# MODIFIED SPLITTING ALGORITHMS FOR APPROXIMATING SOLUTIONS OF SPLIT VARIATIONAL INCLUSIONS IN HILBERT SPACES

#### LI-JUN ZHU\* AND YONGHONG YAO\*\*

\*The Key Laboratory of Intelligent Information and Big Data Processing of NingXia, North Minzu University, Yinchuan 750021, China E-mail: zljmath@outlook.com

\*\*School of Mathematical Sciences, Tiangong University, Tianjin 300387, China; and

Center for Advanced Information Technology, Kyung Hee University, Seoul 02447, South Korea E-mail: yyhtgu@hotmail.com (Corresponding author)

**Abstract.** The purpose of this paper is to explore the split variational inclusion problem in Hilbert spaces. A splitting algorithm is constructed for solving the split variational inclusion with the help of self-adaptive techniques. Convergence analysis of the proposed algorithm is provided under additional conditions.

Key Words and Phrases: Split variational inclusion, monotone operator, splitting method, resolvent.

**2020** Mathematics Subject Classification: 47J25, 47H10, 65K10, 65K15, 90C99.

## 1. Introduction

Let  $H_1$  be a real Hilbert space. Let  $\Phi: H_1 \rightrightarrows 2^{H_1}$  be a set-valued maximal monotone operator and  $\psi: H_1 \to H_1$  be a single-valued monotone operator. Recall that the variational inclusion problem is to seek  $z \in H_1$  such that

$$0 \in (\Phi + \psi)(z). \tag{1.1}$$

Variational inclusion problem (1.1) can be used to settle numerous problems, for example, well-known minimization problem. If fact, suppose that  $f, g: H_1 \to \mathbf{R} \cup \{+\infty\}$  are two proper, convex and lower semicontinuous functions. Assume that f is subdifferentiable and g is differentiable. Set  $\partial f = \Phi$  and  $\nabla g = \psi$ . Then solving the following minimization problem

$$\min_{z \in H_1} (f(z) + g(z)). \tag{1.2}$$

can be converted into solving the variational inclusion problem (1.1).

There are many ways to solve variational inclusion (1.1) in the literature, see [2, 5, 6, 9, 10, 11, 14, 15]. An essential path for solving (1.1) is the well-known

splitting method ([16]) defined by: for a fixed point  $x_0 \in H_1$ ,

$$x_{k+1} = (I + \varsigma_k \Phi)^{-1} (I - \varsigma_k \psi)(x_k), \ k \ge 0.$$
 (1.3)

The sequence  $\{x_k\}$  converges to some point in the solution set  $(\Phi + \psi)^{-1}(0)$  of the variational inclusion (1.1) provided  $\psi$  is (inverse) strongly monotone. To get rid of this strong monotonicity restriction, Cholamjiak, Hieu and Cho [3] suggested a Tseng-type splitting algorithm for solving (1.1) in which the operator  $\psi$  is monotone.

Let  $H_2$  be any other real Hilbert space. Let  $\varphi: H_2 \rightrightarrows 2^{H_2}$  be a maximal monotone operator and  $\phi: H_2 \to H_2$  be a monotone operator. Let  $\Psi: H_1 \to H_2$  be a nonzero bounded linear operator and  $\Psi^*$  be the adjoint of  $\Psi$ . Consider the following split variational inclusion problem of seeking  $u \in H_1$  such that

$$u \in (\Phi + \psi)^{-1}(0)$$
 and  $\Psi(u) \in (\phi + \varphi)^{-1}(0)$ . (1.4)

The solution set of (1.4) is denoted by  $\Omega := \{u | u \in (\Phi + \psi)^{-1}(0), \Psi(u) \in (\phi + \varphi)^{-1}(0)\}.$ There are several interesting methods for solving (1.4) in the literature, see [4, 7, 8].

For solving (1.4), Moudafi [12] proposed the following iterative algorithm:  $\forall x_0 \in H_1$ ,

$$x_{n+1} = (I + \gamma \Phi)^{-1} (I - \gamma \psi) [x_n - \gamma \Psi^* (I - B) \Psi(x_n)], n \ge 0,$$
(1.5)

where  $B = (I + \gamma \varphi)^{-1} (I - \gamma \phi)$  and  $\gamma \in (0, \frac{1}{\|\Psi\|^2})$ .

Yao et al. [17] suggested the following inertial algorithm for solving (1.4): for two initial points  $x_0, x_1 \in H_1$ , the sequence  $\{x_n\}$  is generated by

$$\begin{cases} y_n = x_n + \tau_n(x_n - x_{n-1}), \\ x_{n+1} = (I + \gamma \Phi)^{-1} (I - \gamma \psi) [y_n - \theta_n \Psi^*(I - B) \Psi(y_n)], n \ge 1, \end{cases}$$
 (1.6)

where

$$\theta_n = \begin{cases} \frac{\varepsilon_n \| (I - B) \Psi(y_n) \|^2}{\| \Psi^* (I - B) \Psi(y_n) \|^2}, & \text{if } (I - B) \Psi(y_n) \neq 0, \\ \theta, & \text{if } (I - B) \Psi(y_n) = 0, \end{cases}$$

where  $B = (I + \gamma \varphi)^{-1} (I - \gamma \phi)$  and  $\varepsilon_n \in (0, 1)$ .

