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Abstract. We study the problem of finding a common solution to the variational inequality prob-
lem with a pseudomonotone and Lipschitz continuous operator and the fixed point problem with a

demicontractive mapping in real Hilbert spaces. Inspired by the inertial method and the subgradient

extragradient method, two improved viscosity-type efficient iterative methods with a new adaptive
non-monotonic step size criterion are proposed. We prove that the strong convergence theorems of
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1. Introduction

In recent decades, bilevel optimization has received a lot of attention in mathemat-
ics and industry due to the proliferation of practical applications and the potential
of algorithms in solving these problems. Bilevel optimization is a special type of
optimization where one optimization problem contains the other optimization prob-
lem as a constraint. This means that the decision of the upper leader is influenced
by the decision of the lower leader. Bilevel optimization problems are usually found
in a number of real-world problems, which include problems in areas such as trans-
portation, engineering, environmental ecology, and economics; see, e.g., [8, 9]. In this
paper, we aim to propose efficient adaptive numerical algorithms to solve variational
inequality problems and fixed point problems in real Hilbert spaces. The reason for
studying such problems is that the ideas and techniques of variational inequalities and
fixed point problems are being applied in various scientific fields and the theory can
provide a straightforward and cohesive framework for the consideration of a variety
of unconnected problems; see, for example, [1, 27, 32, 36, 37].
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We begin by reviewing the two involved problems. Let C be a nonempty, closed,
and convex subset of a real Hilbert space H with inner product 〈· , ·〉 and induced
norm ‖ · ‖, and B : H → H be a given operator. The classical variational inequality
problem (shortly, VIP) is formulated as

find x ∈ C such that 〈Bx, y − x〉 ≥ 0, ∀y ∈ C. (VIP)

For simplicity, its solution set is written as Ω. Next we analyze some existing classical
and effective algorithms for solving (VIP). The most fundamental of them is the
following extragradient method (shortly, EGM) proposed by Korpelevich [15] with
the form: {

un = ProjC (xn − λBxn) ,

xn+1 = ProjC (xn − λBun) ,
(1.1)

where the operator B is monotone and L-Lipschitz continuous, ProjC is denoted by
the metric projection from H onto C, and λ ∈ (0, 1/L). It is observed that EGM
involves two projections on the set C. This affects the execution efficiency of the
method when the projection on the feasible set C is difficult to compute. Thus, one of
the main improvements of EGM is to minimize the number of ProjC computations in
each iteration. Censor, Gibali and Reich [6] tried in this direction and proposed the
subgradient extragradient method (shortly, SEGM), which modifies EGM by replacing
the second projection with a projection on the half-space (it can be calculated by a
closed-form formula, see [2, Example 29.20]). The algorithm is as follows:

un = ProjC (xn − λBxn) ,

Tn = {x ∈ H | 〈xn − λBxn − un, x− un〉 ≤ 0} ,
xn+1 = ProjTn

(xn − λBun) ,

(1.2)

where the operator B and step size λ are the same as in (1.1). It is worth noting that
the sequences generated by (1.1) and (1.2) converge weakly to an element in Ω when
the solution set is nonempty. In recent years, an increasing number of researchers have
focused on developing efficient and implementable extragradient-type algorithms for
solving (VIP), and continue to attract in-depth research; see, e.g., [10, 12, 22, 24, 33]
and the extensive references therein.

On the other hand, the topical problem of finding fixed points in functional analysis
is closely related to variational inequalities. The following is a description of the fixed
point problem (shortly, FPP):

find x ∈ C such that Qx = x, (FPP)

where Q : C → C is a nonlinear mapping. The solution set of (FPP) is denoted as Ψ.
We want to find a common solution of (VIP) and (FPP) in this paper, i.e.,

find q such that q ∈ Ψ ∩ Ω. (VIP-FPP)

In the past few decades, many algorithms have been proposed to solve (VIP-FPP);
see, e.g., [18, 7, 16, 25, 4, 30, 5, 35, 36]. Among them, Nadezhkina and Takahashi
[18], and Censor, Gibali and Reich [7] proposed the following two algorithms inspired
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by EGM and SEGM, respectively,{
un = ProjC (xn − λBxn) ,

xn+1 = σnxn + (1− σn)QProjC (xn − λBun) ,
(1.3)

and 
un = ProjC (xn − λBxn) ,

Tn = {x ∈ H | 〈xn − λBxn − un, x− un〉 ≤ 0} ,
xn+1 = σnxn + (1− σn)QProjTn

(xn − λBun) ,

(1.4)

where the operator B and step size λ are the same as in (1.1), and the mapping Q
is nonexpansive. We note that the sequences generated by such iterative schemes as
(1.3) and (1.4) both converge only weakly to the solution of (VIP-FPP). It is seen
from some practical applications that algorithms with strong convergence usually
obtain better results than algorithms with weak convergence in infinite-dimensional
spaces. Therefore, algorithms that generate strongly convergent sequences need to be
developed for solving the (VIP-FPP). Kraikaew and Saejung [16] proposed a strongly
convergent iterative scheme using a combination of SEGM and the Halpern method,
which is specified as follows:

un = ProjC (xn − λBxn) ,

Tn = {x ∈ H | 〈xn − λBxn − un, x− un〉 ≤ 0} ,
vn = ProjTn

(xn − λBun) ,

xn+1 = ηnxn + (1− ηn)Q [σnx0 + (1− σn) vn] ,

where the operator B and step size λ are the same as in (1.1), the mapping Q : H → H
is quasi-nonexpansive, {σn} ⊂ (0, 1), limn→∞ σn = 0,

∑∞
n=1 σn = +∞, and

{ηn} ⊂ [a, b] ⊂ (0, 1). Subsequently, some scholars further investigated (VIP-FPP)
with weaker constraints, assuming that the Lipschitz constant L of mapping B un-
known, and Q is a demicontractive mapping. Recently, Thong and Hieu [31] intro-
duced an iterative algorithm based on the viscosity-type extragradient method with a
simpler step size update criterion and proved its strong convergence. In recent years,
inertial extrapolation techniques received much interest and study by scholars who
use inertial methods to accelerate the proposed iterative schemes and apply them to
solve variational inequality problems, fixed point problems, and split feasibility prob-
lems; see, e.g., [11, 20, 23, 26, 34, 38]. Very recently, Tan, Zhou and Li [29] presented
a new inertial subgradient extragradient algorithm to find a solution of (VIP-FPP).
More precisely, their iterative scheme is described as follows:

dn = xn + γn (xn − xn−1) ,

un = ProjC (dn − λnBdn) ,

Tn = {x ∈ H | 〈dn − λnBdn − un, x− un〉 ≤ 0} ,
vn = ProjTn

(dn − λnBun) ,

xn+1 = σng(xn) + (1− σn) [(1− ηn)vn + ηnQvn],
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where the updating formulas for inertial coefficient γn is

γn =

min

{
εn

‖xn − xn−1‖
, γ

}
, if xn 6= xn−1;

γ, otherwise,

and for step size λn is

λn+1 =

 min

{
δ ‖dn − un‖
‖Bdn −Bun‖

, λn

}
, if Bdn −Bun 6= 0;

λn, otherwise,

and the mapping B is monotone and Lipschitz continuous, the mapping Q is τ -
demicontractive, the mapping g is contraction, γ > 0, λ1 > 0, δ ∈ (0, 1), σn ⊂ (0, 1),
and ηn ⊂ (a, 1− τ) ⊂ (0, 1). Their proposed iterative scheme guarantees strong con-
vergence under some suitable conditions and obtains competitive convergence speed
in some numerical experiments and applications.

