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1. INTRODUCTION

Let H; be a real Hilbert space. Let ® : H; = 21 be a set-valued maximal
monotone operator and ¥ : H; — H; be a single-valued monotone operator. Recall
that the variational inclusion problem is to seek z € H; such that

0 (P +1)(2). (L1)
Variational inclusion problem (1.1) can be used to settle numerous problems, for
example, well-known minimization problem. If fact, suppose that f,g : H; — R U
{+o0} are two proper, convex and lower semicontinuous functions. Assume that f is
subdifferentiable and ¢ is differentiable. Set 0f = ® and Vg = . Then solving the
following minimization problem

min (f(2) + g(2)). (1.2)

z€H;

can be converted into solving the variational inclusion problem (1.1).
There are many ways to solve variational inclusion (1.1) in the literature, see
[2, 5, 6, 9, 10, 11, 14, 15]. An essential path for solving (1.1) is the well-known
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splitting method ([16]) defined by: for a fixed point z¢ € Hy,
Tyl = (I+ gk(I))fl(I - (kﬂ))(xk), k> 0. (13)

The sequence {x;} converges to some point in the solution set (® + 1)~1(0) of the
variational inclusion (1.1) provided ¢ is (inverse) strongly monotone. To get rid of this
strong monotonicity restriction, Cholamjiak, Hieu and Cho [3] suggested a Tseng-type
splitting algorithm for solving (1.1) in which the operator ¢ is monotone.

Let Hy be any other real Hilbert space. Let ¢ : Hy = 292 be a maximal monotone
operator and ¢ : Hy — Hs be a monotone operator. Let ¥: Hy — Hs be a nonzero
bounded linear operator and U* be the adjoint of ¥. Consider the following split
variational inclusion problem of seeking u € H; such that

we (®+1)"H0) and Y(u) € (¢ + ) 1(0). (1.4)
The solution set of (1.4) is denoted by  := {u|u € (®+1)71(0), ¥(u) € (p+¢)~1(0)}.
There are several interesting methods for solving (1.4) in the literature, see [4, 7, §].
For solving (1.4), Moudafi [12] proposed the following iterative algorithm: Vzy € Hy,
T = (1 +9@) " (I =) [zn — YV (I = B)¥(zn)],n > 0, (1.5)
where B = (I +vp)~'(I —~v¢) and v € (0, W)

Yao et al. [17] suggested the following inertial algorithm for solving (1.4): for two

initial points xg,x1 € Hi, the sequence {z,} is generated by

{yn :xn+Tn(xn_xn—l)a (1 6)

Tns1 = (L +72) " I =) yn — 000" (I = B)¥(yn)],n > 1,

where

2
o _ {fg,lﬁﬁ-?;{zﬁgzglz, if (1 - B)¥(yn) #0,
0, if (I -B)¥(y,) =0,
where B = (I +v¢) (I —v¢) and ¢, € (0,1).
Further, Abuchu et al. [1] introduced a modified relaxed inertial Mann-type iter-
ative algorithm for solving (1.4): for two initial points zo,z1 € Hi, choose 7, such
that 7, € (0,7,) where 7, = min{r, m} if x,, # x,,_1, otherwise, 7,, = 7 and

compute the next step {x,4+1} by the following way

Zn = Tp + Tn(Tn — Tp_1),

Yn = (1 — an)zn,

Up = Yn — T (U (I — B)¥(yn)),

Tpy1 = Polin + (1 — pn)(l+7(1))71(1 —YY)up,n > 1.

where B = (I +vp) (I — ).

However, we observe that the operators ¢ and ¢ in (1.5)-(1.7) are all inverse
strongly monotone. It is an interesting work to relax this restrictive condition im-
posed on the operators ¢ and ¢. Our main purpose in this paper is to construct a new
iterative algorithm in which the operators ¢ and ¢ are plain monotone (not necessar-
ily inverse strongly monotone) for solving (1.4). Our algorithm is based on splitting
method and self-adaptive technique. Under some mild assumptions, we show that

(1.7)
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the constructed algorithm converges weakly to some solution of the split variational
inclusion problem (1.4).