Further, Abuchu et al. [1] introduced a modified relaxed inertial Mann-type iterative algorithm for solving (1.4): for two initial points  $x_0, x_1 \in H_1$ , choose  $\tau_n$  such that  $\tau_n \in (0, \bar{\tau_n})$  where  $\bar{\tau_n} = \min\{\tau, \frac{\nu_n}{\|x_n - x_{n-1}\|}\}$  if  $x_n \neq x_{n-1}$ , otherwise,  $\bar{\tau_n} = \tau$  and compute the next step  $\{x_{n+1}\}$  by the following way

$$\begin{cases}
z_n = x_n + \tau_n(x_n - x_{n-1}), \\
y_n = (1 - \alpha_n)z_n, \\
u_n = y_n - \tau_n(\Psi^*(I - B)\Psi(y_n)), \\
x_{n+1} = \rho_n u_n + (1 - \rho_n)(I + \gamma\Phi)^{-1}(I - \gamma\psi)u_n, n \ge 1.
\end{cases}$$
(1.7)

where  $B = (I + \gamma \varphi)^{-1} (I - \gamma \phi)$ .

However, we observe that the operators  $\psi$  and  $\phi$  in (1.5)-(1.7) are all inverse strongly monotone. It is an interesting work to relax this restrictive condition imposed on the operators  $\psi$  and  $\phi$ . Our main purpose in this paper is to construct a new iterative algorithm in which the operators  $\psi$  and  $\phi$  are plain monotone (not necessarily inverse strongly monotone) for solving (1.4). Our algorithm is based on splitting method and self-adaptive technique. Under some mild assumptions, we show that

the constructed algorithm converges weakly to some solution of the split variational inclusion problem (1.4).

#### 2. Preliminaries

In this section, we include several notations and some useful conclusions. Throughout in this section, assume that H is a real Hilbert space. In H, the following equality is well known: for all  $z, z^{\dagger} \in H$  and  $\forall \tau \in \mathbf{R}$ ,

$$\|\tau z + (1-\tau)z^{\dagger}\|^{2} = \tau\|z\|^{2} + (1-\tau)\|z^{\dagger}\|^{2} - \tau(1-\tau)\|z - z^{\dagger}\|^{2}.$$
 (2.1)

**Definition 2.1.** Let  $T: H \to H$  be an operator. Recall that T is said to be

(i) L-Lipschitz if there is a positive constant L such that

$$||T(x) - T(x^{\dagger})|| \le L||x - x^{\dagger}||, \ \forall x, x^{\dagger} \in H.$$

(ii) strongly monotone if

$$\langle T(x) - T(x^{\dagger}), x - x^{\dagger} \rangle \ge \varepsilon ||x - x^{\dagger}||^2, \ \forall x, x^{\dagger} \in H,$$

where  $\varepsilon > 0$  is a constant.

(iii) inverse strongly monotone if

$$\langle T(x) - T(x^{\dagger}), x - x^{\dagger} \rangle \ge \varepsilon ||T(x) - T(x^{\dagger})||^2, \ \forall x, x^{\dagger} \in H,$$

where  $\varepsilon > 0$  is a constant.

(iv) monotone if

$$\langle T(x) - T(x^{\dagger}), x - x^{\dagger} \rangle \ge 0, \ \forall x, x^{\dagger} \in H.$$

**Definition 2.2.** Let  $S \colon H \rightrightarrows 2^H$  be a multi-valued operator. S is said to be monotone if and only if

$$\langle x - \hat{x}, p - \hat{p} \rangle > 0, \ \forall x, \hat{x} \in H,$$

where  $p \in S(x)$  and  $\hat{p} \in S(\hat{x})$ .

A multi-valued monotone operator is said to be maximal monotone if and only if its graph is not strictly contained in the graph of any other monotone operator.

Let  $S: H \rightrightarrows 2^H$  be a maximal monotone operator and  $\gamma > 0$  be a constant. Define an operator  $\mathrm{Res}_{\gamma}^S: H \to H$  by

$$\operatorname{Res}_{\gamma}^{S}(x) := (I + \gamma S)^{-1}(x), \ \forall x \in H,$$

which is called the resolvent of S. It is well-known tat the resolvent  $\operatorname{Res}_{\gamma}^{S}$  is a single-valued firmly-nonexpansive and  $S^{-1}(0) = \{x \in H : \operatorname{Res}_{\gamma}^{S}(x) = x\}.$ 

**Lemma 2.1.** ([13]) Let  $\Omega$  be a nonempty closed convex subset of a real Hilbert space H. Let  $\{s_k\} \subset H$  be a sequence. If the following assumptions are satisfied

- (i)  $\forall s^* \in \Omega$ ,  $\lim_{k \to \infty} ||s_k s^*||$  exists;
- (ii)  $\omega_w(s_k) \subset \Omega$ , where

 $\omega_w(s_k) := \{ s \in H : \text{there is a subsequence } \{s_{k_i}\} \text{ of } \{s_k\} \text{ such that } s_{k_i} \rightharpoonup s \text{ as } i \to +\infty \}.$ 

Then  $s_k \rightharpoonup \hat{s} \in \Omega$  as  $k \to +\infty$ .

