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1. Introduction

Let (X, d) be a metric space and P (X) the family of all nonempty subsets of X. We
denote by Pcl(X) the family of nonempty, closed subsets of X, by Pb(X) the family
of nonempty, bounded subsets of X, and by Pcp(X) the family of nonempty, compact
subsets of X. Also, by B(x0, r) := {x ∈ X : d(x0, x) < r}, we denote the open ball
with radius r > 0 and center x0 ∈ X and by B̄(x0, r) := {x ∈ X : d(x0, x) ≤ r} we
denote the closed ball centered in x0 ∈ X and with radius r > 0.

The following important functionals will be used throughout the paper:
- the gap functional D : P (X)× P (X)→ R+, D(A,B) := infa∈A,b∈B {d(a, b)},
- the excess functional ρ : P (X)× P (X)→ R+, ρ(A,B) := supa∈A {D(a,B)},
- the generalized Pompeiu-Haussdorf functional H : P (X)×P (X)→ R+ ∪{+∞},

H(A,B) := max

{
sup
a∈A

D(a,B), sup
b∈B

D(b, A)

}
.

It is well known that (Pcl(X), H) is a complete generalized metric space provided
(X, d) is a complete metric space [14]. Furthermore, an element x ∈ X is a fixed point
(strict fixed point or an endpoint) for a multi-valued operator T : X → P (X) if and
only if x ∈ Tx({x} = Tx). We denote by FT the set of all fixed points of T and by
(SF )T the set of all strict fixed points of T . A single-valued mapping t : X → X is
called a selection of T if for each x ∈ X, we have tx ∈ Tx.
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A sequence (xn) satisfying the following conditions:
(i) x0 = x,
(ii) xn+1 ∈ Txn for each n ∈ N ∪ {0},
(iii) xn → x∗ ∈ FT as n→∞,
is called a sequence of successive approximations (for short, s.s.a.) of T starting from
x ∈ X.
We denote by V (Y ; ε) := {x ∈ X : D(x, Y ) < ε} the ε - neighborhood of the set Y ∈
P (X).

In 1969, Nadler [14] proved a multi-valued extension of the Banach contraction
principle.

Theorem 1.1 Let (X, d) be a complete metric space and let T be a mapping from X
into Pb(X). Assume that there exists α ∈ [0, 1) such that H(Tx, Ty) ≤ αd(x, y) for
all x, y ∈ X. Then, there exists z ∈ X such that z ∈ Tz.

Many fixed point theorems have been proved by various authors as generalizations
of Nadler’s theorem (see [4], [7], [13], [22]). One of the general fixed point theorems

for a generalized multi-valued mappings belongs to Ćirić [5].

Theorem 1.2 Let (X, d) be a complete metric space and let T be a mapping from X
into Pcl(X). Assume that there exists α ∈ [0, 1) such that H(Tx, Ty) ≤ αM(x, y) for
all x, y ∈ X, where

M(x, y) := max {d(x, y), D(x, Tx), D(y, Ty), [D(x, Ty) +D(y, Tx)]/2} ,

Then, there exists z ∈ X such that z ∈ Tz.
Following the approach given in [15], Alecsa and Petruşel [1] gave a fully com-

prehensive study on Ćirić type multi-valued operators, i.e. operators which satisfy
the inequality from Theorem 1.2. They have studied qualitative properties, namely
data dependence, well-posedness, Ulam-Hyers stability, Ostrowski property. In
[3], Boriceanu studied the existence and uniqueness of the fixed point and data

dependence for multi-valued operators in the context of b-metric spaces. Also, Ćirić
type multi-valued operators have been studied in [16] - [20].

The following lemma from [2] will be necessary in the future results.

Lemma 1.3 Let (an)n∈N, (bn)n∈N two sequences of nonnegative numbers and 0 ≤ k <
1 such that

an+1 ≤ kan + bn

for all n ≥ 1. If limn→∞ bn = 0, then limn→∞ an = 0.
Now, we recall the basic concepts for the qualitative properties of the fixed point

inclusion and of the fixed point iteration. The first two definitions are related to the
concept of well-posedness of the fixed point problem, see [11] and [19].

Definition 1.4 Let (X, d) be a metric space and T : Y → Pcl(X) be a multi-valued
operator. Then, the fixed point problem is well-posed for T with respect to the gap
functional D if and only if
(i) FT = {x∗} ,
(ii) if (xn) ⊂ X has the property that D(xn, Txn)→ 0, then xn → x∗.
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Definition 1.5 Let (X, d) be a metric space and T : Y → Pcl(X) be a multi-valued
operator. Then, the fixed point problem is well-posed for T with respect to the
Pompeiu-Haussdorf functional if and only if
(i) (SF )T = {x∗} ,
(ii) if (xn) ⊂ X has the property that H(xn, Txn)→ 0, then xn → x∗.

Another important concept related to the fixed point problem is Ostrowski property
or limit shadowing, see [10], [11].

Definition 1.6 Let (X, d) be a metric space and T : Y → P (X) be a multi-valued
operator. Then, the fixed point problem has the Ostrowski property if and only if
(i) FT = {x∗} ,
(ii) if (yn) ⊂ X has the property that D(yn+1, T yn)→ 0, then yn → x∗.

The next two definitions are related to the concept of generalized Ulam-Hyers
stability, see [15].

Definition 1.7 Let (X, d) be a metric space and T : X → P (X) be a multi-valued
operator. The fixed point inclusion x ∈ Tx is called generalized Ulam-Hyers stable if
and only if there exists an increasing, continuous in 0 function ψ : R+ → R+, ψ(0) = 0,
such that for every ε > 0 and for each y∗ ∈ X with D(y∗, Ty∗) ≤ ε, there exists a
solution x∗ of the fixed point inclusion such that d(x∗, y∗) ≤ ψ(ε).

Definition 1.8 Let (X, d) be a metric space and T : X → P (X) be a multi-valued
operator. The strict fixed point inclusion {x} = Tx is called generalized Ulam-Hyers
stable if and only if there exists an increasing, continuous in 0 function ψ : R+ →
R+, ψ(0) = 0, such that for every ε > 0 and for each y∗ ∈ X with H(y∗, T y∗) ≤ ε,
there exists a solution x∗ of the strict fixed point inclusion such that d(x∗, y∗) ≤ ψ(ε).