Inspired by the above-mentioned works, we propose two improved viscosity-type
inertial subgradient extragradient algorithms, which are optimized at the projection
stage and step size update. Under some mild conditions, strong convergence results
are obtained for our algorithms when approximating the common solution of the
(VIP) with a pseudomonotone and Lipschitz continuous operator and the (FPP) with
a demicontractive mapping in a real Hilbert space. In addition, the step size used in
this paper differs from the general adaptive step size by adding a nonnegative real
sequence, which can improve the convergence efficiency of the algorithm without the
prior knowledge of the Lipschitz constant L of the pseudomonotone operator. Finally,
some numerical experiments and applications are provided to demonstrate that our
algorithms are more competitive than other comparative ones in [31, 29].

The summary of this article is as follows. In Sect. 2, we introduce some basic
definitions and lemmas for further use. In Sect. 3, we prove the convergence of the
proposed algorithms. Numerical examples comparing the performance of our proposed
methods with several related algorithms are presented in Sect. 4. Finally, we conclude
this paper in Sect. 5.

2. Preliminaries

Let C be a nonempty, closed, and convex subset of a real Hilbert space H. The
weak convergence and strong convergence of {xn} to x are denoted as xn ⇀ x and
xn → x, respectively.

Definition 2.1. ([2, p. 535]) Recall that ProjC : H → C is called the metric pro-
jection from H onto C if for every point x ∈ H, there exists a unique nearest point
ProjC(x) ∈ C such that

‖x− ProjC(x)‖ ≤ ‖x− y‖, ∀y ∈ C.

It is known that ProjC is nonexpansive and satisfies the following characteristics:

〈x− ProjC(x), y − ProjC(x)〉 ≤ 0, ∀x ∈ H, y ∈ C, (2.1)
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and

‖ProjC(x)− y‖2 ≤ ‖x− y‖2 − ‖x− ProjC(x)‖2, ∀x ∈ H, y ∈ C. (2.2)

For each x, y ∈ H and σ ∈ (0, 1), we have

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 (2.3)

and

‖σx+ (1− σ)y‖2 = σ‖x‖2 + (1− σ)‖y‖2 − σ(1− σ)‖x− y‖2. (2.4)

Definition 2.2. ([2, Definition 4.26]) Let Q : H → H be a nonlinear operator and
its set of fixed points be nonempty (i.e., Ψ 6= ∅). The mapping I − Q is said to be
demiclosed at zero if for any {xn} ∈ H, the following holds:

xn ⇀ x and (I −Q)xn → 0⇒ x ∈ Ψ.

Definition 2.3. ([2, Definition 4.1]) Let Q : H → H be a mapping and its set of
fixed points be nonempty (i.e., Ψ 6= ∅). Recall that Q is said to be:

(1) L-Lipschitz continuous with L > 0 if ‖Qx−Qy‖ ≤ L‖x− y‖ for all x, y ∈ H;
(2) monotone if 〈Qx−Qy, x− y〉 ≥ 0 for all x, y ∈ H;
(3) pseudomonotone if 〈Qx, y − x〉 ≥ 0 =⇒ 〈Qy, y − x〉 ≥ 0 for all x, y ∈ H;
(4) nonexpansive if ‖Qx−Qy‖ ≤ ‖x− y‖ for all x, y ∈ H;
(5) quasi-nonexpansive if ‖Qx− z‖ ≤ ‖x− z‖ for all z ∈ Ψ and x ∈ H;
(6) τ -demicontractive with 0 ≤ τ < 1 if

‖Qx− z‖2 ≤ ‖x− z‖2 + τ‖(I −Q)x‖2, ∀z ∈ Ψ, x ∈ H,
or equivalently

〈Qx− x, x− z〉 ≤ τ − 1

2
‖x−Qx‖2, ∀z ∈ Ψ, x ∈ H. (2.5)

The following lemma is provided for proving the convergence of our algorithms.

Lemma 2.1. ([21, Lemma 2.6]) Let {pn} be a positive sequence, {qn} be a sequence
of real numbers, and {σn} be a sequence such that σn ∈ (0, 1) and

∑∞
n=1 σn = ∞.

Suppose that

pn+1 ≤ σnqn + (1− σn) pn, ∀n ≥ 1.

If lim supk→∞ qnk
≤ 0 for every subsequence {pnk

} of {pn} satisfying

lim inf
k→∞

(pnk+1 − pnk
) ≥ 0,

then limn→∞ pn = 0.

3. Main results

In this section, we introduce two new inertial subgradient extragradient algorithms
for solving variational inequality problems and fixed point problems and analyze their
convergence. The proposed algorithms can work without the prior knowledge of
the Lipschitz constant of the mapping. Now, we present a modified viscosity-type
inertial subgradient extragradient algorithm for solving (VIP-FPP). The first method
is stated in Algorithm 3.1 below.

The following are the conditional assumptions satisfied by our proposed algorithms.
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Algorithm 3.1

Initialization: Take γ > 0, λ1 > 0, ϕ ∈ (0, 2/(1 + δ)) and δ ∈ (0, 1). Select {εn},
{σn}, {ηn} and {ξn} to satisfy Condition (C5). Let x0, x1 ∈ H.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1). Calculate xn+1 as
follows:
Step 1. Compute dn = xn + γn (xn − xn−1), where

γn =

 min

{
εn

‖xn − xn−1‖
, γ

}
, if xn 6= xn−1;

γ, otherwise.
(3.1)

Step 2. Compute un = ProjC (dn − λnBdn).
Step 3. Compute vn = ProjTn (dn − ϕλnBun), where the half-space Tn is defined
as

Tn = {x ∈ H | 〈dn − λnBdn − un, x− un〉 ≤ 0} .
Step 4. Compute xn+1 = σng (dn) + (1− σn) [(1− ηn) vn + ηnQvn], and update

λn+1 =

 min

{
δ
‖dn − un‖2 + ‖vn − un‖2

2 〈Bdn −Bun, vn − un〉
, λn + ξn

}
, if 〈Bdn −Bun, vn − un〉 > 0;

λn + ξn, otherwise.

(3.2)

Set n← n+ 1 and go to Step 1.

(C1) The solution set of (VIP-FPP) is nonempty, i.e., Ψ ∩ Ω 6= ∅.
(C2) The mapping B : H → H is pseudomonotone, L-Lipschitz continuous on H, and

sequentially weakly continuous on C.
(C3) The mapping Q : H → H is τ -demicontractive such that (I − Q) is demiclosed

at zero.
(C4) The mapping g : H → H is ρ-contraction with ρ ∈ (0, 1).
(C5) Let {εn} be a positive sequence such that limn→∞

εn
σn

= 0, where {σn} ⊂ (0, 1)

satisfies limn→∞ σn = 0 and
∑∞
n=1 σn = ∞. Let {ηn} be a real sequence such

that ηn ∈ (0, 1) and {ηn} ⊂ (a, 1− τ) for some a > 0. Choose a nonnegative real
sequence {ξn} satisfying

∑∞
n=1 ξn < +∞.

The following lemmas are quite helpful to analyze the convergence of our algo-
rithms.

Lemma 3.1. Suppose that Condition (C2) holds. Then the sequence {λn} generated
by (3.2) is well defined and limn→∞ λn = λ and λ ∈

[
min{δ/L, λ1}, λ1 +

∑∞
n=1 ξn

]
.