#### 3. Main results

Let  $H_1$  and  $H_2$  be two real Hilbert spaces. Let  $\Phi: H_1 \rightrightarrows 2^{H_1}$  and  $\varphi: H_2 \rightrightarrows 2^{H_2}$  be two maximal monotone operators. Let  $\psi: H_1 \to H_1$  be an  $\alpha_1$ -Lipschitz monotone operator and  $\phi: H_2 \to H_2$  be an  $\alpha_2$ -Lipschitz monotone operator. Let  $\Psi: H_1 \to H_2$  be a nonzero bounded linear operator with its adjoint  $\Psi^*$ . In what follows, suppose that  $\Omega:=\{x|x\in (\Phi+\psi)^{-1}(0), \Psi(x)\in (\phi+\varphi)^{-1}(0)\}\neq\emptyset$ .

Let  $\{\eta_k\}$  and  $\{\theta_k\}$  be two real number sequences satisfying  $\eta_k \in [\underline{\eta}, \overline{\eta}] \subset (0, 1]$  and  $\theta_k \in [\underline{\theta}, \overline{\theta}] \subset (0, 1]$  for all  $k \geq 0$ . Let  $\varepsilon_1, \varepsilon_2, \tau_1, \tau_2, \rho_1, \rho_2$  be six constants in (0, 1) and  $\sigma$  be a constant in  $(0, 1/\|\Psi\|^2)$ .

Next, we present an iterative algorithm for finding a point in  $\Omega$ .

**Algorithm 3.1.** Let  $x_0 \in H_1$  be an initial point. Let  $\beta_0$  and  $\zeta_0$  be two positive constants. Set k = 0.

**Step 1.** For given  $x_k$ , compute

$$z_k = \operatorname{Res}_{\tau_1 \beta_k}^{\Phi} (x_k - \tau_1 \beta_k \psi(x_k)), \tag{3.1}$$

where  $\beta_k = \max\{1, \varepsilon_1, \varepsilon_1^2, \cdots\}$  satisfies

$$\tau_1 \beta_k \| \psi(x_k) - \psi(z_k) \| \le \rho_1 \| x_k - z_k \|, \tag{3.2}$$

and compute

$$u_k = (1 - \eta_k)x_k + \eta_k(z_k - \tau_1\beta_k(\psi(z_k) - \psi(x_k))). \tag{3.3}$$

Step 2. Compute

$$w_k = \operatorname{Res}_{\tau_2 \zeta_k}^{\varphi}(\Psi(u_k) - \tau_2 \zeta_k \phi(\Psi(u_k))), \tag{3.4}$$

where  $\zeta_k = \max\{1, \varepsilon_2, \varepsilon_2^2, \cdots\}$  satisfies

$$\tau_2 \zeta_k \|\phi(\Psi(u_k)) - \phi(w_k)\| \le \rho_2 \|\Psi(u_k) - w_k\|, \tag{3.5}$$

and compute

$$y_k = (1 - \theta_k)\Psi(u_k) + \theta_k(w_k - \tau_2\zeta_k(\phi(w_k) - \phi(\Psi(u_k)))). \tag{3.6}$$

Step 3. Compute

$$x_{k+1} = u_k + \sigma \Psi^*(y_k - \Psi(u_k)). \tag{3.7}$$

Set k := k + 1 and return to Step 1.

**Remark 3.1.** If  $z^k = x^k$  for some k, then  $x^k \in (\Phi + \psi)^{-1}(0)$ . In this case, we can choose  $\beta_k = 1$ . If  $z^k \neq x^k$ , then there exists some  $\beta_k \in \{1, \varepsilon_1, \varepsilon_1^2, \cdots\}$  satisfying  $\beta_k \leq \frac{\rho_1}{\tau_1 \alpha_1}$  because  $\|\psi(x_k) - \psi(z_k)\| \leq \alpha_1 \|x_k - z_k\|$ .

Now, we state that there must has some  $\beta_k = \varepsilon_1^n$  such that (3.2) holds. If not so, we have  $\rho_1 \| x_k - z_k \| < \tau_1 \beta_k \| \psi(x_k) - \psi(z_k) \| < \tau_1 \beta_k \alpha_1 \| x_k - z_k \|$  for all  $k \in \mathcal{N}$  which yields that  $\beta_k > \frac{\rho_1}{\tau_1 \alpha_1} (\forall k \in \mathcal{N})$ . It results in a contradiction.

Similarly, we can prove that there exists  $\zeta_k = \max\{1, \varepsilon_2, \varepsilon_2^2, \cdots\}$  such that (3.5) holds.

Next, we demonstrate the convergence of Algorithm 3.1.

**Theorem 3.1.** The sequence  $\{x_k\}$  generated by Algorithm 3.1 converges weakly to some point in  $\Omega$ .

*Proof.* Let  $u^{\dagger} \in \Omega$ . We have  $u^{\dagger} \in (\Phi + \psi)^{-1}(0)$  and  $\Psi(u^{\dagger}) \in (\varphi + \phi)^{-1}(0)$ . Then,

$$||z_{k} - u^{\dagger} + \tau_{1}\beta_{k}(\psi(x_{k}) - \psi(z_{k}))||^{2} = ||z_{k} - u^{\dagger}||^{2} + \tau_{1}^{2}\beta_{k}^{2}||\psi(x_{k}) - \psi(z_{k})||^{2} + 2\tau_{1}\beta_{k}\langle\psi(x_{k}) - \psi(z_{k}), z_{k} - u^{\dagger}\rangle.$$

$$(3.8)$$

Note that

$$||z_k - u^{\dagger}||^2 = ||x_k - u^{\dagger}||^2 - ||z_k - x_k||^2 + 2\langle z_k - x_k, z_k - u^{\dagger} \rangle.$$