Finally, following [8], [9], [17] and [18], we recall the last important concepts.

Definition 1.9 Let X 6= ∅ and T : X → P (X) be a multi-valued operator. Then, T
has the approximate endpoint property if

inf
x∈X

sup
y∈Tx

d(x, y) = 0.

Definition 1.10 Let X 6= ∅ and T : X → P (X) be a multi-valued operator. We say
that t : X → X is a Caristi selection of T if there exists a function ϕ : X → R+ such
that

d(x, tx) ≤ ϕ(x)− ϕ(tx),

for each x ∈ X, where tx ∈ Tx for each x ∈ X.
The aim of this paper is to introduce a new class of multi-valued operators which

includes the Ćirić type multi-valued generalized contractions, and to study the met-
rical and topological properties for the fixed point problems. Our results generalize,
complement and extend many classical results and also recent results, and open a new
direction in this field of research.
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2. Main results

Definition 2.1 Let (X, d) be a metric space and T : X → P (X) be a multi-valued
operator. We say that T is a multi-valued P- operator if there exists α ∈ (0, 1) such
that

H(Tx, Ty) ≤ αP (x, y)

for each x, y ∈ X, where

P (x, y) := max {E1(x, y), E2(x, y), E3(x, y), E4(x, y)} ,

E1(x, y) := d(x, y) +D(x, Tx)−D(y, Ty),

E2(x, y) := d(x, y) +D(y, Ty)−D(x, Tx),

E3(x, y) := D(x, Tx) +D(y, Ty)− d(x, y)

and

E4(x, y) := (1/2)[D(x, Ty) +D(y, Tx) + |D(x, Tx)−D(y, Ty)|].

Remark 2.2 Since

max

{
a, b, c,

d+ e

2

}
≤ max

{
a+ b− c, a+ c− b, b+ c− a, d+ e+ |b− c|

2

}
for every a, b, c, d, e ∈ R, it is obvious that every multivalued α - Ćirić type operator
is a multi-valued α− P - operator.

In the following example, we will see that there exist multi-valued P - operators
which are not multi-valued Ćirić type operators.

Example 2.3 Let X = {0, 1} and d : X × X → R, d(x, y) = |x − y|. Let T :
X → P (X), T0 = {1}, T1 = {0, 1}. Since D(0, T0) = 1, D(0, T1) = D(1, T0) =
D(1, T1) = 0, we have H(T0, T1) = M(0, 1) = 1 and P (0, 1) = 2. It is obvious that

T is not a multivalued Ćirić type operator, but T is a (1/2)− P - operator.
Now we can prove the main result of this paper.

Theorem 2.4 Let (X, d) be a complete metric space and T : X → Pcl(X) be a multi-
valued α− P - operator. Then, the following conclusions hold:
(a) there exists x∗ ∈ FT ;
(b) for each x ∈ X, there exists a s.s.a. (xn) for T , starting from x, convergent to a
fixed point of T ;
(c) if (xn) is a s.s.a. for T , starting from x0, convergent to x∗ ∈ FT , then

d(x0, x
∗) ≤ 1 + α

1− α
d(x0, x1);

(d) if (xn) is a s.s.a. for T , starting from x0, convergent to x∗ ∈ FT , then for every
n ≥ 1

d(xn, x
∗) ≤ βn

1− β
d(x0, x1),
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where β = 2α/(1 + α);
(e) FT is closed in (X, d);
(f) if G : X → Pcl(X) is a β − P - operator and H(Tx,Gx) ≤ η for all x ∈ X, then

H(FT , FG) ≤ ηmax

{
1 + α

α(1− α)
,

1 + β

β(1− β)

}
;

(g) if Tn : X → Pcl(X) is a sequence of α− P - operators with
limn→∞H(Tnx, Tx) = 0, uniformly with respect to x ∈ X, then
limn→∞H(FTn

, FT ) = 0;
(h) if there exists x0 ∈ X and r > 0 such that D(x0, Tx0) < 1−α

1+αr, then there exists

x∗ ∈ FT ∩B(x0, r);
(i) if there exists x0 ∈ X and r > 0 such that ρ(x0, Tx0) < 1−α

1+αr, then T : B̄(x0, r)→
P (B̄(x0,

1+α+2α2

1−α2 r)) and there exists x∗ ∈ FT ∩B(x0, r);

(j) if X is a Banach space, U an open subset of X and T : U → Pcl(X) is a
multi-valued P-operator, then the associated multivalued operator G : U → P (X),
G(x) = x− Tx is open;
(k) there exists a Caristi selection of T ;
(l) if, additionally, T : X → Pcp(X), then the fixed point inclusion x ∈ Tx is gener-
alized Ulam-Hyers stable;
(m) the multi-valued operator T has the approximate fixed point property;
(n) if the multi-valued operator T is lower semicontinuous, then it has the approxi-
mate endpoint property if and only if it has a unique strict fixed point;
(o) if α < 1/3, then FT is compact;
(p) if T : X → Pb,cl(X), then for each p > 0, one has

H(F ∗p , FT ) ≤ 1 + α

1− α
p,

where F ∗p := {x ∈ X : D(x, Tx) < p}.
Proof. (a), (b), (c) and (d) Let x0 ∈ X and x1 ∈ Tx0 such that d(x0, x1) <
1
αD(x0, Tx0). By hypothesis, we have H(Tx0, Tx1) ≤ αP (x0, x1). Suppose that
D(x0, Tx0) < D(x1, Tx1). Then, we have:

E1(x0, x1) = d(x0, x1) +D(x0, Tx0)−D(x1, Tx1)

< d(x0, x1) +D(x1, Tx1)−D(x0, Tx0)

= E2(x0, x1),

E4(x0, x1) = [D(x0, Tx1) +D(x1, Tx0) + |D(x0, Tx0)−D(x1, Tx1)|]/2
= [D(x0, Tx1) +D(x1, Tx1)−D(x0, Tx0)]/2

≤ [d(x0, x1) +D(x1, Tx1) +D(x1, Tx1)−D(x0, Tx0)]/2

= D(x1, Tx1) + [d(x0, x1)−D(x0, Tx0)]/2

≤ D(x1, Tx1) + d(x0, x1)−D(x0, Tx0)

= E2(x0, x1).
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Since D(x0, Tx0) ≤ d(x0, x1), it follows that

E2(x0, x1) = d(x0, x1) +D(x1, Tx1)−D(x0, Tx0)

≥ D(x0, Tx0) +D(x1, Tx1)− d(x0, x1)

= E3(x0, x1).