Proof. The proof is very similar to Lemma 3.1 in [17]. So we omit the details. �

Lemma 3.2. Assume that Condition (C2) holds. Let {vn} be a sequence created by
Algorithm 3.1. Then, for all p ∈ Ω,

‖vn − p‖2 ≤ ‖dn − p‖2 − ϕ∗
(
‖dn − un‖2 + ‖vn − un‖2

)
,

where ϕ∗ = 2− ϕ− ϕδλn

λn+1
if ϕ ∈ [1, 2/(1 + δ)) and ϕ∗ = ϕ− ϕδλn

λn+1
if ϕ ∈ (0, 1).
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Proof. From the definition of vn and (2.2), we have

‖vn − p‖2

= ‖ProjTn
(dn − ϕλnBun)− p‖2

≤ ‖dn − ϕλnBun − p‖2 − ‖dn − ϕλnBun − vn‖2

= ‖dn − p‖2 + (ϕλn)
2 ‖Bun‖2 − 2 〈dn − p, ϕλnBun〉 − ‖dn − vn‖2

− (ϕλn)
2 ‖Bun‖2 + 2 〈dn − vn, ϕλnBun〉

= ‖dn − p‖2 − ‖dn − vn‖2 − 2 〈ϕλnBun, vn − p〉

= ‖dn − p‖2 − ‖dn − vn‖2 − 2 〈ϕλnBun, vn − un〉 − 2 〈ϕλnBun, un − p〉 .

(3.3)

Since p ∈ Ω and un ∈ C, we have 〈Bp, un − p〉 ≥ 0. By the pseudomonotonicity of
mapping B, we obtain 〈Bun, un − p〉 ≥ 0. Thus, (3.3) reduces to

‖vn − p‖2 ≤ ‖dn − p‖2 − ‖dn − vn‖2 − 2 〈ϕλnBun, vn − un〉 . (3.4)

Now we estimate 2 〈ϕλnBun, vn − un〉. Note that

−‖dn − vn‖2 = −‖dn − un‖2 − ‖un − vn‖2 + 2 〈dn − un, vn − un〉 . (3.5)

In addition, we see that

〈dn − un, vn − un〉
= 〈dn − un − λnBdn + λnBdn − λnBun + λnBun, vn − un〉
= 〈dn − λnBdn − un, vn − un〉+ λn 〈Bdn −Bun, vn − un〉

+ 〈λnBun, vn − un〉 .

(3.6)

By vn ∈ Tn and the definition of Tn, we have

〈dn − λnBdn − un, vn − un〉 ≤ 0. (3.7)

According to the definition of λn+1, it is easy to obtain

〈Bdn −Bun, vn − un〉 ≤
δ

2λn+1
‖dn − un‖2 +

δ

2λn+1
‖vn − un‖2 . (3.8)

Substituting (3.6), (3.7), and (3.8) into (3.5), we obtain

−‖dn − vn‖2 ≤ −
(

1− δλn
λn+1

)(
‖dn − un‖2 + ‖vn − un‖2

)
+ 2 〈λnBun, vn − un〉 ,

which implies that

−2 〈ϕλnBun, vn − un〉 ≤ −ϕ
(

1− δλn
λn+1

)(
‖dn − un‖2 + ‖vn − un‖2

)
+ ϕ ‖dn − vn‖2 .

(3.9)

Combining (3.4) and (3.9), we conclude that

‖vn − p‖2 ≤ ‖dn − p‖2 − ϕ
(

1− δλn
λn+1

)(
‖dn − un‖2 + ‖vn − un‖2

)
− (1− ϕ) ‖dn − vn‖2 .

(3.10)
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Note that

‖dn − vn‖2 ≤ 2
(
‖dn − un‖2 + ‖vn − un‖2

)
,

which yields that

−(1− ϕ) ‖dn − vn‖2 ≤ −2(1− ϕ)
(
‖dn − un‖2 + ‖vn − un‖2

)
, ∀ϕ ≥ 1.

This together with (3.10) implies

‖vn − p‖2 ≤ ‖dn − p‖2 −
(

2− ϕ− ϕδλn
λn+1

)(
‖dn − un‖2 + ‖vn − un‖2

)
, ∀ϕ ≥ 1.

In addition, if ϕ ∈ (0, 1), then we obtain

‖vn − p‖2 ≤ ‖dn − p‖2 − ϕ
(

1− δλn
λn+1

)(
‖dn − un‖2 + ‖vn − un‖2

)
, ∀ϕ ∈ (0, 1).

The proof of Lemma 3.2 is completed. �

Remark 3.1. From Lemma 3.1 and the assumptions of the parameters δ and ϕ (i.e.,
δ ∈ (0, 1) and ϕ ∈ (0, 2/(1 + δ))), we obtain that ϕ∗ > 0 for all n ≥ n0 in Lemma 3.2
always holds.

According to a simple modification of [28, Lemma 3.3], we can obtain the following
Lemma 3.3.

Lemma 3.3. Let B : H → H be a pseudomonotone and L-Lipschitz continuous
mapping on C. Let T = ProjC(I − λB), where λ > 0. If {xn} is a sequence in
H satisfying xn ⇀ z and xn − Txn → 0, then z ∈ Ω, where Ω denotes the set of
variational inequality solutions of the operator B.

Theorem 3.1. Assume that Conditions (C1)–(C5) hold. Then the sequence {xn}
generated by Algorithm 3.1 converges strongly to x∗ ∈ Ψ ∩ Ω, where x∗ =
ProjΨ∩Ω(g(x∗)).

Proof. Note that both Ω and Ψ are closed convex subsets. Hence, the mapping
ProjΨ∩Ω(g) : H → H is a contraction. From the Banach contraction principle,
there exists a unique point x∗ ∈ H such that x∗ = ProjΨ∩Ω(g(x∗)). In particular,
x∗ ∈ Ψ ∩ Ω and

〈g(x∗)− x∗, z − x∗〉 ≤ 0, ∀z ∈ Ψ ∩ Ω.

The above inequality is obtained by (2.1).
We divide the proof into three steps. First, we show that the sequence {xn} is

bounded. Let tn = (1− ηn) vn + ηnQvn. From (2.5), we have

‖tn − x∗‖2 = ‖(1− ηn)vn + ηnQvn − x∗‖2

= ‖vn − x∗‖2 + 2ηn〈vn − x∗, Qvn − vn〉+ η2
n‖Qvn − vn‖2

≤ ‖vn − x∗‖2 + ηn(τ − 1)‖Qvn − vn‖2 + η2
n‖Qvn − vn‖2

= ‖vn − x∗‖2 − ηn(1− τ − ηn)‖(I −Q)vn‖2.
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In view of Lemma 3.2 and {ηn} ⊂ (a, 1− τ), we obtain

‖tn − x∗‖2 ≤ ‖dn − x∗‖2 − ϕ∗
(
‖dn − un‖2 + ‖vn − un‖2

)
− ηn (1− τ − ηn) ‖Qvn − vn‖2 .

(3.11)

According to Remark 3.1, we obtain that there exists n0 ∈ N such that ϕ∗ > 0 for all
n ≥ n0. By using (3.11), one has

‖tn − x∗‖ ≤ ‖dn − x∗‖ , ∀n ≥ n0. (3.12)

From the definition of dn, we can write

‖dn − x∗‖ = ‖xn + γn (xn − xn−1)− x∗‖

≤ ‖xn − x∗‖+ σn ·
γn
σn
‖xn − xn−1‖ .