This together with (3.8) implies that

$$||z_{k} - u^{\dagger} + \tau_{1}\beta_{k}(\psi(x_{k}) - \psi(z_{k}))||^{2} = ||x_{k} - u^{\dagger}||^{2} + 2\tau_{1}\beta_{k}\langle\psi(x_{k}) - \psi(z_{k}), z_{k} - u^{\dagger}\rangle$$

$$- ||z_{k} - x_{k}||^{2} + 2\langle z_{k} - x_{k}, z_{k} - u^{\dagger}\rangle$$

$$+ \tau_{1}^{2}\beta_{k}^{2}||\psi(x_{k}) - \psi(z_{k})||^{2}$$

$$= ||x_{k} - u^{\dagger}||^{2} + \tau_{1}^{2}\beta_{k}^{2}||\psi(x_{k}) - \psi(z_{k})||^{2}$$

$$+ 2\langle z_{k} - x_{k} + \tau_{1}\beta_{k}(\psi(x_{k}) - \psi(z_{k})), z_{k} - u^{\dagger}\rangle$$

$$- ||z_{k} - v_{k}||^{2}.$$
(3.9)

From (3.1),  $z_k = (I + \tau_1 \beta_k \Phi)^{-1} (x_k - \tau_1 \beta_k \psi(x_k))$ . Then

$$x_k - \tau_1 \beta_k \psi(x_k) \in (I + \tau_1 \beta_k \Phi) z_k. \tag{3.10}$$

This results in that

$$x_k - z_k - \tau_1 \beta_k (\psi(x_k) - \psi(z_k)) \in \tau_1 \beta_k (\Phi + \psi) z_k. \tag{3.11}$$

Owing to  $0 \in \tau_1 \beta_k(\Phi + \psi) u^{\dagger}$ , by the monotonicity of  $\tau_1 \beta_k(\Phi + \psi)$  and (3.11) we obtain

$$\langle z_k - x_k + \tau_1 \beta_k(\psi(x_k) - \psi(z_k)), z_k - u^{\dagger} \rangle \le 0. \tag{3.12}$$

By (3.2),  $\tau_1^2 \beta_k^2 \|\psi(x_k) - \psi(z_k)\|^2 \le \rho_1^2 \|x_k - z_k\|^2$ . By virtue of (3.9) and (3.12), we receive

$$||z_k - u^{\dagger} + \tau_1 \beta_k (\psi(x_k) - \psi(z_k))||^2 \le ||x_k - u^{\dagger}||^2 - (1 - \rho_1^2) ||z_k - x_k||^2.$$
 (3.13)

Applying equality (2.1) to (3.3) to deduce

$$||u_k - u^{\dagger}||^2 = (1 - \eta_k)||x_k - u^{\dagger}||^2 + \eta_k||z_k - u^{\dagger} + \tau_1 \beta_k (\psi(x_k) - \psi(z_k))||^2 - (1 - \eta_k) \eta_k ||z_k - x_k + \tau_1 \beta_k (\psi(x_k) - \psi(z_k))||^2.$$
(3.14)

Thanks to (3.13) and (3.14), we have

$$||u_{k} - u^{\dagger}||^{2} \leq ||x_{k} - u^{\dagger}||^{2} - (1 - \eta_{k})\eta_{k}||z_{k} - x_{k} + \tau_{1}\beta_{k}(\psi(x_{k}) - \psi(z_{k}))||^{2} - \eta_{k}(1 - \rho_{1}^{2})||z_{k} - x_{k}||^{2} \leq ||x_{k} - u^{\dagger}||^{2}.$$
(3.15)

Since

$$\begin{aligned} \|w_k - \Psi(u^{\dagger}) + \tau_2 \zeta_k(\phi(\Psi(u_k)) - \phi(w_k))\|^2 \\ &= \|w_k - \Psi(u^{\dagger})\|^2 + \tau_2^2 \zeta_k^2 \|\phi(\Psi(u_k)) - \phi(w_k)\|^2 \\ &+ 2\tau_2 \zeta_k \langle \phi(\Psi(u_k)) - \phi(w_k), w_k - \Psi(u^{\dagger}) \rangle. \end{aligned}$$

and

$$||w_k - \Psi(u^{\dagger})||^2 = ||\Psi(u_k) - \Psi(u^{\dagger})||^2 + 2\langle w_k - \Psi(u_k), w_k - \Psi(u^{\dagger}) \rangle - ||w_k - \Psi(u_k)||^2,$$
we attain

$$||w_{k} - \Psi(u^{\dagger}) + \tau_{2}\zeta_{k}(\phi(\Psi(u_{k})) - \phi(w_{k}))||^{2}$$

$$= ||\Psi(u_{k}) - \Psi(u^{\dagger})||^{2} + 2\tau_{2}\zeta_{k}\langle\phi(\Psi(u_{k})) - \phi(w_{k}), w_{k} - \Psi(u^{\dagger})\rangle$$

$$- ||w_{k} - \Psi(u_{k})||^{2} + 2\langle w_{k} - \Psi(u_{k}), w_{k} - \Psi(u^{\dagger})\rangle$$

$$+ \tau_{2}^{2}\zeta_{k}^{2}||\phi(\Psi(u_{k})) - \phi(w_{k})||^{2}$$

$$= ||\Psi(u_{k}) - \Psi(u^{\dagger})||^{2} + \tau_{2}^{2}\zeta_{k}^{2}||\phi(\Psi(u_{k})) - \phi(w_{k})||^{2}$$

$$+ 2\langle w_{k} - \Psi(u_{k}) + \tau_{2}\zeta_{k}(\phi(\Psi(u_{k})) - \phi(w_{k})), w_{k} - \Psi(u^{\dagger})\rangle$$

$$- ||w_{k} - \Psi(u_{k})||^{2}.$$
(3.16)