Hence, we get

P (x0, x1) = E2(x0, x1) = d(x0, x1) +D(x1, Tx1)−D(x0, Tx0),

so

D(x1, Tx1) ≤ H(Tx0, Tx1) ≤ α[d(x0, x1) +D(x1, Tx1)−D(x0, Tx0)].

Then, we have

D(x1, Tx1) ≤ α

1− α
[d(x0, x1)−D(x0, Tx0)],

by where

D(x0, Tx0) <
α

1− α
[d(x0, x1)−D(x0, Tx0)].

This yields to

D(x0, Tx0) < αd(x0, x1) < D(x0, Tx0),

which is a contradiction. Therefore, we get D(x0, Tx0) ≥ D(x1, Tx1). In this case, it
follows that:

E1(x0, x1) = d(x0, x1) +D(x0, Tx0)−D(x1, Tx1)

≥ d(x0, x1) +D(x1, Tx1)−D(x0, Tx0)

= E2(x0, x1),

E4(x0, x1) = [D(x0, Tx1) +D(x1, Tx0) + |D(x0, Tx0)−D(x1, Tx1)|]/2
= [D(x0, Tx1) +D(x0, Tx0)−D(x1, Tx1)]/2

≤ [d(x0, x1) +D(x1, Tx1) +D(x0, Tx0)−D(x1, Tx1)]/2

= [d(x0, x1) +D(x0, Tx0)]/2

≤ [d(x0, x1) + d(x0, x1)]/2

= d(x0, x1)

≤ d(x0, x1) +D(x0, Tx0)−D(x1, Tx1)

= E1(x0, x1).

Since E2(x0, x1) ≥ E3(x0, x1), we obtain that

P (x0, x1) = E1(x0, x1) = d(x0, x1) +D(x0, Tx0)−D(x1, Tx1).

Hence, we have

D(x1, Tx1) ≤ H(Tx0, Tx1) ≤ α[d(x0, x1) +D(x0, Tx0)−D(x1, Tx1)].

It follows that

D(x1, Tx1) ≤ α

1 + α
[d(x0, x1) +D(x0, Tx0)],
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by where

D(x1, Tx1) ≤ 2α

1 + α
d(x0, x1) = βd(x0, x1).

Furthermore, consider q ∈ (1, 1+α
2α ). Then, there exists x2 ∈ Tx1 such that d(x1, x2) ≤

qβd(x0, x1) and d(x1, x2) ≤ 1
αD(x1, Tx1). Let us denote by λ := qβ. It is obvious

that λ ∈ (0, 1). Then, we have d(x1, x2) ≤ λd(x0, x1). By induction, we can construct
a sequence (xn) such that

xn+1 ∈ Txn and d(xn, xn+1) ≤ λd(xn−1, xn)

for each n ≥ 0. It follows that d(xn, xn+1) ≤ λnd(x0, x1), for each n ≥ 0, so, by the
triangle inequality, we get

d(xn, xn+p) ≤ λn
1− λp

1− λ
d(x0, x1) ≤ λn

1− λ
d(x0, x1).

Letting n→∞, we obtain that (xn) is a Cauchy sequence, hence there exists x∗ ∈ X
such that xn → x∗. Taking p→∞ in the above inequality, we get for each n ≥ 0

d(xn, x
∗) ≤ λn

1− λ
d(x0, x1).

Making q ↘ 1, it follows the estimate

d(xn, x
∗) ≤ βn

1− β
d(x0, x1).

For n = 0, we get

d(x0, x
∗) ≤ 1

1− β
d(x0, x1) =

1 + α

1− α
d(x0, x1).

Now, we prove that x∗ ∈ FT , i.e. D(x∗, Tx∗) = 0. Since D(xn, Txn) ≤ d(xn, xn+1)
and limn→∞ d(xn, x

∗) = limn→∞ d(xn, xn+1) = 0, we have limn→∞D(xn, Txn) = 0
and limn→∞ d(x∗, Txn) = 0. Hence,

lim
n→∞

E1(xn, x
∗) = −D(x∗, Tx∗),

lim
n→∞

E2(xn, x
∗) = lim

n→∞
E3(xn, x

∗) = lim
n→∞

E4(xn, x
∗) = D(x∗, Tx∗).

Therefore, limn→∞ P (xn, x
∗) = D(x∗, Tx∗). By hypothesis, we have for every n ≥ 0

that:
D(xn+1, Tx

∗) ≤ H(Txn, Tx
∗) ≤ αP (xn, x

∗).

Taking n→∞, we obtain D(x∗, Tx∗) ≤ αD(x∗, Tx∗), so D(x∗, Tx∗) = 0.
(e) Let xn ∈ FT such that xn → x∗. We shall show that x∗ ∈ FT , i.e.
x∗ ∈ Tx∗. Since D(xn, Txn) = 0, limn→∞D(xn, Tx

∗) = D(x∗, Tx∗),
limn→∞D(x∗, Txn) = 0, we have:

lim
n→∞

E1(xn, x
∗) = −D(x∗, Tx∗),

lim
n→∞

E2(xn, x
∗) = lim

n→∞
E3(xn, x

∗) = lim
n→∞

E4(xn, x
∗) = D(x∗, Tx∗).

Therefore, limn→∞ P (xn, x
∗) = D(x∗, Tx∗). By hypothesis, we have for every n ≥ 0

that:
D(xn, Tx

∗) ≤ H(Txn, Tx
∗) ≤ αP (xn, x

∗).