(3.13)

It follows from (3.1) and Condition (C5) that

lim
n→∞

γn
σn
‖xn − xn−1‖ ≤ lim

n→∞

εn
σn

= 0. (3.14)

Thus, there exists a constant M1 > 0 such that

γn
σn
‖xn − xn−1‖ ≤M1, ∀n ≥ 1. (3.15)

Combining (3.12), (3.13), and (3.15), we find that

‖tn − x∗‖ ≤ ‖dn − x∗‖ ≤ ‖xn − x∗‖+ σnM1, ∀n ≥ n0. (3.16)

Using (3.16), we obtain

‖xn+1 − x∗‖ = ‖σng (dn) + (1− σn) tn − x∗‖
≤ σn ‖g (dn)− g(x∗)‖+ σn‖g(x∗)− x∗‖+ (1− σn) ‖tn − x∗‖
≤ σnρ ‖dn − x∗‖+ σn‖g(x∗)− x∗‖+ (1− σn) ‖dn − x∗‖

≤ [1− σn(1− ρ)] ‖xn − x∗‖+ σn(1− ρ)
‖g(x∗)− x∗‖+M1

1− ρ

≤ max
{
‖xn − x∗‖ ,

‖g(x∗)− x∗‖+M1

1− ρ

}
(∀n ≥ n0)

≤ · · · ≤ max
{
‖xn0 − x∗‖ ,

‖g(x∗)− x∗‖+M1

1− ρ

}
,

which implies that the sequence {xn} is bounded. So the sequences {dn}, {g (dn)},
{un}, and {vn} are also bounded.

Next, it follows from (3.16) that

‖dn − x∗‖2 ≤ (‖xn − x∗‖+ σnM1)
2

= ‖xn − x∗‖2 + σn
(
2M1 ‖xn − x∗‖+ σnM

2
1

)
≤ ‖xn − x∗‖2 + σnM2,

(3.17)
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where M2 := supn∈N
(
2M1 ‖xn − x∗‖+ σnM

2
1

)
. Using (2.4), (3.11), and (3.17), we

have

‖xn+1 − x∗‖2 = ‖σn (g (dn)− x∗) + (1− σn) (tn − x∗)‖2

≤ σn ‖g (dn)− x∗‖2 + (1− σn) ‖tn − x∗‖2

≤ σn ‖g (dn)− x∗‖2 + ‖xn − x∗‖2 + σnM2

− (1− σn)ϕ∗
(
‖dn − un‖2 + ‖vn − un‖2

)
− (1− σn) ηn (1− τ − ηn) ‖Qvn − vn‖2 .

Thus, we obtain

(1− σn)
[
ϕ∗
(
‖dn − un‖2 + ‖vn − un‖2

)
+ ηn (1− τ − ηn) ‖Qvn − vn‖2

]
≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + σn ‖g (dn)− x∗‖2 + σnM2.

(3.18)

Then, by the definition of dn, one obtains

‖dn − x∗‖2 = ‖xn + γn (xn − xn−1)− x∗‖2

= ‖xn − x∗‖2 + 2γn 〈xn − x∗, xn − xn−1〉+ γ2
n ‖xn − xn−1‖2

≤ ‖xn − x∗‖2 + γn ‖xn − xn−1‖ (2 ‖xn − x∗‖+ γ ‖xn − xn−1‖)

≤ ‖xn − x∗‖2 + 3Mγn ‖xn − xn−1‖ ,

(3.19)

where M := supn∈N {‖xn − x∗‖ , γ ‖xn − xn−1‖} > 0. Combining (2.3), (2.4), (3.16),
and (3.19), we have

‖xn+1 − x∗‖2

= ‖σng (dn) + (1− σn) tn − x∗‖2

= ‖σn (g (dn)− g(x∗)) + (1− σn) (tn − x∗) + σn(g(x∗)− x∗)‖2

≤ ‖σn (g (dn)− g(x∗)) + (1− σn) (tn − x∗)‖2 + 2σn 〈g(x∗)− x∗, xn+1 − x∗〉

≤ σn ‖g (dn)− g(x∗)‖2 + (1− σn) ‖tn − x∗‖2 + 2σn 〈g(x∗)− x∗, xn+1 − x∗〉
≤ (1− (1− ρ)σn) ‖dn − x∗‖+ 2σn 〈g(x∗)− x∗, xn+1 − x∗〉
≤ (1− (1− ρ)σn) ‖xn − x∗‖+ 2σn〈g(x∗)− x∗, xn+1 − x∗〉+ 3Mγn ‖xn − xn−1‖

= (1− (1− ρ)σn) ‖xn − x∗‖2 + (1− ρ)σn

[ 2

1− ρ
〈g(x∗)− x∗, xn+1 − x∗〉

+
3Mγn

(1− ρ)σn
‖xn − xn−1‖

]
, ∀n ≥ n0.

(3.20)
Finally, we prove that the sequence {‖xn − x∗‖} converges to zero. Indeed, from
Lemma 2.1, (3.14), and (3.20), it suffices to show that

lim sup
k→∞

〈g(x∗)− x∗, xnk+1 − x∗〉 ≤ 0
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for every subsequence {‖xnk
− x∗‖2} of {‖xn − x∗‖2} satisfying

lim inf
k→∞

(
‖xnk+1 − x∗‖2 − ‖xnk

− x∗‖2
)
≥ 0. (3.21)

It follows from (3.18), (3.21), and Condition (C5) that

lim sup
k→∞

{
(1− σnk

)ϕ∗
(
‖dnk

− unk
‖2 + ‖vnk

− unk
‖2
)

+ (1− σnk
) ηnk

(1− τ − ηnk
) ‖Qvnk

− vnk
‖2
}

≤ lim sup
k→∞

[
‖xnk

− x∗‖2 − ‖xnk+1 − x∗‖2 + σnk
‖g (xnk

)− x∗‖2 + σnk
M2

]
= − lim inf

k→∞

[
‖xnk+1 − x∗‖2 − ‖xnk

− x∗‖2
]
≤ 0,

which implies that

lim
k→∞

‖dnk
− unk

‖ = 0, lim
k→∞

‖vnk
−Qvnk

‖ = 0, and lim
k→∞

‖vnk
− unk

‖ = 0. (3.22)

Therefore, we obtain limk→∞ ‖vnk
− dnk

‖ = 0. According to the definition of dn, one
has

‖xnk
− dnk

‖ = γnk
‖xnk

− xnk−1‖ = σnk
· γnk

σnk

‖xnk
− xnk−1‖ → 0 as k →∞. (3.23)

This together with limk→∞ ‖vnk
− dnk

‖ = 0 yields that

lim
k→∞

‖vnk
− xnk

‖ = 0. (3.24)

From tnk
= (1− ηnk

) vnk
+ ηnk

Qvnk
, one sees that

‖tnk
− vnk

‖ = ηnk
‖Qvnk

− vnk
‖ ≤ (1− τ) ‖Qvnk

− vnk
‖ .

In view of (3.22), we obtain

lim
k→∞

‖tnk
− vnk

‖ = 0. (3.25)

From (3.24) and (3.25), we deduce that

‖xnk+1 − xnk
‖

= ‖σnk
g (dnk

) + (1− σnk
) tnk

− xnk
‖

≤ σnk
‖g (dnk

)− xnk
‖+ (1− σnk

) ‖tnk
− xnk

‖
≤ σnk

‖g (dnk
)− xnk

‖+ ‖tnk
− vnk

‖+ ‖vnk
− xnk

‖ → 0 as k →∞.