Based on (3.4), we achieve

$$\Psi(u_k) - w_k - \tau_2 \zeta_k(\phi(\Psi(u_k)) - \phi(w_k)) \in \tau_2 \zeta_k(\varphi + \phi) w_k. \tag{3.17}$$

Using the monotonicity of  $\tau_2\zeta_k(\varphi+\phi)$  and  $0 \in \tau_2\zeta_k(\varphi+\phi)\Psi(u^{\dagger})$ , according to (3.17), we have

$$\langle w_k - \Psi(u_k) + \tau_2 \zeta_k(\phi(\Psi(u_k)) - \phi(w_k)), w_k - \Psi(u^\dagger) \rangle \le 0. \tag{3.18}$$

Furthermore, by (3.5),

$$\tau_2^2 \zeta_k^2 \|\phi(\Psi(u_k)) - \phi(w_k)\|^2 \le \rho_2^2 \|\Psi(u_k) - w_k\|^2.$$

So, from (3.16) and (3.18), we have

$$||w_k - \Psi(u^{\dagger}) + \tau_2 \zeta_k(\phi(\Psi(u_k)) - \phi(w_k))||^2 \le ||\Psi(u_k) - \Psi(u^{\dagger})||^2 - (1 - \rho_2^2)||w_k - \Psi(u_k)||^2.$$
(3.19)

Utilizing (2.1) to (3.6) to get

$$||y_{k} - \Psi(u^{\dagger})||^{2} = (1 - \theta_{k})||\Psi(u_{k}) - \Psi(u^{\dagger})||^{2} + \theta_{k}||w_{k} - \Psi(u^{\dagger}) + \tau_{2}\zeta_{k}(\phi(\Psi(u_{k})) - \phi(w_{k}))||^{2} - (1 - \theta_{k})\theta_{k}||w_{k} - \Psi(u_{k}) + \tau_{2}\zeta_{k}(\phi(\Psi(u_{k})) - \phi(w_{k}))||^{2}.$$

$$(3.20)$$

Substituting (3.19) into (3.20), we obtain

$$||y_{k} - \Psi(u^{\dagger})||^{2} \leq ||\Psi(u_{k}) - \Psi(u^{\dagger})||^{2} - \theta_{k}(1 - \rho_{2}^{2})||w_{k} - \Psi(u_{k})||^{2} - (1 - \theta_{k})\theta_{k}||w_{k} - \Psi(u_{k}) + \tau_{2}\zeta_{k}(\phi(\Psi(u_{k})) - \phi(w_{k}))||^{2}$$

$$\leq ||\Psi(u_{k}) - \Psi(u^{\dagger})||^{2}.$$
(3.21)

Observe that

$$\begin{aligned} \langle u_k - u^{\dagger}, \Psi^*(y_k - \Psi(u_k)) \rangle &= \langle \Psi(u_k) - \Psi(u^{\dagger}), y_k - \Psi(u_k) \rangle \\ &= \frac{1}{2} [\|y_k - \Psi(u^{\dagger})\|^2 - \|\Psi(u_k) - \Psi(u^{\dagger})\|^2] \\ &- \frac{1}{2} \|y_k - \Psi(u_k)\|^2, \end{aligned}$$

which together with (3.21) yields that

$$\langle u_k - u^{\dagger}, \Psi^*(y_k - \Psi(u_k)) \rangle \le -\frac{1}{2} \theta_k (1 - \rho_2^2) \|w_k - \Psi(u_k)\|^2 - \frac{1}{2} \|y_k - \Psi(u_k)\|^2.$$
 (3.22)

According to (3.7), (3.15) and (3.22), we receive

$$||x_{k+1} - u^{\dagger}||^{2} = ||u_{k} - u^{\dagger} + \sigma \Psi^{*}(y_{k} - \Psi(u_{k}))||^{2}$$

$$= ||u_{k} - u^{\dagger}||^{2} + ||\sigma \Psi^{*}(y_{k} - \Psi(u_{k}))||^{2}$$

$$+ 2\sigma \langle \Psi^{*}(y_{k} - \Psi(u_{k})), u_{k} - u^{\dagger} \rangle$$

$$\leq ||u_{k} - u^{\dagger}||^{2} + \sigma^{2} ||\Psi||^{2} ||y_{k} - \Psi(u_{k})||^{2} - \sigma ||y_{k} - \Psi(u_{k})||^{2}$$

$$- \sigma \theta_{k} (1 - \rho_{2}^{2}) ||w_{k} - \Psi(u_{k})||^{2}$$

$$= ||u_{k} - u^{\dagger}||^{2} - \sigma (1 - \sigma ||\Psi||^{2}) ||y_{k} - \Psi(u_{k})||^{2}$$

$$- \sigma \theta_{k} (1 - \rho_{2}^{2}) ||w_{k} - \Psi(u_{k})||^{2}$$

$$\leq ||x_{k} - u^{\dagger}||^{2} - \sigma (1 - \sigma ||\Psi||^{2}) ||y_{k} - \Psi(u_{k})||^{2}$$

$$- \sigma \theta_{k} (1 - \rho_{2}^{2}) ||w_{k} - \Psi(u_{k})||^{2}$$

$$\leq ||x_{k} - u^{\dagger}||^{2},$$

$$(3.23)$$

which implies that  $\lim_{k\to+\infty} \|x_k - u^{\dagger}\|$  exists and

$$\lim_{k \to +\infty} \|u_k - u^{\dagger}\| = \lim_{k \to +\infty} \|x_k - u^{\dagger}\|. \tag{3.24}$$