712 OVIDIU POPESCU

Taking n → ∞, we obtain D(x∗, Tx∗) ≤ αD(x∗, Tx∗), so D(x∗, Tx∗) = 0. Since the
operator T has closed values, it follows that x∗ ∈ Tx∗, i.e. x∗ ∈ FT .
(f) By (a), (b), (c) and (d), we have that d(x0, x

∗) ≤ 1+α
1−αd(x0, x1), where x0 ∈ X

is arbitrarly chosen, x1 ∈ Tx0 such that d(x0, x1) < D(x0, x1)/α, and x∗ ∈ FT .
Taking x0 = y∗ ∈ FG, we obtain that d(x∗, y∗) ≤ 1+α

1−αd(y, y∗), where y ∈ Ty∗ such

that d(y∗, y) < D(y∗, T y∗)/α. It follows that d(x∗, y∗) ≤ 1+α
α(1−α)D(y∗, Ty∗). Since

D(y∗, Ty∗) ≤ H(Gy∗, T y∗) ≤ η, we get d(x∗, y∗) ≤ 1+α
α(1−α)η. Hence, D(y∗, FT ) ≤

1+α
α(1−α)η for each y∗ ∈ FG. Similarly, we have D(x∗, FG) ≤ 1+β

β(1−β)η for each x∗ ∈ FT .

Then, we obtain

H(FT , FG) ≤ ηmax

{
1 + α

α(1− α)
,

1 + β

β(1− β)

}
.

(g) Since limn→∞H(Tnx, Tx) = 0, uniformly with respect to x ∈ X, then for ε > 0,
arbitrarly chosen, there exists N(ε) ∈ N such that

sup
x∈X

H(Tnx, Tx) < ε

for all n ≥ N(ε). By (f) we get that H(FTn , FT ) < 1+α
α(1−α)ε, hence

limn→∞H(FTn , FT ) = 0.
(h) Let s ∈ (0, r) such that B̄(x0, s) ⊂ B(x0, r), where D(x0, Tx0) < 1−α

1+αs <
1−α
1+αr.

Then, there exists x1 ∈ Tx0 such that d(x0, x1) < 1
αD(x0, Tx0) and d(x0, x1) <

1−α
1+αs . Hence, d(x0, x1) < s, so x1 ∈ B̄(x0, s). From the hypothesis, we have that

H(Tx0, Tx1) ≤ αP (x0, x1). Like in the proof of (a) it follows that D(x1, Tx1) ≤
D(x0, Tx0) and P (x0, x1) = d(x0, x1) +D(x0, Tx0)−D(x1, Tx1). Thus,

D(x1, Tx1) ≤ H(Tx0, Tx1) ≤ α[d(x0, x1) +D(x0, Tx0)−D(x1, Tx1)].

It follows that

D(x1, Tx1) ≤ α

1 + α
[d(x0, x1) +D(x0, Tx0)],

by where

D(x1, Tx1) ≤ 2α

1 + α
d(x0, x1) <

2α

1 + α

1− α
1 + α

s =
2α

1 + α

(
1− 2α

1 + α

)
s.

By the triangle inequality, we obtain

d(x0, x2) ≤ d(x0, x1) + d(x1, x2) <
1− α
1 + α

s+
2α

1 + α

1− α
1 + α

s

=

(
1− 2α

1 + α

)(
1 +

2α

1 + α

)
s =

[
1−

(
2α

1 + α

)2
]
s,

by where d(x0, x2) < s, so x2 ∈ Tx1 ∩ B̄(x0, s). By induction, we can construct a
sequence (xn) such that for each n ∈ N, xn ∈ Txn−1 ∩ B̄(x0, s),

d(x0, xn) ≤
(

1− 2α

1 + α

)n
s
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and

d(xn−1, xn) ≤
(

2α

1 + α

)n−1(
1− 2α

1 + α

)
s.

It follows that (xn) is Cauchy, so there exists x∗ ∈ X such that xn → x∗. As in the
proof of (a)-(d), one can show that x∗ ∈ Tx∗. Since xn ∈ B̄(x0, s) for each n ≥ 0, we
have x∗ ∈ B̄(x0, s) ⊂ B(x0, r).
(i) We have to show that Ty ⊂ B̄(x0,

1+α
1−αr) for every y ∈ B̄(x0, r). Let z ∈ Ty.

Then, d(z, x0) ≤ d(z, u) + d(u, x0) for every u ∈ Tx0. It follows that d(z, x0) ≤
d(z, u) + ρ(x0, Tx0) for every u ∈ Tx0, hence taking infu∈Tx0

we get

d(z, x0) ≤ D(z, Tx0) + ρ(x0, Tx0) < H(Ty, Tx0) +
1− α
1 + α

r.

By hypothesis, H(Ty, Tx0) ≤ αP (y, x0), where

P (y, x0) = max {E1(y, x0), E2(y, x0)), E3(y, x0), E4(y, x0)} .

We employ an analysis of the following cases:
If the maximum is E1(y, x0) = d(y, x0) +D(y, Ty)−D(x0, Tx0), then

d(z, x0) < αd(y, x0) + αD(y, Ty)− αD(x0, Tx0) +
1− α
1 + α

r

≤ αr + αd(y, z) +
1− α
1 + α

r

≤ αr + α[d(y, x0) + d(x0, Tx0)] +
1− α
1 + α

r

= αd(x0, z) + (2α+
1− α
1 + α

)r.

This means that

d(z, x0) < (
2α

1− α
+

1

1 + α
)r =

1 + α+ 2α2

1− α2
r.

If the maximum is E2(y, x0) = d(y, x0) +D(x0, Tx0)−D(y, Ty), then

d(z, x0) < αd(y, x0) + αD(x0, Tx0)− αD(y, Ty) +
1− α
1 + α

r

≤ αr + α
1− α
1 + α

r +
1− α
1 + α

r

= r.

If the maximum is E3(y, x0) = D(y, Ty) +D(x0, Tx0)− d(y, x0), then

d(z, x0) < αd(y, x0) + αD(y, Ty)− αD(x0, Tx0) +
1− α
1 + α

r

≤ α1− α
1 + α

r + αd(y, z) +
1− α
1 + α

r

≤ (1− α)r + α[d(y, x0) + d(x0, z)] +
1− α
1 + α

r

≤ (1− α)r + αr + αd(x0, z).
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Hence, d(z, x0) ≤ r
1−α .

