn) and

yn −→
T
y. Let us show that y ∈ Φ(x).

Supposing the contrary, by applying condition of β-Lipschitzness, select a sequence
{y′n} ⊂ Φ(x) such that

FYyn,y′n(t) ≥ FXxn,x

( t
β

)
, ∀t ≥ 0,

from where, by Proposition 3 it follows that

dYc (yn, y
′
n) ≤ βdXc (xn, x)→ 0, ∀c ∈ (0, 1).

The condition yn −→
T
y yields

dYc (yn, y)→ 0, ∀c ∈ (0, 1),

implying

dYc (y′n, y)→ 0, ∀c ∈ (0, 1),

and therefore y′n −→T y, in contradiction with the closedness of the set Φ(x). �

Definition 7. A multimap Ψ: X → C(Y ) is called α-covering, α > 0, if for each
x ∈ X and y ∈ Y there exists x′ ∈ X such that y ∈ Ψ(x′) and, moreover, for each
z ∈ Ψ(x) we have

FXx,x′(t) ≥ FYz,y(αt), t ≥ 0. (4.3)

Again we can express this condition in terms of pseudometrics dXc and dYc :

αdXc (x, x′) ≤ dYc (z, y), ∀c ∈ (0, 1). (4.4)

Let us formulate now the following version of the theorem on a coincidence for
multivalued maps proved in [3] for maps of metric spaces for the case of multimaps
of probabilistic metric spaces.
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Theorem 2. Let (X,FX , TM ), (Y,FY , TM ) be complete Menger spaces. Let for given
α > β a multimap Ψ: X → C(Y ) be α-covering and closed, a multimap Φ: X → C(Y )
β-Lipschitz. Then for arbitrary x ∈ X and y ∈ Φ(x) there exist such ξ = ξ(x, y) ∈ X,
η = η(x, y) ∈ Y that

η ∈ Φ(ξ)
⋂

Ψ(ξ) (4.5)

and, moreover for each c ∈ (0, 1) the following estimates hold true:

dXc (x, ξ) ≤ DY
c (Ψ(x),Φ(x))

α− β
(4.6)

and

dYc (y, η) ≤ β

α− β
DY
c (Ψ(x),Φ(x)), (4.7)

where

DY
c (A,B) := sup{dYc (a, b) : a ∈ A, b ∈ B}.

Proof. Denote x0 = x and y1 = y ∈ Φ(x0). From the condition of α-covering of the
multimap Ψ, it folllows that there exists x1 ∈ X such that

y1 ∈ Ψ(x1) (4.8)

and

FXx0,x1
(t) ≥ FYz,y1(αt), ∀z ∈ Ψ(x0) ∀t ≥ 0. (4.9)

Further, using the condition of β-Lipschitzness of the multimap Φ we will find y2 ∈
Φ(x1) such that

FYy1,y2(t) ≥ FXx0,x1

( t
β

)
. (4.10)

Again applying the α-covering condition of Ψ, find x2 ∈ X such that y2 ∈ Ψ(x2) and

FXx1,x2
(t)

(4.3)

≥ FYy1,y2(αt)
(4.10)

≥ FXx0,x1

(α
β
t
)
.

Continuing this process, we will construct sequences {xn} ⊂ X and {yn} ⊂ Y for
which we will have for n ≥ 1 :

yn ∈ Φ(xn−1)
⋂

Ψ(xn), (4.11)

FXxn−1,xn
(t) ≥ FXx0,x1

((α
β

)n−1
t
)
, ∀t ≥ 0, (4.12)

FYyn−1,yn(t) ≥ FXx0,x1

((α
β

)n−2 1

β
t
)
, ∀t ≥ 0. (4.13)

Indeed, if relations (4.11) - (4.13) hold true till n ≥ 1, then applying the β-
Lipschitzness and the α-covering conditions we will find at first yn+1 ∈ Φ(xn) such
that

FYyn,yn+1
(t)

(4.1)

≥ FXxn−1,xn

( t
β

) (4.12)

≥ FXx0,x1

((α
β

)n−1 1

β
t
)
, t ≥ 0,

and then xn+1 ∈ X such that

yn+1 ∈ Ψ(xn+1)
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and

FXxn,xn+1
(t)

(4.3)

≥ FYyn,yn+1
(αt)

(4.13)

≥ FXx0,x1

((α
β

)n
t
)
.