It is easily seen that the sequences  $\{x_k\}$ ,  $\{y_k\}$ ,  $\{z_k\}$ ,  $\{u_k\}$  and  $\{w_k\}$  are all bounded. From (3.23), we have

$$\sigma(1 - \sigma \|\Psi\|^2) \|y_k - \Psi(u_k)\|^2 + \sigma \theta_k (1 - \rho_2^2) \|w_k - \Psi(u_k)\|^2$$

$$\leq \|x_k - u^{\dagger}\|^2 - \|x_{k+1} - u^{\dagger}\|^2 \to 0.$$

It yields that

$$\lim_{k \to +\infty} \|y_k - \Psi(u_k)\| = 0, \tag{3.25}$$

and

$$\lim_{k \to +\infty} \|w_k - \Psi(u_k)\| = 0. \tag{3.26}$$

Thanks to (3.15), we obtain

$$\eta_k(1-\rho_1^2)\|z_k-x_k\|^2 \le \|x_k-u^\dagger\|^2 - \|u_k-u^\dagger\|^2 \to 0.$$

It results in that

$$\lim_{k \to +\infty} ||z_k - x_k|| = 0. \tag{3.27}$$

In addition, from (3.3), we have

$$||u_k - x_k|| = ||\eta_k[z_k - x_k - \tau_1 \beta_k(\psi(z_k) - \psi(x_k))]||$$
  
$$\leq \eta_k ||z_k - x_k|| + \eta_k \tau_1 \beta_k ||\psi(z_k) - \psi(x_k))||.$$

Hence, we get from (3.27) and the Lipschitz continuity of  $\psi$  that

$$\lim_{k \to +\infty} ||u_k - x_k|| = 0.$$
 (3.28)

In view of (3.7), we have

$$x_{k+1} - x_k = u_k - x_k + \sigma \Psi^*(y_k - \Psi(u_k)).$$

Hence, take into account of (3.25) and (3.28), we deduce

$$\lim_{k \to +\infty} ||x_{k+1} - x_k|| = 0. \tag{3.29}$$

Next, we show  $\omega_w(x_k) \subset \Omega$ . Choosing any  $u^* \in \omega_w(x_k)$ , there is a subsequence  $\{x_{k_i}\}$  of  $\{x_k\}$  such that  $x_{k_i} \to u^*$  as  $i \to \infty$ . Let  $(\hat{p}, \hat{q}) \in \operatorname{Graph}(\Phi + \psi)$ . Then,  $\hat{q} - \psi(\hat{p}) \in \Phi(\hat{p})$ . By (3.1),

$$z_{k_i} = \operatorname{Res}_{\tau_1 \beta_{k_i}}^{\Phi} (x_{k_i} - \tau_1 \beta_{k_i} \psi(x_{k_i})) = (I + \tau_1 \beta_{k_i} \Phi)^{-1} (x_{k_i} - \tau_1 \beta_{k_i} \psi(x_{k_i})).$$

It follows that

$$\frac{x_{k_i} - z_{k_i}}{\tau_1 \beta_{k_i}} - \psi(x_{k_i}) \in \Phi(z_{k_i}). \tag{3.30}$$

Combining (3.30) and the monotonicity of  $\Phi$ , we acquire

$$\langle \hat{q} - \psi(\hat{p}) - (\frac{x_{k_i} - z_{k_i}}{\tau_1 \beta_{k_i}} - \psi(x_{k_i})), \hat{p} - z_{k_i} \rangle \ge 0.$$

It follows that

$$\langle \hat{q}, \hat{p} - z_{k_i} \rangle \ge \langle \psi(\hat{p}) - \psi(x_{k_i}) + \frac{x_{k_i} - z_{k_i}}{\tau_1 \beta_{k_i}}, \hat{p} - z_{k_i} \rangle$$

$$= \langle \psi(\hat{p}) - \psi(z_{k_i}), \hat{p} - z_{k_i} \rangle + \langle \psi(z_{k_i}) - \psi(x_{k_i}), \hat{p} - z_{k_i} \rangle$$

$$+ \frac{1}{\tau_1 \beta_{k_i}} \langle x_{k_i} - z_{k_i}, \hat{p} - z_{k_i} \rangle.$$
(3.31)

Since  $\psi$  is monotone,  $\langle \psi(\hat{p}) - \psi(z_{k_i}), \hat{p} - z_{k_i} \rangle \geq 0$ . It follows from (3.31) that

$$\langle \hat{q}, \hat{p} - z_{k_i} \rangle \ge \langle \psi(z_{k_i}) - \psi(x_{k_i}), \hat{p} - z_{k_i} \rangle + \frac{1}{\tau_1 \beta_{k_i}} \langle x_{k_i} - z_{k_i}, \hat{p} - z_{k_i} \rangle. \tag{3.32}$$

Note that  $x_{k_i} \rightharpoonup u^*$  and  $z_{k_i} \rightharpoonup u^*$ . Combining (3.27) with (3.32), we obtain

$$\langle \hat{q}, \hat{p} - u^* \rangle > 0$$

for all  $(\hat{p}, \hat{q}) \in \text{Graph}(\Phi + \psi)$ . So,  $u^* \in (\Phi + \psi)^{-1}(0)$ .

