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1. INTRODUCTION

There are several techniques in the fixed point theory for nonself operators on a
complete metric space ([1], [7], [10], [13]). Throughout this paper we shall follow the
standard terminologies and notations used in nonlinear analysis. For the convenience
of the reader we shall recall some of them.

Let X be a nonempty set and f : X — X be an operator. We denote by f° := 1x,
fli=f, frtl:= f*o f, n € N the iterate operators of the operator f. We also have

PX)={Y CX|Y #0}
Fy={reX| f(z) =z}
Py(X):={Y € P(X) | Y is bounded}
The notion of L-space was given by M. Frechet in 1906 (see [4])
Definition 1.1. Let X be a nonempty set and let us consider s(X) := {{xn }nen |
x, € X}, ¢(X) C s(X) and Lim : ¢(X) — X be an operator.We say that
(X,c(X), Lim) is an L—space (denoted also by (X, 5)) if the following conditions
are satisfied:
(i) if , = z for all n € N then {x, }nen € ¢(X) and Lim{z, }neny =
(ii) if {xn}tnen € ¢(X) and Lim{z, }neny = z then for all subsequences {z, }icn
of {xy, }nen we have {z,, }ien € ¢(X) and Lim{x,, }ien = .

The notion of large Kasahara space which will be used in this paper, is the following
one:
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Definition 1.2. (see [2]) Let X be a nonempty set, L be an L-space structure on
X,and d: X x X — Ry be a metric on X. The triple (X, g,d) is a large Kasahara
space iff we have the following compatibility condition between L and d:
(i) {zn}nen € X a Cauchy sequence with respect to d implies that {z,}nen
converges in (X, E)),
(ii) z, LN T, Yn LN y and d(x,,y,) — 0 as n — oo implies z = y.

Another useful notion used in the studies of fixed points for nonself operators is
the comparison function.

Definition 1.3. (see [8]) A function ¢ : Ry — Ry is a comparison function if the
following conditions are satisfied:

(i)  is increasing;

(ii) the sequence ¢™(t) — 0 as n — oo, for every t > 0.

Definition 1.4. (see [8]) A comparison function is a strong comparison function if

3 o*(t) < oo, for any t > 0.
£>0

Lemma 1.1. (see [8]) If ¢ : Ry — Ry is a strong comparison function then the
function s : Ry — Ry defined by

s(t) =Y @M (b),
k>0
is increasing and continuous at 0.

Lemma 1.2. (see [15]) Let ¢ : Ry — Ry be a strong comparison function and
{bn}nen be a sequence of positive numbers such that b, — 0 as n — co. Then

. n—k _
nIL%;¢ (b) = 0.

Using the setup of large Kasahara spaces the author of [2] proved some results
related to the existence, uniqueness and data dependence of fixed point for nonself
operators, f: Y C X — X, in the following two cases:

(A) there exists I € (0,1) such that d(f(x), f(y)) < ld(z,y), for all x,y € Y

(B) there exists a strong comparisom function ¢ : Ry — R4 such that

d(f(2), f(y)) < p(d(z,y)), for all z,y € Y
More results about fixed points of operators on Kasahara spaces can be found in [12],
[16], [3].

2. MAIN RESULTS

In [5] the authors proved a result related to the existence and uniqueness of fixed
point for an operator T' : X — X which satisfies the metric condition

G(d(Tz,Ty)) < H(d(z,y)), for all z,y € X, with Ta # Ty (2.1)
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where G, H : (0,00) — R are some suitable control mappings. The above results
extended the results provided earlier by Proinov in [6]. More results in regards to
generalized contractions satisfying the metric condition (2.1) can be found in [17].
Next, by following the results of [11], our goal is to get a saturated fixed point principle
for a nonself operator

fiYCX X

on a large Kasahara space in the case when

G(d(f(z), f(y))) < H(d(z,y)), for all z,y € Y, with f(z) # f(y),

where G, H : (0,00) — R and Y will be defined further during our considerations. In
order to prove our main result we need the following definitions and auxiliary results.