Finally, if the maximum is

E4(y, x0) = [D(y, Tx0) +D(x0, T y) + |D(y, Ty)−D(x0, Tx0)|]/2,

then for D(y, Ty) > D(x0, Tx0) we obtained

d(z, x0) < (α/2)[D(y, Tx0) +D(x0, T y) +D(y, Ty)] +
1− α
1 + α

r

≤ (α/2)[d(y, x0) +D(x0, Tx0) + d(x0, z) +D(y, Ty)] +
1− α
1 + α

r

≤ (α/2)[r +
1− α
1 + α

r + d(x0, z) + d(y, z)] +
1− α
1 + α

r

≤ (α/2)[
2

1 + α
r + d(x0, z) + d(y, x0) + d(x0, z)] +

1− α
1 + α

r

=

(
1

1 + α
+
α

2

)
r + αd(x0, z).

It follows that

d(z, x0) ≤ α2 + α+ 2

2(1− α2)
≤ 1 + α+ 2α2

1− α2
r.

Also, for D(y, Ty) ≤ D(x0, Tx0) we have

d(z, x0) < (α/2)[D(y, Tx0) +D(x0, Ty) +D(x0, Tx0)] +
1− α
1 + α

r

≤ (α/2)[d(y, x0) +D(x0, Tx0) + d(x0, z) +D(x0, Tx0)] +
1− α
1 + α

r

≤ (α/2)[r + 2
1− α
1 + α

r + d(x0, z)] +
1− α
1 + α

r

= (α/2)d(x0, z) + (1− α/2)r.

by where, d(z, x0) ≤ r. Since 1
1−α ≤

1+α+2α2

1−α2 , in all cases we have

d(z, x0) ≤ 1 + α+ 2α2

1− α2
r.

This means that

T (B̄(x0, r)) ⊂ B̄(x0,
1 + α+ 2α2

1− α2
r).

Since D(x0, Tx0) ≤ ρ(x0, Tx0) < 1−α
1+αr, by (h) it follows that there exists x∗ ∈

FT ∩B(x0, r).
(j) Let V be an open subset of U . We shall prove that G(V ) is open in X. This
means that for x0 ∈ U and r > 0 such that B(x0, r) ⊂ U , we have V (Gx0,

1−α
1+αr) ⊂

G(B(x0, r)). Taking y ∈ V (Gx0,
1−α
1+αr), i.e. D(y,Gx0) < 1−α

1+αr, we shall prove that

there exists x∗ ∈ B(x0, r) such that y ∈ Gx∗. Let us consider the multi-valued
operator F : B(x0, r)→ Pcl(X), defined by F (x) := y+Tx. Then, for x, z ∈ B(x0, r)
we have that:

H(Fx, Fz) = H(y + Tx, y + Tz) = H(Tx, Tz) ≤ αP (x, z).
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Moreover,

D(x0, Fx0) = D(x0, y + Tx0) = D(y, x0 − Tx0) = D(y,Gx0) <
1− α
1 + α

r.

It follows from (h) that F has a fixed point x∗ ∈ B(x0, r), i.e. x∗ ∈ Fx∗. Hence,
x∗ ∈ y + Tx∗ or y ∈ x∗ − Tx∗ = Gx∗. Therefore, y ∈ V (Gx0,

1−α
1+αr), and then, G is

open.
(k) Let ε := 1−α

2(1+α) , β := 2α
1+α and ϕ(x) := (1/ε)D(x, Tx). Then, obviously, we have

ε+ β = 1+3α
2+2α < 1 and ϕ is bounded below by 0. Since 1/(ε+ β) > 1, for each x ∈ X

we can choose tx ∈ Tx such that d(x, tx) ≤ 1/(ε+ β)D(x, Tx). Since D(tx, Tx) = 0
and D(x, Tx) ≤ d(x, tx), we get for D(tx, T tx) ≥ D(x, Tx) that

d(x, tx) +D(x, Tx)−D(tx, T tx) ≤ d(x, tx) +D(tx, T tx)−D(x, Tx),

D(x, Tx) +D(tx, T tx)− d(x, tx) ≤ d(x, tx) +D(tx, T tx)−D(x, Tx),

(1/2)[D(x, T tx) +D(tx, Tx) + |D(x, Tx)−D(tx, T tx)|]
≤ (1/2)[d(x, tx) +D(tx, T tx) +D(tx, T tx)−D(x, Tx)

≤ D(tx, T tx) + d(x, tx)−D(x, Tx),

so E1(x, tx) ≤ E2(x, tx), E3(x, tx) ≤ E2(x, tx) and E4(x, tx) ≤ E2(x, tx). Hence,
P (x, tx) = d(x, tx) +D(tx, T tx)−D(x, Tx). Then, by hypothesis, we have:

D(tx, T tx) ≤ H(Tx, T tx) ≤ αP (x, tx),

so

D(tx, T tx) ≤ α[d(x, tx) +D(tx, T tx)−D(x, Tx)].

Hence, we get

D(x, Tx) ≤ D(tx, T tx) ≤ α

1− α
[d(x, tx)−D(x, Tx)],

by where

D(x, Tx) ≤ αd(x, tx) ≤ α

ε+ β
D(x, Tx).

Since α
ε+β < 1, it follows that D(x, Tx) = 0. This implies d(x, tx) = 0, so we have

D(x, Tx) ≤ βd(x, tx). If D(tx, T tx) < D(x, Tx), then

d(x, tx) +D(x, Tx)−D(tx, T tx) > d(x, tx) +D(tx, T tx)−D(x, Tx),

D(x, Tx) +D(tx, T tx)− d(x, tx) ≤ d(x, tx) +D(tx, T tx)−D(x, Tx),

(1/2)[D(x, T tx) +D(tx, Tx) + |D(x, Tx)−D(tx, T tx)|]
≤ (1/2)[d(x, tx) +D(tx, T tx) +D(x, Tx)−D(tx, T tx)

= (1/2)[d(x, tx) +D(x, Tx)]

≤ d(x, tx) +D(x, Tx)−D(tx, T tx),

so E1(x, tx) > E2(x, tx), E3(x, tx) ≤ E2(x, tx) and E4(x, tx) ≤ E1(x, tx). Hence,
P (x, tx) = d(x, tx) +D(x, Tx)−D(tx, T tx). Then, by hypothesis, we have:

D(tx, T tx) ≤ H(Tx, T tx) ≤ αP (x, tx),
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so

D(tx, T tx) ≤ α[d(x, tx) +D(x, Tx)−D(tx, T tx)].