Next, we prove  $\Psi(u^*) \in (\varphi + \phi)^{-1}(0)$ . Let  $(p^{\dagger}, q^{\dagger}) \in \operatorname{Graph}(\varphi + \phi)$ .

Then,  $q^{\dagger} - \phi(p^{\dagger}) \in \varphi(p^{\dagger})$ . By (3.4), we have

$$w_{k_i} = \operatorname{Res}_{\tau_2 \zeta_{k_i}}^{\varphi} (\Psi(u_{k_i}) - \tau_2 \zeta_{k_i} \phi(\Psi(u_{k_i}))) = (I + \tau_2 \zeta_{k_i} \varphi)^{-1} (\Psi(u_{k_i}) - \tau_2 \zeta_{k_i} \phi(\Psi(u_{k_i}))).$$

It follows that

$$\frac{\Psi(u_{k_i}) - w_{k_i}}{\tau_2 \zeta_{k_i}} - \phi(\Psi(u_{k_i})) \in \varphi(w_{k_i}). \tag{3.33}$$

With the help of the monotonicity of  $\varphi$ , from (3.33), we obtain

$$\langle q^{\dagger} - \phi(p^{\dagger}) - (\frac{\Psi(u_{k_i}) - w_{k_i}}{\tau_2 \zeta_{k_i}} - \phi(\Psi(u_{k_i}))), p^{\dagger} - w_{k_i} \rangle \ge 0.$$

Then,

$$\langle q^{\dagger}, p^{\dagger} - w_{k_{i}} \rangle \geq \langle \phi(p^{\dagger}) - \phi(\Psi(u_{k_{i}})) + \frac{\Psi(u_{k_{i}}) - w_{k_{i}}}{\tau_{2} \zeta_{k_{i}}}, p^{\dagger} - w_{k_{i}} \rangle$$

$$= \langle \phi(p^{\dagger}) - \phi(w_{k_{i}}), p^{\dagger} - w_{k_{i}} \rangle + \langle \phi(w_{k_{i}}) - \phi(\Psi(u_{k_{i}})), p^{\dagger} - w_{k_{i}} \rangle$$

$$+ \frac{1}{\tau_{2} \zeta_{k_{i}}} \langle \Psi(u_{k_{i}}) - w_{k_{i}}, p^{\dagger} - w_{k_{i}} \rangle.$$

$$(3.34)$$

Since  $\langle \phi(p^{\dagger}) - \phi(w_{k_i}), p^{\dagger} - w_{k_i} \rangle \ge 0$ , it follows from (3.34) that

$$\langle q^{\dagger}, p^{\dagger} - w_{k_i} \rangle \ge \langle \phi(w_{k_i}) - \phi(\Psi(u_{k_i})), p^{\dagger} - w_{k_i} \rangle + \frac{1}{\tau_2 \zeta_{k_i}} \langle \Psi(u_{k_i}) - w_{k_i}, p^{\dagger} - w_{k_i} \rangle.$$
(3.35)

Owing to  $w_{k_i} \rightharpoonup \Psi(u^*)$  and  $\|\Psi(u_{k_i}) - w_{k_i}\| \to 0$ , from (3.35), we conclude that

$$\langle q^{\dagger}, p^{\dagger} - \Psi(u^*) \rangle \ge 0$$

for all  $(p^{\dagger}, q^{\dagger}) \in \operatorname{Graph}(\phi + \varphi)$  which implies that  $\Psi(u^*) \in (\phi + \varphi)^{-1}(0)$ . Thus,  $u^* \in \Omega$ . So,  $\omega_w(x_k) \subset \Omega$ .

Note that (i)  $\forall u^{\dagger} \in \Omega$ ,  $\lim_{k \to \infty} ||x_k - u^{\dagger}||$  exists and (ii)  $\omega_w(x_k) \subset \Omega$ . Applying Lemma 2.1, we can conclude that  $\{x_k\}$  converges weakly to some point in  $\Omega$ . This completes the proof.

Let H be a real Hilbert spaces. Let  $\Phi: H \rightrightarrows 2^H$  and  $\varphi: H \rightrightarrows 2^H$  be two maximal monotone operators. Let  $\psi: H \to H$  be an  $\alpha_1$ -Lipschitz monotone operator and  $\phi: H \to H$  be an  $\alpha_2$ -Lipschitz monotone operator. Suppose that  $\Omega_1 := \{x | x \in (\Phi + \psi)^{-1}(0) \cap (\phi + \varphi)^{-1}(0)\} \neq \emptyset$ . Let  $\{\eta_k\}$  and  $\{\theta_k\}$  be two real number sequences satisfying  $\eta_k \in [\underline{\eta}, \overline{\eta}] \subset (0, 1]$  and  $\theta_k \in [\underline{\theta}, \overline{\theta}] \subset (0, 1]$  for all  $k \geq 0$ . Let  $\varepsilon_1, \varepsilon_2, \tau_1, \tau_2, \rho_1, \rho_2$  and  $\sigma$  be seven constants in (0, 1).

**Algorithm 3.2.** Let  $x_0 \in H$  be an initial point. Let  $\beta_0$  and  $\zeta_0$  be two positive constants. Set k = 0.