Definition 2.1. We say that a function G : (0,00) — R satisfies property P if,

for every sequence (t) of positive numbers one has klim G(tr) = —oo, implies
—00

lim tk =0.

k—o0

Lemma 2.1. Let us consider a sequence {t;};jen of positive numbers, and let
G,H : (0,00) = R be such that:

(i) G(t;) < H(tj-1), (V)i = 1;
(i )foreachr>t>0we have G(r) > H(t);
(iii) hmlnf( (t;) — H(t;)) > 0;

(iv) G has the property P.
Then {t;};en is a decreasing sequence and t; \, 0 as j — oo.
Proof. The assumptions (i) and (i¢) lead us to ¢, < tx—1 and
G(tr) — G(tr-1) < H(tk—1) — G(tr-1),

for any k > 1. Since {tx}ren is a decreasing sequence of positive numbers it follows
that there exists ¢ > 0 such that ¢ = lim t;. Next, arguing by contradiction we
j—oo

suppose that ¢ > 0. Then, via (iii) we get

G(t;) < G(to) — i:( (tk—1) (tk—1)> — =09,

=1

as j — oo.
Since G has the property P we conclude that ¢; \, 0 as j — oo which is a contra-
diction with the assumption ¢ > 0. O

Lemma 2.2. Let us consider the sequences {t;}jen C Ry, {s;}jen of positive
numbers, s; \y0 as j — oo and let G, H : (0,00) = R be such that:

(i) G(tj) < H(sj +tj-1), (V)j = 1;
(ii) liminf (G(t;—1) — H(sj +tj—1)) >0
Jj—o0
(iii) G has the property P.
Thent; — 0 as j — oo.
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Proof. The condition (7) leads us to G(tx) — G(tk—1) < H(tk—1 + si) — G(ty—1) for
any k > 1. Then, via (ii) we get
J
G(t;) < G(to) — > (G(tkl) — H(tp—1 + sk)) — —00,
k=1
as j — 0o. Since G satisfies the property P we conclude that t; =+ 0 as j —oco. O

Lemma 2.3. Let us consider the sequence {t;}jen C Ry converging to zero as j — 0o,
g: Ry — Ry be a bijection with g~! : Ry — Ry an increasing function on Ry and
G,H : (0,00) = R be such that:

(i) G(t;) < H(tj—1), (V)j = 1;

(ii) there exists My > 0 such that g(t;)(G(to) — G(t;)) < Mo, (V)j > 1;

(i) 3 g (— 20 ) <o

=t poll KIOSNES T
(iv) for each r >t > 0 we have G(r) > H(t).

Then Y t; < oo.
i>1

Proof. First of all we remark that the condition (i) implies
G(tr) — G(tr-1) < H(tg-1) — G(tg-1),
for any k > 1. Then by summing up for k =1, j we get

G(t;) < G(to) — > (G(tk_l) - H(tk_l)) =

k=1
J

5 (6t - (1) < Glto) = Gt =

k=1
0 < ot Z(Gtkl H(tio1)) < 9(6)(Glto) ~ 1) < Mo =
k=1
ti<g < Mo =

zt<zgl( Mo )><oo 0

7j>1 7j>1 < tk 1 H(tk—l)

Definition 2.2. We say that the function ¢ : R, — R, belongs to the class R iff

(go) g is a bijection with g~!

(91) limg(®) = 0.

increasing on R, ;

Example 2.1. Let us consider k¥ € (0,1) and ¢g : R, — R, defined by g(t) = t*.
Then g € R.
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Definition 2.3. We say that the function F' : Ry — R is a regular function with
respect to g € R if and only if li\I"I(l) g(t)F(t) =0.
t

Example 2.2. Let us consider g as in Example 2.1, 0 < a < kand F : Ry — R

defined by F(t) = —7. Then F is a regular function with respect to g.