Hence, D(tx, T tx) ≤ α
1+α [d(x, tx) +D(x, Tx)] ≤ 2α

1+αd(x, tx).
Therefore, in all cases we have for each x ∈ X that

D(tx, T tx) ≤ 2α

1 + α
d(x, tx) = βd(x, tx).

Now, we will prove that t is a Caristi type operator. Indeed, for each x ∈ X we have:

d(x, tx) = (1/ε)[(ε+ β)d(x, tx)− βd(x, tx)]

≤ (1/ε)[D(x, Tx)−D(tx, T tx)]

= ϕ(x)− ϕ(tx).

(l) Let ε > 0 and consider y∗ ∈ X that satifies D(y∗, Ty∗) ≤ ε. Then, for each x0 ∈ X
and x1 ∈ Tx0 with d(x0, x1) ≤ (1/α)D(x0.Tx0) there exists x∗ ∈ FT such that

d(x0, x
∗) ≤ 1 + α

1− α
d(x0, x1).

Taking x0 = y∗, we obtain

d(y∗, x∗) ≤ 1 + α

1− α
d(y∗, x1),

where x1 ∈ Ty∗ with d(y∗, x1) ≤ (1/α)D(y∗, T y∗). Since Ty∗ ∈ Pcp(X), there exists
x1 ∈ Ty∗ such that d(y∗, x1) = D(y∗, T y∗). It follows that

d(y∗, x∗) ≤ 1 + α

1− α
D(y∗, T y∗) ≤ 1 + α

1− α
ε = ψ(ε),

where ψ(t) = 1+α
1−α t.

(m) Since there exists x∗ ∈ FT , we have D(x∗, Tx∗) = 0, so infx∈X D(x, Tx) = 0, i.e.
T has the approximate fixed point property.
(n) Let ε > 0 and Eε(T ) := {x ∈ X : supz∈Tx d(x, z) ≤ ε}. If x, y ∈ Eε(T ), then
H(x, Tx) ≤ ε and H(y, Ty) ≤ ε. Since

d(x, y) ≤ H(x, Tx) +H(Tx, Ty) +H(y, Ty),

we get by hypothesis that d(x, y) ≤ αP (x, y)+2ε. Hence, we have the following cases:
If P (x, y) = d(x, y) +D(x, Tx)−D(y, Ty), then

d(x, y) ≤ αd(x, y) + αD(x, Tx) + 2ε

≤ αd(x, y) + αH(x, Tx) + 2ε

≤ αd(x, y) + (α+ 2)ε.

It follows that

d(x, y) ≤ α+ 2

1− α
ε.

Similarly, if P (x, y) = d(x, y) +D(y, Ty)−D(x, Tx), then

d(x, y) ≤ α+ 2

1− α
ε.
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If P (x, y) = D(x, Tx) +D(y, Ty)− d(x, y), then

d(x, y) ≤ αD(x, Tx) + αD(y, Ty) + 2ε

≤ αH(x, Tx) + αH(y, Ty) + 2ε

≤ 2(α+ 1)ε.

Finally, if P (x, y) = [D(x, Ty) +D(y, Tx) + |D(x, Tx)−D(y, Ty)|]/2, then

P (x, y) ≤ [d(x, y) +D(y, Ty) + d(x, y) +D(x, Tx) +D(x, Tx) +D(y, Ty)]/2

= d(x, y) +D(x, Tx) +D(y, Ty)

≤ d(x, y) + 2ε.

Hence, we get that d(x, y) ≤ αd(x, y) + 2αε+ 2ε, by where

d(x, y) ≤ 2(1 + α)ε

1− α
.

Therefore, it follows that

d(x, y) ≤ εmax

{
α+ 2

1− α
, 2(α+ 1),

2(1 + α)

1− α

}
=

2(1 + α)

1− α
ε.

Then, we get that

δ(Eε(T )) ≤ 2(1 + α)

1− α
ε,

where δ(A) := supa,b∈A d(a, b) means the diameter of the set A.
Let xn ∈ Eε(T ) such that xn → x as n → ∞ and z ∈ Tx. Since T is lower semi-
continuous, then there exists zn ∈ Txn with zn → z. Since xn ∈ Eε(T ) we have
supy∈Txn

d(xn, y) ≤ ε, so d(xn, zn) ≤ ε, for every n ≥ 1. Taking the limit as n→∞,
it follows that d(x, z) ≤ ε. Then, we have supz∈Tx d(x, z) ≤ ε. Hence x ∈ Eε(T ).
Therefore, Eε(T ) is closed.
Now, suppose that T has the approximate endpoint property and define Cn :=
E1/n(T ). Then, by our hypothesis, Cn is nonempty for each n, and it is obvious
that Cn+1 ⊂ Cn for all n ≥ 1. Also, Cn is closed and

δ(Cn) = δ(E1/n(T )) ≤ 2(1 + α)

1− α
ε.

Since limn→∞ δ(Cn) = 0, by Cantor’s intersection Theorem, it follows that ∩n∈NCn =
{x∗}. As x∗ ∈ Cn for each n ≥ 1, we obtain that supy∈Tx∗ d(x∗, y) ≤ 1/n, so
d(x∗, y) = 0 for each y ∈ Tx∗. Hence, Tx∗ = {x∗}, i.e. T has a strict fixed point. If
y∗ is another strict fixed point of T , then by hypothesis, we have

d(x∗, y∗) = D(x∗, T y∗) ≤ H(TX∗, T y∗) ≤ αP (x∗, y∗).