(3.26)

Since the sequence {xnk
} is bounded, one infers that there exists a subsequence {xnkj

}
of {xnk

} such that xnkj
⇀ z. Moreover,

lim sup
k→∞

〈g(x∗)− x∗, xnk
− x∗〉 = lim

j→∞
〈g(x∗)− x∗, xnkj

− x∗〉

= 〈g(x∗)− x∗, z − x∗〉.
(3.27)

From (3.23), one obtains dnk
⇀ z. Combining limk→∞ ‖dnk

− unk
‖ = 0,

limn→∞ λn = λ, and Lemma 3.3, one concludes that z ∈ Ω. It follows from (3.24)
that vnk

⇀ z, which together with limk→∞ ‖vnk
−Qvnk

‖ = 0 and the demiclosedness
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of (I − Q), we obtain that z ∈ Ψ. Thus, z ∈ Ψ ∩ Ω. Combining (2.1), (3.27), the
definition of x∗, and z ∈ Ψ ∩ Ω, we obtain

lim sup
k→∞

〈g(x∗)− x∗, xnk
− x∗〉 = 〈g(x∗)− x∗, z − x∗〉 ≤ 0, (3.28)

which together with (3.26) yields that

lim sup
k→∞

〈g(x∗)− x∗, xnk+1 − x∗〉

≤ lim sup
k→∞

〈g(x∗)− x∗, xnk+1 − xnk
〉+ lim sup

k→∞
〈g(x∗)− x∗, xnk

− x∗〉

= 〈g(x∗)− x∗, z − x∗〉 ≤ 0.

(3.29)

Combining (3.14), (3.20), and (3.29), in the light of Lemma 2.1, we observe that
xn → x∗ as n→∞. This completes the proof of Theorem 3.1. �

Next, we propose another modified version of the subgradient extragradient algo-
rithm, where the main difference lies in the computation of the sequences {un} and
{vn}. More precisely, the details of our second method are described in Algorithm 3.2
below.

Algorithm 3.2

Initialization: Take γ > 0, λ1 > 0, ϕ ∈ (1/(2 − δ), 1/δ), δ ∈ (0, 1). Select {εn},
{σn}, {ηn} and {ξn} to satisfy Condition (C5). Let x0, x1 ∈ H.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows:
Step 1. Compute dn = xn + γn (xn − xn−1), where γn is defined in (3.1).
Step 2. Compute un = ProjC (dn − ϕλnBdn).
Step 3. Compute vn = ProjTn

(dn − λnBun), where the half-space Tn is defined
as

Tn = {x ∈ H | 〈dn − ϕλnBdn − un, x− un〉 ≤ 0} .
Step 4. Compute xn+1 = σng (dn) + (1− σn) [(1− ηn) vn + ηnQvn], and update
λn+1 by (3.2).
Set n← n+ 1 and go to Step 1.

The following lemma plays a crucial role in the convergence analysis of Algo-
rithm 3.2.

Lemma 3.4. Assume that Condition (C2) holds. Let {vn} be a sequence generated
by Algorithm 3.2. Then, for all p ∈ Ω,

‖vn − p‖2 ≤ ‖dn − p‖2 − ϕ†
(
‖dn − un‖2 + ‖vn − un‖2

)
,

where ϕ† = 2− 1
ϕ −

δλn

λn+1
if ϕ ∈ (1/(2− δ), 1] and ϕ† = 1

ϕ −
δλn

λn+1
if ϕ ∈ (1, 1/δ).

Proof. From (3.3) and (3.4), we obtain

‖vn − p‖2 ≤ ‖dn − p‖2 − ‖dn − vn‖2 − 2 〈λnBun, vn − un〉 . (3.30)

Now we estimate 2 〈λnBun, vn − un〉. Note that

−‖dn − vn‖2 = −‖dn − un‖2 − ‖un − vn‖2 + 2 〈dn − un, vn − un〉 . (3.31)



TWO NOVEL EXTRAGRADIENT ALGORITHMS 759

One can show that

〈dn − un, vn − un〉
= 〈dn − un − ϕλnBdn + ϕλnBdn − ϕλnBun + ϕλnBun, vn − un〉
= 〈dn − ϕλnBdn − un, vn − un〉+ ϕλn 〈Bdn −Bun, vn − un〉

+ 〈ϕλnBun, vn − un〉 .

(3.32)

Since vn ∈ Tn, one has

〈dn − ϕλnBdn − un, vn − un〉 ≤ 0. (3.33)

Substituting (3.8), (3.32), and (3.33) into (3.31), we have

−‖dn − vn‖2 ≤ −
(

1− ϕδλn
λn+1

)(
‖dn − un‖2 + ‖vn − un‖2

)
+ 2ϕ 〈λnBun, vn − un〉 ,

which implies that

−2 〈λnBun, vn − un〉 ≤ −
(

1

ϕ
− δλn
λn+1

)(
‖dn − un‖2 + ‖vn − un‖2

)
+

1

ϕ
‖dn − vn‖2 .

(3.34)

Combining (3.30) and (3.34), we conclude that

‖vn − p‖2 ≤ ‖dn − p‖2 −
(

1

ϕ
− δλn
λn+1

)(
‖dn − un‖2 + ‖vn − un‖2

)
−
(

1− 1

ϕ

)
‖dn − vn‖2 .

(3.35)

Note that

‖dn − vn‖2 ≤ 2
(
‖dn − un‖2 + ‖vn − un‖2

)
,

which yields that

−
(

1− 1

ϕ

)
‖dn − vn‖2 ≤ −2

(
1− 1

ϕ

)(
‖dn − un‖2 + ‖vn − un‖2

)
, ∀ϕ ∈ (0, 1].

This together with (3.35) obtains

‖vn − p‖2 ≤ ‖dn − p‖2 −
(

2− 1

ϕ
− δλn
λn+1

)(
‖dn − un‖2 + ‖vn − un‖2

)
, ∀ϕ ∈ (0, 1].

In addition, if ϕ > 1, then we have

‖vn − p‖2 ≤ ‖dn − p‖2 −
(

1

ϕ
− δλn
λn+1

)(
‖dn − un‖2 + ‖vn − un‖2

)
, ∀ϕ > 1.

The proof is completed. �

Remark 3.2. From Lemma 3.1 and the assumptions of the parameters δ and ϕ (i.e.,
δ ∈ (0, 1) and ϕ ∈ (1/(2−δ), 1/δ)), we obtain that ϕ† > 0 for all n ≥ n1 in Lemma 3.4
always holds.
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Theorem 3.2. Assume that Conditions (C1)–(C5) hold. Then the sequence {xn}
generated by Algorithm 3.2 converges strongly to x∗ ∈ Ψ ∩ Ω, where x∗ =
ProjΨ∩Ω(g(x∗)).

Proof. We can use Lemma 3.4 to replace the necessary conclusions about Lemma 3.2
in the proof of Theorem 3.1. We omit the details of the proof to avoid repetition. �

In particular, considering that Q in the proposed Algorithms 3.1 and 3.2 of this
paper is an identity operator, i.e., Q = I, we can obtain two new modified inertial
subgradient extragradient algorithms to solve the (VIP). More precisely, we have the
following corollary.

Corollary 3.1. Assume that Conditions (C2), (C4), and (C5) hold, and the solution
set Ω of the variational inequality problem (VIP) is nonempty. Let x0, x1 ∈ H and
the sequence {xn} be generated by

dn = xn + γn (xn − xn−1) ,

un = ProjC (dn − λnBdn) ,

vn = ProjTn (dn − ϕλnBun) ,

Tn = {x ∈ H | 〈dn − λnBdn − un, x− un〉 ≤ 0} ,
xn+1 = σng(dn) + (1− σn) vn,

(3.36)

or 

dn = xn + γn (xn − xn−1) ,

un = ProjC (dn − ϕλnBdn) ,

vn = ProjTn
(dn − λnBun) ,

Tn = {x ∈ H | 〈dn − ϕλnBdn − un, x− un〉 ≤ 0} ,
xn+1 = σng(dn) + (1− σn) vn,

(3.37)

where γn and λn are defined in (3.1) and (3.2), respectively. Then the iterative
sequence {xn} generated by Algorithm (3.36) (or Algorithm (3.37)) converges strongly
to x∗ ∈ Ω, where x∗ = ProjΩ(g(x∗)).