Lemma 2.4. Let us consider G, H : (0,00) — R such that:

(a) G is left lower semicontinuous and satisfies property P;

(b) H is increasing;

(c) lim\i?f (G(s) — H(s)) > 0 for each t > 0;

(d) for each T >t >0 we have G(r) > H(t).
Then the function ¢ : Ry — Ry defined by

o(t) = sup{s > 0| G(s) < H(t)} (2.2)

has the following properties:

(i) ¢ is a comparison function;

(i) if there exists g € R such that G is regqular with respect to g and

1 M
jzz:lg ( $ (G(tkl) - H(tk1)>) o

k=1
for any M € (0,00) and {t;}jen @ decreasing sequence of positive numbers
converging to zero then ¢ is a strong comparison function;
(iil) if H is upper semicontinuous on Ry and {t;};en is a bounded sequence of
positive numbers such that lim (t; — o(t;)) = 0 then:
j—o0

() @ is upper semicontinuous on Ry and limsup ¢(t) < e for any € > 0;

(B) t; =0 as j— oo. o
Proof. (i) Let t > 0. Since G satisfies the property P it follows that the set

{s>0]|G(s) < H(t)}
is not empty. On the other hand we remark that (d) implies
{s=0]G(s) <H()} < [0.1]
and thus there exists
sup{s > 0| G(s) < H(t)} =: ¢(t) <t, for all t > 0.
Further let us consider 0 < t; < t5. Since H is increasing it follows that
p(t1) = sup{s > 0| G(s) < H(t1)} < sup{s > 0| G(s) < H(t2)} = ¢(t2)

and from here one has that ¢ is increasing i.e condition (¢) of Definition 1.3 is verified.
Moreover, since G is left lower semicontinuous and taking into account the definition
of ¢ we get that

G(s) < H(E). (V)3 € [0.0(0) = Glo(t) < lminf Gls) < HE). (23
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In order to check the condition (i) of Definition 1.3 let us consider ¢ > 0 and the
decreasing sequence {t, },en defined by

to=1, th, = @(tn—l)a n>1

The sequence {t, }nen being decreasing it follows that there exists ¢ > 0 such that

t = lim t,. Next, arguing by contradiction we suppose that ¢ > 0. Then, via relation
n—oo

(2.3) and summation over k = 1,n we have
G(ty) < H(tg—1) = G(tr) — G(tk—1) < H(tk—1) — G(tp—1) =

n

Glta) < Glto) = 3 (Gltw0) ~ Htx0)) = =,

k=1
as n — 00. Since G has the property P we conclude that ¢, N\, 0 as n — co which is
a contradiction with the assumption ¢ > 0.
(ii) Let us consider ¢ > 0 and the decreasing sequence {¢, }nen defined by

to = t, tn = (p(tn_l), n > 1.

By considering the same arguments as in the proof of (i) we get that ¢, — 0 asn — oo
and G(t;) < H(tj—1) for any j > 1. On the other hand, since G is regular with respect
to g € R we have that }{% g(t)(G(to) — G(t)) = 0. Consequently, there exists My > 0
such that g(t;)(G(to) — G(t;)) < My, (V)j > 1. Now, by applying Lemma 2.3 to the
sequence {t;};en defined above, we get that ¢ is a strong comparison function.
(iii) (o) Let us consider a € Ry, Uy(p) = {t € R4 | ¢(t) > a} and {t;},en such
that t; — ¢ as j — oo. Since t; € U, () we get that
a < p(t;) =sup{s > 0| G(s) < H(t;)}
<sup{s > 0| G(s) < limsup H(t;)}

J—00

< sup{s > 0| G(s) < H(t)} = ().

From here we get that ¢ € U, (¢) and therefore U, () is closed i.e ¢ is upper semicon-
tinuous. Moreover for any € > 0 we have

limsup ¢(t) < ¢(e) < e.

t—e

(8) Arguing by contradiction we suppose that the sequence {t;},;en does not con-
verge to zero. Since it is bounded it follows that there exists € > 0 and a subsequence
tn, such that t,, — ¢ as kK — 0o.Then

ple) <e= lim t,, = lim @(t,,) <limsupp(t) < (e),
k—o0 k—o0

t—e

which is a contradiction. O

The diameter functional § : P(X)— Ry U {cc} is defined by:
0(A) :=sup{d(a,b) | a,b € A}, for all A € P(X)
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Remark 2.1. Let us consider G, H : (0,00) - R and f : Y — X be an operator
such that

G(6(f(B))) < H(5(B)),
for all B € Py(Y), with 6(f(B)) # 0. Then

Gd(f(x), f(y))) < H(d(z,y)),
for all z,y € Y, with f(z) # f(y);

Proof. Let us consider z,y € Y such that f(z) # f(y). Then by using hypothesis for
B = {z,y} we get the conclusion. O

Remark 2.2. Let us consider G, H : (0,00) — R increasing and left continuous and
let f:Y — X be an operator such that

G(d(f (), f(y))) < H(d(z,y)),
for all z,y € Y, with f(z) # f(y) Then

G(6(f(B))) < H(6(B)),
for all B € Py(Y), with §(f(B)) # 0.