Rewriting relations (4.12) - (4.13) in the form of estimates

dXc (xn−1, xn) ≤
(β
α

)n−1
dXc (x0, x1), ∀c ∈ (0, 1), (4.14)

dYc (yn−1, yn) ≤
(β
α

)n−2
βdXc (x0, x1), ∀c ∈ (0, 1), (4.15)

from which, by Proposition 3 the fundamentality of sequences {xn} and {yn} follows
and hence by virtue of the completeness of the spaces X and Y , we get their conver-
gence: xn −→

T
ξ ∈ X, yn −→

T
η ∈ Y. Since the multimaps Φ and Ψ are closed, we can

pass to the limit as n→∞ in (4.11) and to obtain desired relation (4.5).
Writing now relation (4.9) in the form

dXc (x0, x1) ≤ 1

α
dYc (z, y1), ∀c ∈ (0, 1), z ∈ Ψ(x0),

we get the estimate

dXc (x0, x1) ≤ 1

α
DY
c (Ψ(x0),Φ(x0))), ∀c ∈ (0, 1). (4.16)

Then estimates (4.14) and (4.15) imply for each c ∈ (0, 1) and k ≥ 1 the following
relations:

dXc (x, xk) = dXc (x0, xk) <
α

α− β
dXc (x0, x1)

(4.16)

≤ DY
c (Ψ(x),Φ(x))

α− β
and

dYc (y, yk) = dYc (y1, yk) <
αβ

α− β
dXc (x0, x1)

(4.16)

≤ β

α− β
DY
c (Ψ(x),Φ(x)).

Passing to the limit as k →∞ we get desired estimates (4.6) and (4.7). �

5. Examples

In this section we consider some applications to the solvability of systems of equa-
tions and feedback control systems in probabilistic normed spaces.

5.1. System of equations in probabilistic normed spaces. Let
(E1,F

1, TM ), (E2,F
2, TM ) be complete probabilistic normed spaces. Then the

product space (E1 × E2,F
1ιF2, TM ), where(

F1ιF2
)

(y1, y2)(t) = TM

(
F1(y1)(t),F2(y2)(t)

)
, y1 ∈ E1, y2 ∈ E2

is also a complete probabilistic normed space ([8]). We will denote(
F1ιF2

)
(y1, y2) = F ?y1,y2 .

Let γ : E1 → E2 be a βγ-Lipschitz map (βγ ≥ 0) and X ⊂ E1 ×E2 its graph. The
structure of a Menger space with respect to TM can be naturally induced on X if for
(y1, y2), (y′1, y

′
2) ∈ X we set FX(y1,y2),(y′1,y′2)

= F ?(y1−y′1),(y2−y′2)
.
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In accordance with (2.3) for each c ∈ (0, 1) and (y1, y2), (y′1, y
′
2) ∈ X we define the

pseudodistance between these points as

dXc ((y1, y2), (y′1, y
′
2)) = sup{t ∈ R : FX(y1,y2),(y′1,y′2)(t) < c} = (5.1)

= sup{t ∈ R : F ?(y1−y′1),(y2−y′2)(t) < c}.
Then we get

dXc ((y1, y2), (y′1, y
′
2)) = sup{t ∈ R : TM

(
F1(y1 − y′1)(t),F2(y2 − y′2)(t)

)
< c} =

= sup{t ∈ R : min{F 1
y1−y′1

(t), F 2
y2−y′2

(t)} < c} =

= max
{

sup{t ∈ R : F 1
y1−y′1

(t) < c}, sup{t ∈ R : F 2
y2−y′2

(t) < c}
}

=

= max{dE1
c (y1, y

′
1), dE2

c (y2, y
′
2)}.