**Step 1.** For given  $x_k$ , compute

$$z_k = \operatorname{Res}_{\tau_1 \beta_k}^{\Phi} (x_k - \tau_1 \beta_k \psi(x_k)),$$

where  $\beta_k = \max\{1, \varepsilon_1, \varepsilon_1^2, \cdots\}$  satisfies

$$\tau_1 \beta_k \| \psi(x_k) - \psi(z_k) \| \le \rho_1 \| x_k - z_k \|,$$

and compute

$$u_k = (1 - \eta_k)x_k + \eta_k(z_k - \tau_1\beta_k(\psi(z_k) - \psi(x_k))).$$

Step 2. Compute

$$w_k = \operatorname{Res}_{\tau_2 \zeta_k}^{\varphi} (u_k - \tau_2 \zeta_k \phi(u_k)),$$

where  $\zeta_k = \max\{1, \varepsilon_2, \varepsilon_2^2, \cdots\}$  satisfies

$$\tau_2 \zeta_k \|\phi(u_k) - \phi(w_k)\| \le \rho_2 \|u_k - w_k\|,$$

and compute

$$y_k = (1 - \theta_k)u_k + \theta_k(w_k - \tau_2\zeta_k(\phi(w_k) - \phi(u_k))).$$

Step 3. Compute

$$x_{k+1} = u_k + \sigma(y_k - u_k).$$

Set k := k + 1 and return to Step 1.

Corollary 3.1. The sequence  $\{x_k\}$  generated by Algorithm 3.2 converges weakly to some point in  $\Omega_1$ .

#### 4. Conclusions

In this paper, we investigate the split variational inclusion problem (1.4) where the involved operators  $\psi$  and  $\phi$  are all plain monotone. To solve this split monotone variational inclusion problem, we suggest an iterative algorithm by using the splitting method and self-adaptive rules. We show the proposed algorithm converges weakly to a solution of the split variational inclusion (1.4) provided the involved parameters fulfil some appropriate restrictions.

**Acknowledgment.** Li-Jun Zhu was supported in part by the Natural Science Foundation of Ningxia province [grant numbers 2023AAC03301 and 2023AAC03386], the Major Research Projects of NingXia [grant number 2021BEG03049], and Major Scientific and Technological Innovation Projects of YinChuan [grant numbers 2022RKX03 and NXYLXK2017B09].

### References

- J.A. Abuchu, G. Ugwunnadi, O.K. Narain, Inertial Mann-type iterative method for solving split monotone variational inclusion problem with applications, J. Ind. Manag. Optim., 19(2023), 3020-3043.
- [2] S. Adly, Perturbed algorithms and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl., 201(1996), 609-630.
- [3] P. Cholamjiak, D.V. Hieu, Y.J. Cho, Relaxed forward-backward splitting methods for solving variational inclusions and applications, J. Sci. Comput., 88(2021), Article no. 85.
- [4] C.S. Chuang, Algorithms with new parameter conditions for split variational inclusion problems in Hilbert spaces with application to split feasibility problem, Optimization, 65(2016), 859-876.
- [5] A. Dixit, D.R. Sahu, P. Gautam, T. Som, J.C. Yao, An accelerated forward-backward splitting algorithm for solving inclusion problems with applications to regression and link prediction problems, J. Nonlinear Var. Anal., 5(2021), 79-101.
- [6] Y.P. Fang, N.J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput., 145(2003), 795-803.
- [7] C. Izuchukwu, J.N. Ezeora, J. Martinez-Moreno, A modified contraction method for solving certain class of split monotone variational inclusion problems with application, Comput. Appl. Math., 39(2020), Article no. 188.
- [8] K.R. Kazmi, S.H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optimization Lett., 8(2014), 1113-1124.
- [9] S.A. Khan, S. Suantai, W. Cholamjiak, Shrinking projection methods involving inertial forward-backward splitting methods for inclusion problems, Rev. R. Acad. Cienc. Exactas Fis. Nat., 113(2019), 645-656.
- [10] A. Kheawborisut, A. Kangtunyakarn, Modified subgradient extragradient method for system of variational inclusion problem and finite family of variational inequalities problem in real Hilbert space, J. Inequal. Appl., 2021(2021), Article no. 53.
- [11] Y. Malitsky, M.K. Tam, A forward-backward splitting method for monotone inclusions without cocoercivity, SIAM J. Optim., 30(2020), 1451-1472.
- [12] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150(2011), 275-283.

- [13] R.T. Rockafellar, Monotone operators associated with saddle functions and minimax problems, In: Browder F.E. (ed.) Nonlinear Functional Analysis, Part 1, Amer. Math. Soc., 18(1970), 397-407.
- [14] T. Seangwattana, K. Sombut, A. Arunchai, K. Sitthithakerngkiet, A modified Tseng's method for solving the modified variational inclusion problems and its applications, Symmetry, Basel, 13(2021), Article no. 2250.
- [15] R. Suparatulatorn, W. Cholamjiak, A. Gibali, T. Mouktonglang, A parallel Tseng's splitting method for solving common variational inclusion applied to signal recovery problems, Adv. Diff. Equ., 2021(2021), Article no 492.
- [16] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38(2000), 431-446.
- [17] Y. Yao, Y. Shehu, X. Li, Q. Dong, A method with inertial extrapolation step for split monotone inclusion problems, Optimization, 70(2021), 741-761.

Received: November 22, 2022; Accepted: March 25, 2023.