Proof. Let us consider B € P,(Y) such that §(f(B)) # 0. Since G, H are increasing
on (0, 00) it follows that
G(O(f(B))) = G( sup d(f(z), f(y))) = sup G(d(f(x), f(y)))

z,yeB z,yeB
< sup H(d(z,y)) = H( sup d(z,y)) = H(6(B)). 0
x,ycB r,yeB
Next we shall provide our main results in which is proved a saturated fixed point
principle for nonself operators f : ¥ C X — X on large Kasahara spaces under
generalized contractive conditions.

Theorem 2.1. Let (X, £>,d) be a large Kasahara space, Y C X be a closed subset of
(X, E>) and f:Y — X be an operator. We suppose that:
(a1) there exists the bounded sequence (Yn)nen+ € Y such that f'(y,) is defined for
all i =1,n, n € N¥;
(ag) f is continuous in (X, £>),
(ag) there exists G,H : (0,00) — R such that:
(i) G(6(f(B))) < H(d(B)), for all B € Py(Y), 6(f(B)) # 0;
(ii) for each r >t >0 we have G(r) > H(t);
(iii) there exists g € R such that G is reqular with respect to g and

1 M -
j%;g ( ZJ: (G(tk—l) - H(tk1)>) )

k=1

or any M € (0,00) and {t;};en a decreasing sequence of positive num-
Jri
bers converging to zero;
(iv) G has the property P and H is increasing;
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(v) lijrggf(G(tj) — H(sj41 +1t;)) >0 for any sequences {t;};en, {sj}jen of
positive numbers, s; =0 andt; —t >0 as j — oo .

Then

(b1
2

)
(b2)
(bs)
(ba)

4

there exists x* € X such that f™(yn) EN T*, as n — oo;

Fy = {z*};

1™ (yn) A x*, as n — 0o;

if the function ¢ defined by (2.2) is subadditive, G is left lower semicontinuous
and {zn}tnen C Y such that d(zn41, f(2,)) converges to 0 as n — oo then

zn—dme*, as n — 0o.
Proof. (by) First of all we remark that the set {f‘(y,) | « = 0,n— 1,n € N*} is
bounded. Indeed, we remark that for a given yy € Y there exists R > 0 such that
d(yo,yn) < R for each n € N*. Then by considering (as), (i) we have
d(yo, f(yn)) < d(yo, f(30)) + d(f(%0), f(yn))

< d(yo, f(y0)) + d(yo, yn)

< d(yo, f(y0)) + R.
Let us consider the sequence {t;};>1 defined by ¢; = d(f?(y,), f7(y»)) > 0. From

(a3) (i) and Remark 2.1 we get that G(t;) < H(tj—1). Since H is increasing and
considering (as) (v) one has

hmlnf(G(tJ) — H(tj)) > hm inf(G(tj) — H(fj + 8j+1)) > 0.
j—o0 Jj—o0

Lemma 2.1 implies that {t;},en is a decreasing sequence and ¢; N\, 0 as j — co. On
the other hand, the regularity of G implies that there exists g € R such that

lim g(6)(G(ta) — G(1)) = 0.

Consequently, there exists My > 0 such that g(¢;)(G(to) — G(t;)) < My, (¥V)j > 1.

Now by using (as) (¢4¢) and applying Lemma 2.3 we get that ) ¢; < co and therefore
j=1

i—1
there exists M; > 0 such that ) ¢; < M, for any ¢ > 2. Then for each ¢ > 2 we have
j=1

d(yo, f*(yn)) < d(yo, f(y0)) + d(f (o), f* (yn)))
< d(yo, f(y0)) + d(f (o), f(yn)) + d(f (Yn), f*(yn))

i—1

< d(yo, f(y)) + R+ _t; < d(yo, f(yo)) + R+ M.

j=1
It follows that there exists A € P,(Y) such that
{(fiyn) |i=0,n—I,n € N} C A.