Remark 3.3. We have the following comments for the proposed algorithms.

(1) The suggested methods 3.1 and 3.2 are equivalent when ϕ = 1.
(2) The sequences generated by the two algorithms proposed in this paper in the

infinite-dimensional Hilbert space converge strongly to the solution of varia-
tional inequalities and fixed points. In contrast, the results in the literature
[18, 30, 36] can only obtain weak convergence.

(3) It is known that computing the projection on a general nonempty closed
convex set is not an easy task. Our two algorithms require calculating the
projection on the feasible set only once in each iteration, which improves the
methods proposed in the literature [18, 4, 30, 36] that need to compute the
projection on the feasible set at least twice in each iteration.

(4) To improve the convergence speed of the algorithm, our two iterative schemes
use different step sizes in each iteration and employ a non-monotonic step
size criterion. These changes allow them to improve the algorithms in the
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literature [18, 7, 25, 16, 4, 30, 5, 36, 31, 29] that use Armijo-type step sizes
(or fixed step sizes, or non-increasing step sizes) and the algorithms in the
literature [31, 29] that employ the same step size in each iteration. On the
other hand, our algorithms embed inertial terms which improve the conver-
gence speed of the non-inertial algorithms. For more details on these findings,
see the numerical experiments in Section 4.

(5) Notice that the convergence condition of our algorithms requires that the vari-
ational inequality operator B is pseudomonotone rather than monotone. In
other words, the two methods presented in this paper can find common solu-
tions of pseudomonotone variational inequalities and fixed points involving a
demicontractive mapping, which improves on the algorithms in the literature
[18, 7, 16, 25, 4, 30, 36, 31, 29] where the variational inequality operator B
is claimed to be monotone and the fixed point operator Q is required to be
nonexpansive (or quasi-nonexpansive, or demicontractive).

Based on the above findings, the algorithms proposed in this paper are efficient
and improve many known results in the field.

4. Numerical examples and applications

In this section, we provide some numerical examples to illustrate the numerical
behavior of the proposed algorithms and also to compare them with some existing
strongly convergent algorithms, which including the inertial-based viscosity-type sub-
gradient extragradient method and the viscosity-type Tseng’s extragradient method
proposed by Tan, Zhou, and Li [29] (shortly, TZL Alg. 3.1 and TZL Alg. 3.2), and the
general viscosity-type subgradient extragradient method and viscosity-type Tseng’s
extragradient method introduced by Thong and Hieu [31] (shortly, TH Alg. 3.1 and
TH Alg. 3.2). In the next numerical experiments, we use “Time” to denote the run-
ning time of algorithms in seconds. All the programs are performed in MATLAB
2018a on a Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz computer with RAM 8.00
GB.

4.1. Theoretical examples.

Example 4.1. Assume the nonlinear operator B : R2 → R2 defined by

B(x, y) = (x+ y + sinx;−x+ y + sin y)

and the feasible set C is a box defined by C = [−1, 1]× [−1, 1]. It is easy to know that
B is monotone and Lipschitz continuous with the constant L = 3. Let E be a 2 × 2
matrix, i.e.,

E =

(
1 0
0 2

)
.

We consider the mapping Q : R2 → R2 defined by Qz = ‖E‖−1Ez, where z = (x, y)T.
It is obvious to see that Q is 0-demicontractive and thus τ = 0. The solution of the
problem (VIP-FPP) is x∗ = (0, 0)T. For all algorithms in the numerical experiment,
we unify the parameters as σn = 1/(n + 1), ηn = n/(2n + 1), λ1 = 0.4, δ = 0.2,
and g(x) = 0.5x. Take γ = 0.3, εn = 100/(n + 1)2, ξn = 1/(n + 1)5 in our proposed
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algorithms and Tan et al. Alg. 3.1 and Tan et al. Alg. 3.2. In this experiment,
the maximum number of iterations 200 as a common stopping criterion. We use
Dn = ‖xn − x∗‖ to measure the n-th iteration error for all algorithms. First, we plot
the convergence performance of the proposed algorithms with different parameters ϕ
for initial values x0 = x1 = 10rand(2, 1) in Figure 1 to demonstrate the effect of the
parameter ϕ on our algorithms. We then show the performance of our algorithms with
different inertial parameters in Figure 2. According to Figure 1, we choose ϕ = 1.6
and ϕ = 0.7 for the proposed Algorithms 3.1 and 3.2, respectively. The numerical
results of the suggested algorithms with some known schemes at different initial values
x0 = x1 are shown in Table 1.
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Figure 1. Computational performance of the proposed algorithms
with different ϕ in Example 4.1
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Figure 2. Computational performance of the proposed algorithms
with different γ in Example 4.1
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Table 1. Numerical results for all algorithms with different initial
values in Example 4.1

Algorithms
x1 = 5rand(2, 1) x1 = 10rand(2, 1) x1 = 20rand(2, 1) x1 = 50rand(2, 1)

Dn Time Dn Time Dn Time Dn Time

Our Alg. 3.1 6.17E-72 0.0096 9.86E-81 0.0118 7.17E-75 0.0109 4.50E-79 0.0100
Our Alg. 3.2 1.11E-60 0.0108 3.62E-73 0.0137 2.98E-71 0.0100 1.21E-74 0.0130
TZL Alg. 3.1 6.66E-27 0.0095 4.40E-27 0.0146 2.45E-27 0.0103 1.80E-26 0.0113
TZL Alg. 3.2 3.97E-27 0.0076 3.36E-27 0.0079 4.19E-27 0.0113 1.84E-26 0.0099
TH Alg. 3.1 3.84E-17 0.0180 9.12E-18 0.0179 5.28E-17 0.0182 4.25E-17 0.0179
TH Alg. 3.2 3.69E-17 0.0068 1.18E-17 0.0069 5.30E-17 0.0074 4.76E-17 0.0069

Example 4.2. We consider our problem in the infinite-dimensional Hilbert space
H = L2([0, 1]) with inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt, ∀x, y ∈ H

and norm

‖x‖ =
(∫ 1

0

|x(t)|2dt
)1/2

, ∀x ∈ H.

Let the feasible set be the unit ball C = {x ∈ H : ‖x‖ ≤ 1}. Define an operator
B : C → H by

(Bx)(t) =

∫ 1

0

(x(t)−G(t, s)a(x(s))) ds+ h(t), t ∈ [0, 1], x ∈ C,

where

G(t, s) =
2tset+s

e
√

e2 − 1
, a(x) = cosx, h(t) =

2tet

e
√

e2 − 1
.

It is known that B is monotone and L-Lipschitz continuous with L = 2 (see [13,
Example 2]). The mapping Q : L2([0, 1])→ L2([0, 1]) is of the form

(Qx)(t) =

∫ 1

0

tx(s) ds, t ∈ [0, 1].

A simple calculation shows that Q is 0-demicontractive. The solution of the problem
(VIP-FPP) is x∗(t) = 0. We use Dn = ‖xn(t) − x∗(t)‖ to measure the error of the
n-th iteration step for all algorithms. The maximum number of iterations 50 is used
as a common stopping criterion. The parameters of all algorithms remain the same
as in Example 4.1. Table 2 shows the numerical behavior of Dn for the suggested
algorithms with different parameters ϕ at the initial value x0 = x1 = t2. Table 3
records the numerical results of each algorithm at four starting points.