Consider the projection η : X → E1 defined as η(y1, y2) = y1.

Lemma 3. The map η is α-covering, where α > 0 is such that α ·max{1, βγ} < 1.

Proof. Take any x = (y1, γ(y1)) ∈ X and y′1 ∈ E1. Then for x′ = (y′1, γ(y′1)) ∈ X and
any c ∈ (0, 1) we have

αdXc (x, x′) = αdXc ((y1, γ(y1)), (y′1, γ(y′1))) =

= αmax{dE1
c (y1, y

′
1), dE2

c (γ(y1), γ(y′1))} ≤ max{αdE1
c (y1, y

′
1), αβγd

E1
c (y1, y

′
1)} <

< dE1
c (y1, y

′
1) = dE1

c (η(x), η(x′)).

�

Now, let θ : (E1 × E2,F
1ιF2, TM ) → (E1,F

1, TM ) be a βθ-Lipschitz map in the
sense that for all c ∈ (0, 1) and (y1, y2), (y′1, y

′
2) ∈ E1 × E2 we have

dE1
c (θ(y1, y2), θ(y′1, y

′
2)) ≤ βθdE1×E2

c ((y1, y2), (y′1, y
′
2)) =

= βθ max{dE1
c (y1, y

′
1), dE2

c (y2, y
′
2)},

where dE1×E2
c is defined analogously to dXc (see (5.1)).

Consider now the following system of equations:

y1 = θ(y1, y2), (5.2)

y2 = γ(y1). (5.3)

If we denote by θ̃ the restriction of θ to X then it is clear that system (5.2) – (5.3) is
equivalent to the equation

η(y1, y2) = θ̃(y1, y2). (5.4)

Applying Lemma 3 and Theorem 1 we obtain the following result.

Theorem 3. If βθ · max{1, βγ} < 1, then system of equations (5.2) – (5.3) has a
solution y1 ∈ E1, y2 ∈ E2. Moreover, for an arbitrary x? = (y?1 , γ(y?1)) ∈ X the
pseudodistances from x? to the set ∆ ⊂ X of all solutions to (5.2) – (5.3) satisfy the
following estimates:

distXc (x?,∆) := inf{dXc (x?, x) : x ∈ ∆} ≤ µdE1
c (y?1 , θ(y

?
1 , γ(y?1)))

1− βθµ
(5.5)

for all c ∈ (0, 1), where µ = max{1, βγ}.
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Proof. Taking α > 0 such that βθ < α < 1
µ , from Lemma 3 we get that the map η is

α-covering. Then the existence of a solution to equation (5.4) follows from Theorem
1. Further, take ε > 0 so small that 1

µ − ε > βθ and choose α so that 1
µ − ε < α < 1

µ .

Then α−βθ > 1
µ−ε−βθ and from estimate (3.6) we obtain the existence of a solution

x ∈ ∆ for which

dXc (x?, x) ≤ dE1
c (y?1 , θ(y

?
1 , γ(y?1)))

1
µ − ε− βθ

for each c ∈ (0, 1). Now we get estimate (5.5) taking ε→ 0. �

5.2. Existence of a solution to a feedback control system in a probabilistic
normed space. In this section we will use the above result to show the existence of
a solution to a class of control systems defined in probabilistic normed spaces.

Let (E,F, TM ) be a complete probabilistic normed space and for δ > 0 let
C([0, δ], E) be a space of functions x : [0, δ]→ E which are continuous in the topology

T on (E,F, TM ). Define a map F̃ : C([0, δ], E)→ D+ by

F̃(x)(t) = lim
r→t−0

inf
s∈[0,δ]

Fx(s)(r)

and denote the distribution function F̃(x) by F̃x. Then (C([0, δ], E), F̃, TM ) is also a
complete probabilistic normed space (see [4]).