2. PRELIMINARIES

In this section, we include several notations and some useful conclusions. Through-
out in this section, assume that H is a real Hilbert space. In H, the following equality
is well known: for all z, zf € H and V7 € R,

I72 + (1 = )02 = 7)) + (1 = P)lT)? = 7(1 = 7)ll= = 271> (2.1)
Definition 2.1. Let T: H — H be an operator. Recall that T is said to be
(i) L-Lipschitz if there is a positive constant L such that
|T(z) — T(z")| < L||lx — 2|, Vo, 2" € H.
(ii) strongly monotone if
(T(z) — T(z"),z — 2) > ¢||lx — '||?, Va,2" € H,

where € > 0 is a constant.
(iii) inverse strongly monotone if

(T(z) = T(z"),x — 2) > ¢||T(x) — T(z")|?, Va,2" € H,

where € > 0 is a constant.
(iv) monotone if

(T(z) —T(z"),z — ") >0, v,z € H.
Definition 2.2. Let S: H = 2/ be a multi-valued operator. S is said to be monotone
if and only if
(x —%,p—p) >0, Va,2 € H,
where p € S(z) and p € S(2).
A multi-valued monotone operator is said to be maximal monotone if and only if
its graph is not strictly contained in the graph of any other monotone operator.

Let S: H = 2/ be a maximal monotone operator and v > 0 be a constant. Define
an operator Resf :H — H by

Resfj(:v) = (I +~8)"Y(z), Vo € H,

which is called the resolvent of S. It is well-known tat the resolvent Ress is a single-
valued firmly-nonexpansive and S~1(0) = {z € H : Resg(m) =z}

Lemma 2.1. ([13]) Let Q be a nonempty closed convex subset of a real Hilbert space
H. Let {s;} C H be a sequence. If the following assumptions are satisfied

(1) Vs* € Q, limy o0 |8k — s*|| ewists;
(1) ww(sK) C Q, where

wy(sk):={s€H : there is a subsequence {si,} of {sk} such that sg, —=s as i—+oo}.

Then s, — 5 € Q as k — +oo.
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3. MAIN RESULTS

Let H; and H, be two real Hilbert spaces. Let ® : H; = 2H1 and p:Hy = 2H>2
be two maximal monotone operators. Let v : H; — Hi be an a1-Lipschitz monotone
operator and ¢ : Hy — Hs be an «s-Lipschitz monotone operator. Let ¥: H; — Hy
be a nonzero bounded linear operator with its adjoint U*. In what follows, suppose
that Q := {z|z € (& +¢)"1(0), ¥(z) € (¢ + )1 (0)} # 0.

Let {n} and {0} be two real number sequences satisfying 7 € [1,7] C (0,1] and

0x € 10,0] C (0,1] for all k > 0. Let €y,¢e9, 71,72, p1, p2 be six constants in (0,1) and
o be a constant in (0,1/[¥|?).

Next, we present an iterative algorithm for finding a point in Q.
Algorithm 3.1. Let zg € H; be an initial point. Let §y and (y be two positive
constants. Set k = 0.
Step 1. For given xj, compute

ZE = Resflﬂk (xp — 11 Brv(xg)), (3.1)
where 8, = max{1,¢e;,e7,-- -} satisfies
T1Bkl[¢(2k) — ¥(ze)|l < palle — zill, (32)
and compute
up = (1 —n)xk + e (ze — 718k (P(21) — Y(xk)))- (3.3)
Step 2. Compute
wy, = Res? . (¥(ug) — 720:0(¥(ur))), (3.4)
where (j, = max{1,e,¢3,- -} satisfies
T2Ck (W (ug)) — dlwg)|| < p2l| W (ur) — wil, (3.5)

and compute
Yo = (1= 0k) W (ur) + O (w — T2Cr(d(wi) — ¢(¥(ug)))). (3.6)
Step 3. Compute
Tpt1 = up + oV (yr — U(ug)). (3.7)

Set k := k + 1 and return to Step 1.
Remark 3.1. If z* = 2F for some k, then 2* € (® + )~1(0). In this case, we
can choose By = 1. If 2% # 2 then there exists some By € {1,£1,¢7,---} satisfying
Br < 2 because [[¢(xr) — v(zi)|| < onllzr — 2kl

Now, we state that there must has some Sy = £ such that (3.2) holds. If not so,
we have p1||zx — zi|| < Bl (zk) — ¥(zk)|| < T1Brar|zk — 2| for all k& € N which
yields that B > -LL-(Vk € N). It results in a contradiction.