Since D(x∗, Tx∗) = D(y∗, T y∗) = 0, and D(x∗, T y∗) = D(y∗, Tx∗) = d(x∗, y∗), it
follows that P (x∗, y∗) = d(x∗, y∗). Hence, we get that d(x∗, y∗) ≤ αd(x∗, y∗), by
where d(x∗, y∗) = 0. Therefore, T has a unique strict fixed point.
Reciprocally, if T has a unique strict fixed point x∗, then Tx∗ = {x∗}. It follows
that supy∈Tx∗ d(x∗, y) = 0, so infx∈X supy∈Tx d(x, y) = 0, i.e. T has the approximate
endpoint property.
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(o) By (d), we have that FT is closed in (X, d). Let x∗, y∗ ∈ FT . By hypothesis, we
have

D(x∗, Ty∗) ≤ H(Tx∗, Ty∗) ≤ αP (x∗, y∗).

Since D(x∗, Tx∗) = D(y∗, T y∗) = 0, and D(x∗, T y∗) ≤ d(x∗, y∗), D(y∗, Tx∗) ≤
d(x∗, y∗), we get that P (x∗, y∗) = d(x∗, y∗). Hence, D(x∗, Ty∗) ≤ αd(x∗, y∗). As
Ty∗ is compact, there exists z ∈ Ty∗ such that d(x∗, z) = D(x∗, T y∗) ≤ αd(x∗, y∗).
It follows that d(x∗, y∗)− d(z, y∗) ≤ αd(x∗, y∗), so

d(x∗, y∗) ≤ 1

1− α
d(z, y∗) ≤ 1

1− α
δ(Ty∗).

Since Ty∗ is compact, then Ty∗ is bounded and δ(Ty∗) < ∞. Hence, FT ⊂
B̄(y∗, 1

1−αδ(Ty
∗)), i.e. FT is bounded.

Obviously, FT is complete with respect to d. Let us suppose that FT is not compact.
Then, FT is not precompact, i.e. there exist δ > 0 and (xk)k∈N ⊂ FT such that
d(xi, xj) ≥ δ for all i 6= j.
Denote

ρ := inf {R : ∃a ∈ X such that B(a,R) contains an infinity of xk’s} .

Since FT is bounded, we have ρ < ∞. Moreover, ρ ≥ δ/2 because for each a ∈
X,B(a, δ/2) contains at most one xk. Furthermore, consider 0 < ε < 1−3α

1+α ρ and take

a ∈ X such that the set J := {k : xk ∈ B(a, ρ+ ε)} is infinite. Then, for each k ∈ J ,
we have

D(xk, Ta) ≤ H(Txk, Ta) ≤ αP (xk, a).

Since xk ∈ FT , we have D(xk, Txk) = 0, so

E4(xk, a) = [D(xk, Ta+D(a, Txk) +D(a, Ta)]/2

≤ [d(xk, a) +D(a, Ta) + d(a, xk) +D(xk, Txk) +D(a, Ta)]/2

= d(xk, a) +D(a, Ta).

It follows that P (xk, a) = d(xk, a) +D(a, Ta), and then

D(xk, Ta) ≤ αd(xk, a) + αD(a, Ta)

≤ αd(xk, a) + αd(a, xk) + αD(xk, Ta).

Hence,

D(xk, Ta) ≤ 2α

1− α
d(xk, a) ≤ 2α

1− α
(ρ+ ε),

for each k ∈ J . Since Ta is compact, then there exists yk ∈ Ta such that d(xk, yk) ≤
2α

1−α (ρ+ ε) for each k ∈ J . Moreover, since Ta is compact, then there exists b ∈ Ta,

for which the set J ′ = {k ∈ J : d(yk, b) < ε} is infinite. Then, we have for each k ∈ J ′
that

d(xk, b) ≤ d(xk, yk) + d(yk, b) <
2α

1− α
(ρ+ ε) + ε < ρ.

Hence, the ball B(b, R) contains an infinite number of elements xk’-s, where

R =
2α

1− α
ρ+

1 + α

1− α
ε < ρ.
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This contradicts the choice of ρ. Therefore, FT is compact.
(p) Let F ∗p := {x ∈ X : D(x, Tx) < p} for each p > 0. If x ∈ FT then D(x, Tx) = 0,
so x ∈ F ∗p . Hence FT ⊂ F ∗p for each p > 0. This implies that

H(F ∗p , FT ) = ρ(F ∗p , FT ) = sup
x∈F∗

p

D(x, FT ),

for all p > 0, where ρ denotes the excess functional. Now, let ε > 0 arbitrarly chosen
and x ∈ F ∗p . Then, D(x, Tx) < p and there exists x1 ∈ Tx such that d(x, x1) <
min {(1 + ε)p, (1/α)D(x, Tx)}. Following (b) there exists a s.s.a. (xn) starting from
x0 = x ∈ X, such that d(x0, x

∗) ≤ 1+α
1−αd(x0, x1), where xn → x∗ ∈ FT as n → ∞.

Then, we have d(x0, x
∗) ≤ 1+α

1−α (1+ε)p. Taking ε ↓ 0, it follows that d(x0, x
∗) ≤ 1+α

1−αp,

for each x ∈ F ∗p , i.e. H(F ∗p , FT ) ≤ 1+α
1−αp.

The following result is an extended version of the strict fixed point principle for
multi-valued P-operators.

Theorem 2.5 Let (X, d) be a complete metric space and T : X → Pcl(X) be a multi-
valued P-type operator. Suppose that (SF )T 6= ∅. Then, the following conclusions
hold:
(a) (SF )T = FT = {x∗}.
(b) if α < 1

3 , then T has the Ostrowski property;

(c) if α < 1
3 , then H(Tx, x∗) ≤ 2α

1−αd(x, x∗), for each x ∈ X;

(d) if α < 1
3 , then d(x, x∗) ≤ 1−α

1−3αH(x, Tx), for each x ∈ X;

(e) the fixed point inclusion x ∈ Tx is generalized Ulam-Hyers stable;
(f) the strict fixed point inclusion {x} = Tx is generalized Ulam-Hyers stable;
(g) the fixed point problem is well-posed for T , with respect to D and, respectively,
with respect to H;
(h) if G : X → P (X) is a multi-valued operator with FG 6= ∅, and there exists η > 0
such that H(Tx,Gx) ≤ η for all x ∈ X, then H(FT , FG) ≤ 1+α

1−αη.