Let (E1,F
1, TM ), (E2,F

2, TM ) be complete probabilistic normed spaces. For a > 0,
let f : [0, a] × E1 × E2 → E1 and g : [0, a] × E1 → E2 be continuous maps. We will
consider a feedback control system governed by the following relations:;

ẋ(t) = f(t, x(t), y(t)), (5.6)

x(0) = x0 ∈ E1, (5.7)

y(t) = g(t, x(t)). (5.8)

By a solution of this system on some interval [0, δ0], where 0 < δ0 ≤ a we mean
a pair (x, y) with a trajectory function x ∈ C([0, δ0], E1) and a control function
y ∈ C([0, δ0], E2) satisfying relations (5.6)–(5.8).

We will suppose that functions f and g satisfy Lipschitz conditions of the following
form:

(Hf ) there exists L > 0 such that for all t ∈ [0, a] and x, x′ ∈ E1, y, y
′ ∈ E2 we

have

F 1
f(t,x,y)−f(t,x′,y′)(ν) ≥ min

{
F 1
x−x′

( ν
L

)
, F 2

y−y′
( ν
L

)}
, ν ∈ R;

(Hg) there exists βg > 0 such that for all t ∈ [0, a] and x, x′ ∈ E1 we have

F 2
g(t,x)−g(t,x′)(ν) ≥ F 1

x−x′
( ν
βg

)
.

Introduce now the following operators. Let

θ :
(
C([0, δ0], E1)× C([0, δ0], E2), F̃1ιF̃2, TM

)
→
(
C([0, δ0], E1), F̃1, TM

)
,
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be defined as

θ(x, y)(t) = x0 +

∫ t

0

f(s, x(s), y(s))ds, t ∈ [0, δ0]

and γ :
(
C([0, δ0], E1), F̃1, TM

)
→
(
C([0, δ0], E2), F̃2, TM

)
be given as

γ(x)(t) = g(t, x(t)).

It is clear that the solvability of system (5.6)–(5.8) is equivalent to the existence of a
solution to the system of equations

x = θ(x, y), (5.9)

y = γ(x). (5.10)

Following the lines of [4] one can verify that the map θ is βθ-Lipschitz, where βθ = Lδ0.

Lemma 4. The map γ is βγ-Lipschitz with βγ = βg.

Proof. Take x(·), x′(·) ∈
(
C([0, δ0], E1), F̃1, TM

)
and let y ∈ γ(x), y′ = γ(x′). Then

we have

F̃ 2
y(·)−y′(·)(t) = lim

r→t−0
inf

s∈[0,δ0]
F 2
g(s,x(s))−g(s,x′(s))(r) ≥

≥ lim
r→t−0

inf
s∈[0,δ0]

F 1
x(s)−x′(s)

( r
βg

)
= F̃ 1

x(·)−x′(·)

( t

βg

)
.

�

Basing on Theorem 3 and Lipschitz properties of maps θ and γ we can formulate
now a sufficient condition for the existence of a solution to control system (5.6)–(5.8).
It takes the following form.

Theorem 4. Let conditions (Hf ), (Hg) hold true and Lδ0 · max{1, βg} < 1. Then
control system (5.6)–(5.8) has a solution on the interval [0, δ0].
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[5] O. Hadžić, Fixed Point Theory in Topological Vector Spaces, Univerzitet u Novom Sadu, Institut

za Matematiku, Novi Sad, 1984.



14 ARAM V. ARUTYUNOV AND VALERI OBUKHOVSKII
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[7] D. Karaklić, L. Gajić, N.M. Ralević, Some fixed point results in a strong probabilistic metric
spaces, Filomat, 33(2019), no. 8, 2201–2209.

[8] B. Lafuerza-Guillén, Finite products of probabilistic normed spaces, Rad. Mat., 13(2004), no.

1, 111–117.
[9] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A., 28(1942), 535–537.
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