Similarly, we can prove that there exists ¢, = max{1,eq,¢3, -} such that (3.5)
holds.

Next, we demonstrate the convergence of Algorithm 3.1.
Theorem 3.1. The sequence {xy} generated by Algorithm 3.1 converges weakly to
some point in €.
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Proof. Let ut € Q. We have ul € (® +1)71(0) and ¥(u') € (¢ + ¢)71(0). Then,
Iz = b + 1B (W () = V()1 = 2k — ul|* + 727 [0 (er) — b (z0) [P (3.8)
+ 271 Bk (P (n) — 9 (21), 2 — ul), -
Note that
Izt = ul[* = flox —u¥|® = [z — @5l + 20z — @, 20 — u').
This together with (3.8) implies that
2k =t + 1B (W (@r) = Y(z)) 1 = law — a1 + 2mBr(W(wr) — 9 (z0), 2 — u)
— |2k — zrl* + 2(z — T, 21 — ul)
+ 7Bl (@) — (z)|
= |l — ot + 72 B2l () — (212
+ 2z — xp + T (W (xk) — Y(2k)), 21 — ul)

— Iz — ol (3.9)
From (3.1), 2z, = (I + 118 ®) " (zx — 718k (xx)). Then
zp — 1P (xk) € (I + 715kP) 2. (3.10)
This results in that
xp — 2z — 11 Bk (WY(xr) — ¥(2k)) € T1Bk(P + V)2 (3.11)
Owing to 0 € 71 81,(® +1)ul, by the monotonicity of 71 8 (®+1) and (3.11) we obtain
(2 =z + 11 B (W (1) — ¥ (21)), 21 — ul) <0. (3.12)

By (3.2), 282 1v(zk) — ¥(2k)||? < pillak — zk|>. By virtue of (3.9) and (3.12), we

receive
Iz = ut + 1B (W () = ()1 < llew —al|? = (1= pD)|lze —zl®. (3.13)
Applying equality (2.1) to (3.3) to deduce
lug = al1? = (1= mi)lJax — a1 + iz = ub + B ((ar) — 0 (20))1?
— (L= ne)mellzk — 2 + 11 Br(v (k) — (20) [P
Thanks to (3.13) and (3.14), we have
lur = ut® < Jlzg — u¥)® = (U= m)mellzr — 21 + 1Br (W (k) — Y(20))1?
— (1 = p?) |21 — | (3.15)

< Jlow = uf|?.

(3.14)

Since
lwi = W (u) + 72Ck (A (ur)) — d(wg))||>

= JJwr, — (uh)|? + 75 Rl (P (ur)) — d(wp)|?
+ 272G (D(W (ur)) — d(wi), wi, — T (uh)).
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and
Jwp = @ (h)|? = [W(ux) = W) + 20wy — U (u), wp — W(uh)) = [Jwy, — U(ug)]?,
we attain
lwi = W (u") + 79 (S (ur)) — ¢(wy))|®
= [| (ur) — W (uh)|? + 272Gk (D( P (ur)) — d(w), wy, — ¥ (ul))
— [lwg = W (up)|* + 2wk — W (ug), wy, — U(u'h))
+ 73 e (W (ur)) — @(wy)|? (3.16)
= [0 (ux) = (uh)|? + 75 Gl S(¥(ur)) — p(wr)]|”
+ 2(wp — W(up) + 712Gk ((Y (ur)) — p(wr)), wy — ¥ (u'))
— Jlwr — ®(up)|%.
Based on (3.4), we achieve
W(ur) — wi — 720 (O(¥ (ug)) — d(wy)) € 72Gk(p + P)wy. (3.17)

Using the monotonicity of 7(x(p+ ¢) and 0 € 79Cx (@ + ¢)¥(ul), according to (3.17),
we have