Proof. (a) Since (SF )T 6= ∅, then there exists x∗ ∈ (SF )T ⊂ FT . If y∗ ∈ FT , then by
hypothesis, we have

d(x∗, y∗) = D(Tx∗, y∗) ≤ H(Tx∗, T y∗) ≤ αP (x∗, y∗).

Since D(x∗, Tx∗) = D(y∗, Ty∗) = 0, D(x∗, T y∗) ≤ d(x∗, y∗) and D(y∗, Tx∗) =
d(x∗, y∗), it follows that P (x∗, y∗) = d(x∗, y∗). Hence, d(x∗, y∗) ≤ αd(x∗, y∗), by
where d(x∗, y∗) = 0, i.e. x∗ = y∗. Therefore, FT = (SF )T = {x∗}.
(b) Let (yn) be a sequence such that D(yn+1, T yn)→ 0 as n→∞. Then, by hypoth-
esis, we have for each n ≥ 1 that H(Tx∗, T yn) ≤ αP (x∗, yn). Since D(x∗, Tx∗) = 0,
we have

E4(x∗, yn) = [D(x∗, Tyn) +D(yn, Tx
∗) +D(yn, Tyn)]/2

≤ [d(x∗, yn) +D(yn, T yn) + d(x∗, yn) +D(yn, Tyn)]/2

= d(x∗, yn) +D(yn, T yn).

It follows that P (x∗, yn) = d(x∗, yn)+D(yn, Tyn). Hence, we get that for each n ≥ 1:

H(Tx∗, Tyn) ≤ α[d(x∗, yn) +D(yn, Tyn)].
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Then, we obtain that:

H(Tx∗, T yn) ≤ αd(x∗, yn) + α[d(x∗, yn) +D(x∗, T yn)]

= 2αd(x∗, yn) + αD(x∗, T yn)

≤ 2αd(x∗, yn) + αH(Tx∗, Tyn).

Hence, we have that H(Tx∗, T yn) ≤ 2α
1−αd(x∗, yn). Since

d(x∗, yn+1) ≤ H(Tx∗, T yn) +D(yn+1, T yn), we obtain

d(x∗, yn+1) ≤ 2α

1− α
d(x∗, yn) +D(yn+1, T yn) = kd(x∗, yn) +D(yn+1, T yn),

where k = 2α
1−α < 1. By Lemma 1.3, we get limn→∞ d(x∗, yn) = 0, so yn → x∗ as

n→∞.
(c) By hypothesis, we have for each x ∈ X that H(Tx, Tx∗) ≤ αP (x, x∗). Since
D(x∗, Tx∗) = 0, we obtain that P (x, x∗) = d(x, x∗) +D(x, Tx). Hence

H(Tx, Tx∗) ≤ αd(x, x∗) + αD(x, Tx)

≤ αd(x, x∗) + α[d(x, x∗) +H(Tx, Tx∗)]

= 2αd(x, x∗) + αH(Tx, Tx∗),

by where we get H(Tx, Tx∗) ≤ 2α
1−αd(x, x∗).

(d) We have

d(x, x∗) ≤ H(x, Tx) +H(Tx, x∗) ≤ H(x, Tx) +
2α

1− α
d(x, x∗).

Therefore, we get d(x, x∗) ≤ 1−α
1−3αH(x, Tx).

(e) Now, let us consider y ∈ X and xx ∈ Ty. Then, we have:

d(y, x∗) ≤ d(y, x) +H(Ty, Tx∗) ≤ d(x, y) + αP (y, x∗)

= d(x, y) + α[d(y, x∗) +D(y, Ty)]

≤ (1 + α)d(x, y) + αd(y, x∗).

It follows that d(y, x∗) ≤ 1+α
1−αd(x, y) for each x ∈ Ty. Taking infx∈Ty we get d(y, x∗) ≤

1+α
1−αD(y, Ty) = ψ(D(y, Ty)), where ψ(t) := 1+α

1−α t. It is obvious that ψ is continuous in

0, increasing and ψ(0) = 0. Let ε > 0 and consider y∗ ∈ X that satisfies D(y∗, Ty∗) ≤
ε. Then, we have

d(y∗, x∗) ≤ ψ(ε) =
1 + α

1− α
ε.

(f) Since D(y∗, T y∗) ≤ H(y∗, T y∗) for every y∗ ∈ X, the conclusion follows from (e).
(g) Let xn ∈ X with D(xn, Txn)→ 0 as n→∞. Then,

d(xn, x
∗) ≤ D(xn, Txn) +H(Txn, Tx

∗) ≤ D(xn, Txn) + αP (xn, x
∗).

Since P (xn, x
∗) = d(xn, x

∗) + D(xn, Txn), we get that d(xn, x
∗) ≤ αd(xn, x

∗) +
(1 + α)D(xn, Txn). Hence, d(xn, x

∗) ≤ 1+α
1−αD(xn, Txn). Letting n → ∞ we obtain

d(xn, x
∗)→ 0, so xn → x∗.

(h) Let x∗ ∈ (SF )T and y∗ ∈ FG. Then, we have

d(x∗, y∗) ≤ H(Gy∗, x∗) ≤ H(Gy∗, Ty∗) +H(Ty∗, x∗) ≤ η + αP (y∗, x∗).
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Since P (y∗, x∗) = d(y∗, x∗) +D(y∗, Ty∗), we get

d(x∗, y∗) ≤ η + αd(x∗, y∗) + αD(y∗, T y∗)

≤ η + αd(x∗, y∗) + αH(y∗, T y∗)

≤ η(1 + α) + αd(x∗, y∗).

Hence, we obtain that d(x∗, y∗) ≤ 1+α
1−αη for each y∗ ∈ FG. It follows that

sup
y∗∈FG

d(x∗, y∗) ≤ 1 + α

1− α
η,

by where

H(FT , FG) ≤ 1 + α

1− α
η.
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