Remark 4.1. From Examples 4.1 and 4.2, we have the following observations.

(1) It follows from Figure 1 and Table 2 that our Algorithms 3.1 and 3.2 have
different performance with different parameters ϕ. Specifically, the proposed
Algorithm 3.1 has better performance for ϕ > 1, while the suggested Algo-
rithm 3.2 shows better behavior for ϕ < 1. Note that this is only a preliminary



764 SHANSHAN XU, BING TAN AND SONGXIAO LI

Table 2. Computational behavior ofDn for the proposed algorithms
with different ϕ at the initial values x0 = x1 = t2

Parameter ϕ ϕ = 0.7 ϕ = 0.9 ϕ = 1.0 ϕ = 1.2 ϕ = 1.4 ϕ = 1.6

Our Alg. 3.1 1.21E-18 6.27E-19 9.22E-20 3.47E-20 4.66E-21 1.46E-22
Our Alg. 3.2 3.41E-21 1.66E-19 9.22E-20 6.38E-19 1.10E-19 7.41E-19

Table 3. Numerical results of all algorithms at different initial val-
ues in Example 4.2

Algorithms

x0 = x1 = 10et x0 = x1 = 10 cos(t) x0 = x1 = 10 log(t) x0 = x1 = 10t2

Dn Time Dn Time Dn Time Dn Time

Our Alg. 3.1 1.23E-20 30.4762 3.03E-21 30.1367 3.65E-21 29.6645 1.24E-21 39.3388
Our Alg. 3.2 8.11E-20 30.2945 3.72E-20 29.6247 5.00E-20 29.4172 1.10E-20 36.7991
TZL Alg. 3.1 1.75E-18 31.0261 2.75E-18 28.1855 2.25E-18 27.6887 2.39E-19 36.2258
TZL Alg. 3.2 8.27E-18 29.6310 2.82E-18 27.5188 3.04E-18 27.0733 2.19E-19 32.0952
TH Alg. 3.1 1.18E-09 28.3019 5.24E-10 27.7527 1.26E-10 27.5280 9.14E-10 24.9434
TH Alg. 3.2 1.90E-09 26.1001 1.36E-09 25.3795 2.30E-10 24.9872 1.05E-09 22.9963

conclusion from Examples 4.1 and 4.2. In order to obtain better results for
the proposed algorithms, it is suggested that different parameters ϕ need to
be tried in practical applications.

(2) It can be seen in Figure 2 that our two inertial algorithms converge faster
when choosing the appropriate inertial parameters γ than their correspond-
ing algorithms without added inertial terms. However, since the sequences
generated by our inertial algorithms do not have fejér monotonicity, this can
result in inertial algorithms sometimes not converging faster than non-inertial
algorithms as illustrated in Figure 2.

(3) Note that the proposed iterative schemes have a competitive advantage over
the existing algorithms in [31, 29], especially in terms of accuracy (cf. Tables
1 and 3).

(4) In Example 4.1, it is obvious that our algorithms have a faster convergence
speed and higher accuracy than the compared ones. However, for Example 4.2
in the infinite-dimensional Hilbert space, a slightly longer elapsed time is
required to guarantee a higher accuracy, which can be explained by the fact
that our algorithms require an updated inertial parameter and a better step
size in each iteration compared to TH Alg. 3.1 and TH Alg. 3.2.

(5) In our experiments, it should be noted that we chose a maximum number of
iterations of 200 and 50, respectively, which would require more iterations if
higher accuracy requirements are to be met in practical applications.

4.2. Applications to optimal control problems. In this subsection, we use the
proposed Algorithms (3.36) and (3.37) to solve the variational inequality problem
(VIP) that appears in optimal control problems. The mathematical description of
the optimal control problem can be seen in detail from the literature [32, 14], and we
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know that the optimal control problem can be transformed into a variational inequal-
ity problem. We first use the classical Euler discretization method to decompose the
optimal control problem and then apply the proposed algorithms to solve the varia-
tional inequality problem corresponding to the discretized version of the problem (see
[32] for more details).

Next, we illustrate the computational performance of the proposed Algorithms
(3.36) and (3.37) with the schemes in the literature [31, 29] by solving two classical
mathematical examples. We set N = 100, σn = 10−4/(n+ 1), λ1 = 0.4, δ = 0.2, and
g(x) = 0.1x for all algorithms. Choose γ = 0.3, εn = 100/(n+1)2, and ξn = 1/(n+1)2

for the suggested Algorithms (3.36) and (3.37) and TZL Alg. 3.1 [29] and TZL Alg. 3.2
[29]. Take ϕ = 1.6 and ϕ = 0.7 for the suggested Algorithms (3.36) and (3.37),
respectively. The initial controls p0(t) = p1(t) are randomly generated in [0, 1]. The
stopping criterion for all algorithms is Dn = ‖dn − un‖ ≤ 10−4.

Example 4.3. (Control of a harmonic oscillator, see [19])

minimize x2(3π)
subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + p(t), ∀t ∈ [0, 3π],
x(0) = 0,
p(t) ∈ [−1, 1].

The exact optimal control of Example 4.3 is known:

p∗(t) =

{
1, if t ∈ [0, π/2) ∪ (3π/2, 5π/2),

−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π].

Consider Example 4.3 of the optimal control problem with a linear terminal func-
tion, our proposed Algorithm (3.36) and Algorithm (3.37) perform 34 and 52 itera-
tions, respectively, to reach the stopping condition Dn = ‖dn − un‖ ≤ 10−4, which
take 0.0338 and 0.0321 seconds, respectively. The approximate optimal control and
the corresponding trajectories of the proposed Algorithm (3.36) for Example 4.3 are
shown in Figure 3.

Example 4.4. (see [3])

minimize −x1(2) + (x2(2))
2

subject to ẋ1(t) = x2(t),
ẋ2(t) = p(t), ∀t ∈ [0, 2],
x1(0) = 0, x2(0) = 0,
p(t) ∈ [−1, 1].

The exact optimal control of Example 4.4 is

p∗(t) =

{
1, if t ∈ [0, 1.2),

−1, if t ∈ (1.2, 2].

Considering Example 4.4 of the optimal control problem with a nonlinear terminal
function, our proposed Algorithm (3.36) and Algorithm (3.37) perform 650 and 998
iterations, respectively, to reach the stopping condition Dn = ‖dn − un‖ ≤ 10−4,
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Figure 3. Numerical behavior of the proposed Algorithm (3.36) for Example 4.3

which take 0.2605 and 0.4008 seconds, respectively. The approximate optimal control
and the corresponding trajectories of the suggested Algorithm (3.37) for Example 4.4
are shown in Figure 4. The numerical results of all algorithms for Example 4.3
and Example 4.4 are given in Table 4. Furthermore, we also test the numerical
performance of the suggested Algorithms (3.36) and (3.37) with different parameters
ϕ in Example 4.4, as shown in Figure 5 and Table 5.
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Figure 4. Numerical behavior of the proposed Algorithm (3.37) for Example 4.4

Remark 4.2. As shown in Examples 4.3 and 4.4, it can be observed that the al-
gorithms proposed in this paper can be used to solve optimal control problems (cf.
Figures 3 and 4). Moreover, our Algorithms (3.36) and (3.37) converge faster than the
comparison methods in terms of number of iterations and execution CPU time (cf.
Table 4). The results of Example 4.4 in Table 4 show that our algorithms with inertial
terms are significantly faster than the algorithms without inertial terms introduced
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Table 4. Numerical results of all algorithms for Examples 4.3 and 4.4