(wie = W (ur) + 72G(H(¥ (ur)) — ¢(wy)), wi, — ¥(uh)) <0. (3.18)
Furthermore, by (3.5),
73 Gello(P (ur)) — p(wi)|I* < P31 (ur) — w .
So, from (3.16) and (3.18), we have
s, = W(uh) + 726 (¥ (ur)) — ¢(wp))|* < H‘I’(Uk)g‘I’(UT)W (319
— (1= p3)llwe — U (ur)]”
Utilizing (2.1) to (3.6) to get
lye = @ uh)® = (1= ) 1% (ug) = C(uh)|]* + OxJwp — U (ul)
+ 72 (D(¥ (ur)) — d(wp))II* = (1 = )0k we — (ux)  (3.20)
+ 720 (S P (ur)) — d(wr)) 1>
Substituting (3.19) into (3.20), w
llye = (H? < [ (ur) = C(@h)|* — 001 — pd) | — P (ur)|?
— (1= 0)0kl[wi — W (up) +72Ck(O(¥ (ur)) — p(wi))|*  (3.21)
< 1 (uy) — Wl

e obtain

Observe that
(e — ub, U (g — W(up))) = (U(ug) — ¥(ul), yp — ¥ (ur))

%[Hyk = W(uh) [ = 1% (ur) = (h)|?)
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which together with (3.21) yields that

(ug =, 0 (g, — W(uy))) < —%6%(1 = p3)llwe — T (u)||* ~ %Hyk — (up)l”. (3.22)
According to (3.7), (3.15) and (3.22), we receive
s = ul® = [lu — o’ + 0O (g — U (uy))|?
= flug = ul|* + lo@* (g — @ (ur))||?
+ 20 (0" (yp — W (ug)), up — ul)
< lug = u¥|? + |0 lyx — O (u)|* = ollye — @ (ur)|?
— 00 (1 — p3) [we — ¥ (up)|?

g — T — (1~ o0 ?) i — W(up)]? (329
— 00k(1 — p3)|Jwy — W (ug)|?
< g — ul|* = o (1= ol |¥)1?) lyr — @ (ug)||”
— 00k(1 — p3)|Jwy, — W (ug)|?
< g —ut)?,
which implies that limy_, o ||z — uf|| exists and
m g — ul|| = Jm s — u]. (3.24)

It is easily seen that the sequences {x}, {yx}, {#x}, {ur} and {wy} are all bounded.
From (3.23), we have

o (1= ol|)*)llyx — U (ur)|* + o0k (1 — p3)llwy, — ¥ (uwr)]?
<l —af|® = [lzpgr — ¥ = 0.

It yields that

i g — () =0, (3.25)
and
kginoo llwe — U (ug)|| = 0. (3.26)

Thanks to (3.15), we obtain
(L= pD)lzk — 2l® < llze — ! |* = [lug — ') — 0.
It results in that
Sz =il = 0. (3.27)

In addition, from (3.3), we have

llur — zi|| = [Imelze — 2k — 7186 (V(21) — ¥ (zx))]||
< mellze — orl| + e Bell(2x) — Y (zk))]-
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Hence, we get from (3.27) and the Lipschitz continuity of ¢ that
li - =0.
G Juk — zill =0 (3.28)
In view of (3.7), we have
Tpt1 — T = up — T + 00" (y — U(ug)).
Hence, take into account of (3.25) and (3.28), we deduce

li - =0.
m ks — okl =0 (3.29)

Next, we show w,,(xg) C Q. Choosing any u* € wy(xy), there is a subsequence
{zy, } of {zx} such that zx, — u* as i — oo. Let (p,§) € Graph(® + ¢). Then,
g —¢(p) € ®(p). By (3.1),
Rk = Res?lﬁki (xki - Tlﬁkiw(xk’i)) = (I + Tlﬁkiq))il(xki - Tlﬁklw(xlﬂ))
It follows that
T,
1Bk,
Combining (3.30) and the monotonicity of ®, we acquire

<qA_w(ﬁ)_( _w(xkl))7ﬁ_zkb> 20

" ER () € Bla,). (3.30)

Tk, — Rk;
Tlﬂki

It follows that
(@D — 2) = (WD) — lan,) + = p— )
71 Bk,

= (VD) — ¥(2k,), D — zr,) + (W(zk,) — (@k,), D — 21,) (3.31)
1
" 71 Bk,
Since v is monotone, (Y(p) — P (zx,), D — zk;) > 0. It follows from (3.31) that

<:Z:ki - Zk“ﬁ - Zk¢>'

(@0 — 2r;) = (Y(2r,) = (n,), D — 2x,) + (@, = 205D = 210)- (3.32)

L
71 Bk,
Note that z, — u* and 2z, — «*. Combining (3.27) with (3.32), we obtain
for all (p,qG) € Graph(® + v). So, u* € (® + )~ 1(0).