Let Ay =: f(A), Ay = f(A1NA), -, Apt1 = f(A,NA). From the above construction
we get that A,41 C A, and f"(y,) € A, for each n > 1. Further we state that the
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condition (asz) (7) leads us to G(dn+1) < H(d,), where d,, := §(A,,). Indeed, the fact
that H is increasing it easily implies that
G(dns1) = G(6(Ans1)) = G(3(f(An N A))
< H(5(Ay 0 A)) < H(5(A,)) = H(dy).
By applying Lemma 2.1 for the sequence {d,}nen we get that d,, — 0 as n — oc.

Since fn(yn) € A, and fn_l(yn) € A1 NAC A1 we get {fn(yn)}nZI and
{f" 1(yn)}n>1 are fundamental sequences in (X,d). Therefore by the condition (i)

of Definition 1.2 one has f™(y,) 5w and " Hyn) £ v*. On the other hand,
A" Yyn), f*(yn))) =3 0 and consequently the condition (ii) of Definition 1.2

*

implies that u* = v* =: z*.

(b2) Since f is continuous in (X, g) we get

I™(n) = FU" 7 wa)) 5 S,
So, {z*} € Fy. From Remark 2.1 and (a3) (i¢) it follows that f is a contractive
operator and thus Fy = {z*}.
(bs) Since
Gd(f"(yn), %)) < H(A(f" " (yn),2")) , (V=1
we get, via (a3) (i7), that
d(f"(yn), ") <d(f"H(yn),2") < o- <d(yn,2%), (V)n =1

and consequently the sequence {d(f"(yn),*)}nen is bounded. Let us consider

tn = d(f"(yn),z*) and s, = d(f" (yn), f* (Y1) > 0.

We remark that
1

fnil(yn) €An_1, (V)n>
o> 1

fn_l(ynfl) € An (V n
and therefore s, — 0 as n — oco. Moreover,
G(tn) = Gd(f"(yn),z")) < Hd(f" " (yn), 27))

< H(d(fnil(yn)’ fnil(ynfl)) + d(fnil(ynfl)v 1'*)) = H(Sn + tn,1)7
for each 5 > 1. Hence the hypothesis of Lemma 2.2 are fulfilled and thus
t, — 0 as n — oo . Therefore d(f™(yn),z*) = 0 as n — oo.
(bs) Let us consider ¢ : Ry — R defined as in Lemma 2.4. Then we remark that

d(f(z), f(y)) < @(d(z,y)),

for each z,y € Y. On the other hand for n > 0 we have

d(zni1,7") < d(zns1, f(zn) +d(f (2n), f(27)) < d(znta, fzn)) + o(d(zn, 27)). (2.4)
In the same way we get

d(zn, ") < d(zn, f(2n-1)) + @(d(zn-1,27))
which applied back to (2.4) and considering the subadditivity of ¢ yield

d(zn+1,x*) < d(szrl» f(zn)) + go(d(zm f(znfl)» + <p2(d(zn,17m*)).
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By induction we get
d(2nt1,2") < d(zpsr, f(z20))+o(d(zn, fzn-1))+ - +9" (21, f(20))+¢"F (d(z0, 27)).

Now the conclusion follows by taking into account that ¢ is a comparison function and
by applying Lemma 1.2 for ¢ and the sequence b, = d(zn+1, f(2n)), foralln € N*. O

Example 2.3. Let us consider g as in Example 2.1, F' as in Example 2.2, 7 > 0 and
G,H : (0,00) — R defined by
Git)y=17+ F(t)
H(t) = F(t).
Then G, H verify the hypothesis (ag)(i7), (i), (iv), (v) from Theorem 2.1.

Proof. (ii) Let us consider r > ¢ > 0. Then
1 1 1
(iii) Let us consider M € (0,00) and {t;},en a decreasing sequence of positive

P
numbers converging to zero and let us denote p = % >1and g = (M> . Then

T

» M oL
x(3 (G@“)H@“))) Rt

k=1

(iv) Obviously.
(v)Let us consider the sequences {t;};en, {s;}jen of positive numbers such that
sj +0andt; -t >0asj— oco. Then liminf(G(t;) — H(sj41+t;))=7>0. O
Jj—o0
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