Algorithms
Example 4.3 Example 4.4

Iter. Dn Time Iter. Dn Time

Our Alg. (3.36) 34 2.6230E-05 0.0338 650 9.8953E-05 0.2605
Our Alg. (3.37) 52 1.7206E-05 0.0321 998 9.9522E-05 0.4008
TZL Alg. 3.1 53 1.6883E-05 0.0289 1837 9.9787E-05 0.6634
TZL Alg. 3.2 53 1.6883E-05 0.0247 1854 9.9970E-05 0.6084
TH Alg. 3.1 73 1.2329E-05 0.0423 2239 9.9808E-05 0.8534
TH Alg. 3.2 73 1.2329E-05 0.0513 2248 9.9853E-05 0.7461
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Figure 5. Computational performance of the proposed algorithms
with different ϕ in Example 4.4

Table 5. Numerical results of our Algorithms (3.36) and (3.37) with
different ϕ in Example 4.4

Parameter ϕ
Our Alg. (3.36) Our Alg. (3.37)

Iter. Dn Time Iter. Dn Time

ϕ = 0.7 843 9.9488E-05 0.4261 536 9.9766E-05 0.1785
ϕ = 0.9 668 9.9751E-05 0.2805 588 9.9941E-05 0.1968
ϕ = 1.0 602 9.9524E-05 0.2177 602 9.9524E-05 0.2080
ϕ = 1.2 497 9.9802E-05 0.2006 620 9.9593E-05 0.2145
ϕ = 1.4 419 9.9984E-05 0.1615 654 9.9542E-05 0.2239
ϕ = 1.6 360 9.9582E-05 0.1269 701 9.9762E-05 0.2343

by Thong and Hieu [31] and the inertial-type algorithms with the same step size per
iteration proposed by Tan et al. [29]. This indicates that the proposed methods are
more efficient and outperform the implementation of the other algorithms in [31, 29].
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On the other hand, the information in Figure 5 and Table 5 again verifies that the
parameter ϕ plays an important role in the algorithms proposed in this paper.

4.3. Applications to signal processing problems. In many real-world scenarios,
signals may be distorted during acquisition, transmission, or storage due to various
factors such as noise interference, measurement errors, limited sensor functionality, or
data loss. Signal recovery is a fundamental problem in signal processing. It involves
the task of reconstructing an original signal from its degraded or corrupted version,
typically affected by noise, distortions, or missing data. Signal recovery has applica-
tions in various fields such as image processing, audio enhancement, communication
systems, and medical imaging. It plays a vital role in improving the quality, accu-
racy, and reliability of signals in different fields, and ultimately in better analysis,
interpretation, and decision-making based on the recovered signals.

Let us consider the signal processing problem, which can be represented by the
following model:

y = Ax + e. (4.1)

In this model, x represents the original signal, which is a vector in Rn with k non-zero
elements. The observed signal, denoted by y, is a vector in Rm and contains noise.
The bounded linear operator A is a matrix of size m× n, and e represents the noisy
observation, which is a vector in Rm. This model captures the relationship between
the original signal x and the observed signal y in the presence of noise. The linear
operator A defines how the original signal is transformed or mapped to the observed
signal. The term e represents the noise or disturbance present in the observation. By
understanding and analyzing this signal processing model, we can develop algorithms
to estimate or reconstruct the original signal x from the observed signal y.

In signal processing, it is often desirable to recover signals that have a sparse
representation, meaning that they possess a small number of significant non-zero co-
efficients. The LASSO (Least Absolute Shrinkage and Selection Operator) model
addresses this problem by adding a penalty term to the ordinary least squares objec-
tive function. Mathematically, the LASSO model can be formulated as follows:

x̂ = arg min
x∈Rn

(
‖y −Ax‖22 + λ‖x‖1

)
, (4.2)

where λ is a regularization parameter that controls the trade-off between data fi-
delity and sparsity. The first term in the objective function measures the discrepancy
between the observed signal and the reconstructed signal, while the second term intro-
duces a penalty on the `1 norm of the estimated signal, encouraging sparsity. To solve
the unconstrained optimization problem (4.2), we can convert to solve the following
constrained problem

min
x∈Rn

f(x) :=
1

2
‖Ax− y‖22 subject to ‖x‖1 ≤ t, t > 0. (4.3)

Notice that the above problem (4.3) can be reduced to the following variational in-
equality problem

find x̂ ∈ C such that ∇f (x̂)
T

(x− x̂) ≥ 0, ∀x̂ ∈ C.
where ∇f(x) = AT(Ax− y) and C = {x ∈ Rn | ‖x‖1 ≤ t}.



TWO NOVEL EXTRAGRADIENT ALGORITHMS 769

Now we can use the algorithms proposed in this paper to solve the problem (4.1).
We pick σn = 1/(n+1), λ1 = 0.1, δ = 0.2, g(x) = 0.5x, γ = 0.3, and εn = 100/(n+1)2

in our Algorithms (3.36) and (3.37) and TZL Alg. 3.1 [29]. Choose ϕ = 1.6 and
ξn = 1/(n + 1)5 in our Algorithm (3.36). Take ϕ = 0.7 and ξn = 1/(n + 1)5 in our
Algorithm (3.37). In equation (4.3) we select t = k for all algorithms.

Example 4.5. The original signal x ∈ Rn containing k (k � n) non-zero values is
randomly generated by ±1 spikes. A : Rm×n is the matrix created by the standard
normal distribution. e is the vector created by the function 0.001*randn(m,1) in
MATLAB. We employ the mean squared error (MSE) metric, defined as MSE =
1
n ‖x̂− x‖2, to assess the accuracy of signal recovery algorithms by comparing the
recovered signal x̂ with the original signal x. The recovery process for all algorithms
begins with initial signals x0 = x1 = 0 and terminates when a maximum of 1000
iterations is reached. For our test, we set n = 1024,m = 512, and consider different
levels of sparsity k = {10, 20, 40, 60}. Table 6 shows the computation time in seconds
required for all algorithms to reach the stopping criterion at various sparsity levels,
as well as the final iteration error. The recovered results obtained by our algorithms
for different sparse signals are displayed in Figure 6. From Table 6 and Figure 6, it
can be seen that the proposed algorithms can handle the signal recovery problem well
at different sparsity and they perform better than the algorithm of Tan et al. [29].

Table 6. Numerical results for all algorithms at different sparsity k
in Example 4.5 (n = 1024,m = 512)

Algorithms
k = 10 k = 20 k = 40 k = 60

Time MSE Time MSE Time MSE Time MSE

Our Alg. (3.36) 1.3592 3.49E-07 1.3309 7.04E-07 1.4795 4.08E-06 1.4952 1.62E-05
Our Alg. (3.37) 1.5445 4.43E-07 1.3957 9.66E-07 1.3704 5.21E-06 1.3224 2.64E-05
TZL Alg. 3.1 1.2821 9.36E-03 1.3626 2.56E-02 1.1993 8.13E-02 1.2919 1.22E-01

5. Conclusions

The paper proposed two improved viscosity-type inertial subgradient extragradi-
ent algorithms for finding the common solutions of the pseudomonotone variational
inequality problem and the fixed point problem with a demicontractive mapping in
a real Hilbert space. We proved the strong convergence theorems for the sequences
generated by the algorithms under suitable assumptions. In particular, the proposed
algorithms have a new adaptive non-monotonic step size update criterion that can
work without knowing the Lipschitz constant of the mapping. Finally, the computa-
tional efficiency and advantages of the suggested algorithms over previously known
ones are illustrated with some numerical examples in finite- and infinite-dimensions
and two applications in optimal control problems and signal processing problems.
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Figure 6. Signals with different sparsity recovered by our algorithms
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