) €

Next, we prove W(u*) € (¢ + ¢)71(0). Let (pf,¢") € Graph(p + ¢).
Then q" — o(p") € p(p'). By (3.4), we have

wr, = Res?, o (W (ur,) = m2Gk, ¢(W(ur,))) = (I + 726k, 0) ™ (W(ur,) — 72l (¥ (ug,)))-

It follows that

Ple) Z W () € plu,). (3:33)
T2Ck;

With the help of the monotonicity of ¢, from (3.33), we obtain

" — oot - ‘W (W, ))).p — ) > 0.
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Then,

" = ) 2 (607) — (0, )) + T =1

= <¢(pT) - ¢(w/€i)’pT - wki> + <¢(wkl) - d)(\ll(uki))’pT - wk;> (334>
1

T2Ck?i
Since (p(p') — d(wy, ), p" — wg,) > 0, it follows from (3.34) that

(U (up,;) — we,, p" — wi,)- (3.35)

7pT _wki>

<\Ij(uk7) - wkiﬁpT - wk7>

+ 1
T2 <k7i

Owing to wg, — ¥(u*) and ||V (ug,) — wg,

— 0, from (3.35), we conclude that
(q",pt = W(u)) >0

for all (p', ¢") € Graph(¢+¢) which implies that ¥(u*) € (¢+¢)~1(0). Thus, u* € Q.

S0, wy (x) C Q.

Note that (i) Vu' € Q, limg oo |7 — ul|| exists and (ii) wy,(7x) C Q. Applying
Lemma 2.1, we can conclude that {zx} converges weakly to some point in Q. This
completes the proof.

Let H be a real Hilbert spaces. Let ® : H = 27 and ¢ : H = 2% be two
maximal monotone operators. Let ¢ : H — H be an «;-Lipschitz monotone op-
erator and ¢ : H — H be an as-Lipschitz monotone operator. Suppose that
Q= {zlz € (P+¥)"H0)N (¢ + »)71(0)} # 0. Let {nx} and {fx} be two real
number sequences satisfying nx € [1,7] C (0,1] and ) € [0,0] C (0,1] for all k > 0.

Let £1,€9, 71, T2, p1, p2 and o be seven constants in (0, 1).

Algorithm 3.2. Let zyp € H be an initial point. Let 5y and (y be two positive
constants. Set k = 0.

Step 1. For given zj, compute

2z, = Res? 5 (v — 11 Bt (ar)),
where (), = max{1,e1,e%,---} satisfies

T1Bel[Y(zk) — Y (k)| < prllzk — 2kl
and compute

up = (1 —ne)xr + me(ze — 118k (Y(21) — (21))).
Step 2. Compute

wy, = Res? - (ur — T2Ced(us)),
where (j, = max{1,e2,¢3,- -} satisfies

ToCk||P(ur) — d(wr)|| < pollur — wi,

and compute

yr = (1 = O )up + Op(wi, — T2Cr(P(wr) — Pur))).
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Step 3. Compute
Thy1 = Uk + o(yp — ug).

Set k := k + 1 and return to Step 1.
Corollary 3.1. The sequence {xy} generated by Algorithm 3.2 converges weakly to
some point in 1.

4. CONCLUSIONS

In this paper, we investigate the split variational inclusion problem (1.4) where
the involved operators i and ¢ are all plain monotone. To solve this split monotone
variational inclusion problem, we suggest an iterative algorithm by using the splitting
method and self-adaptive rules. We show the proposed algorithm converges weakly
to a solution of the split variational inclusion (1.4) provided the involved parameters
fulfil some appropriate restrictions.
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