Fixed Point Theory, 25(2024), No. 2, 685-696 DOI: 10.24193/fpt-ro.2024.2.16 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

A FIXED POINT PRINCIPLE FOR SOME NONSELF OPERATORS ON LARGE KASAHARA SPACES

ION MARIAN OLARU

University "Lucian-Blaga" of Sibiu, Faculty of Sciences, Department of Mathematics E-mail: marian.olaru@ulbsibiu.ro

Abstract. In this paper we give a saturated fixed point principle for nonself operators on a large Kasahara space. Our results extend some results given by I.M Olaru and N.A. Secelean in A New Approach of Some Contractive Mappings on Metric Spaces, Mathematics, 2021 9(12).
Key Words and Phrases: Fixed point, Kasahara space, nonself operator, comparison function, strong comparison function, regular function with respect to a mapping, diameter functional.
2020 Mathematics Subject Classification: 47H09, 47H10, 54H25.

1. INTRODUCTION

There are several techniques in the fixed point theory for nonself operators on a complete metric space ([1], [7], [10], [13]). Throughout this paper we shall follow the standard terminologies and notations used in nonlinear analysis. For the convenience of the reader we shall recall some of them.

Let X be a nonempty set and $f: X \to X$ be an operator. We denote by $f^0 := 1_X$, $f^1 := f, f^{n+1} := f^n \circ f, n \in \mathbb{N}$ the iterate operators of the operator f. We also have

$$P(X) := \{Y \subset X \mid Y \neq \emptyset\}$$

$$F_f := \{x \in X \mid f(x) = x\}$$

$$P_b(X) := \{Y \in P(X) \mid Y \text{ is bounded}\}$$

The notion of L-space was given by M. Frechet in 1906 (see [4])

Definition 1.1. Let X be a nonempty set and let us consider $s(X) := \{\{x_n\}_{n \in \mathbb{N}} | x_n \in X\}, c(X) \subset s(X) \text{ and } Lim : c(X) \to X \text{ be an operator.We say that } (X, c(X), Lim) \text{ is an } L\text{-space (denoted also by } (X, \xrightarrow{F})) \text{ if the following conditions are satisfied:}$

- (i) if $x_n = x$ for all $n \in \mathbb{N}$ then $\{x_n\}_{n \in \mathbb{N}} \in c(X)$ and $Lim\{x_n\}_{n \in \mathbb{N}} = x$
- (ii) if $\{x_n\}_{n\in\mathbb{N}} \in c(X)$ and $Lim\{x_n\}_{n\in\mathbb{N}} = x$ then for all subsequences $\{x_{n_i}\}_{i\in\mathbb{N}}$ of $\{x_n\}_{n\in\mathbb{N}}$ we have $\{x_{n_i}\}_{i\in\mathbb{N}} \in c(X)$ and $Lim\{x_{n_i}\}_{i\in\mathbb{N}} = x$.

The notion of large Kasahara space which will be used in this paper, is the following one:

Definition 1.2. (see [2]) Let X be a nonempty set, \xrightarrow{F} be an L-space structure on X, and $d: X \times X \to \mathbb{R}_+$ be a metric on X. The triple (X, \xrightarrow{F}, d) is a large Kasahara space iff we have the following compatibility condition between \xrightarrow{F} and d:

- (i) $\{x_n\}_{n\in\mathbb{N}} \subset X$ a Cauchy sequence with respect to d implies that $\{x_n\}_{n\in\mathbb{N}}$ converges in $(X, \stackrel{F}{\rightarrow})$;
- (ii) $x_n \xrightarrow{F} x, y_n \xrightarrow{F} y$ and $d(x_n, y_n) \to 0$ as $n \to \infty$ implies x = y.

Another useful notion used in the studies of fixed points for nonself operators is the comparison function.

Definition 1.3. (see [8]) A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function if the following conditions are satisfied:

- (i) φ is increasing;
- (ii) the sequence $\varphi^n(t) \to 0$ as $n \to \infty$, for every t > 0.

Definition 1.4. (see [8]) A comparison function is a strong comparison function if $\sum_{k\geq 0} \varphi^k(t) < \infty$, for any t > 0.

Lemma 1.1. (see [8]) If $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a strong comparison function then the function $s : \mathbb{R}_+ \to \mathbb{R}_+$ defined by

$$s(t) = \sum_{k \ge 0} \varphi^k(t),$$

is increasing and continuous at 0.

Lemma 1.2. (see [15]) Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be a strong comparison function and $\{b_n\}_{n\in\mathbb{N}}$ be a sequence of positive numbers such that $b_n \to 0$ as $n \to \infty$. Then

$$\lim_{n \to \infty} \sum_{k=0}^{n} \varphi^{n-k}(b_k) = 0$$

Using the setup of large Kasahara spaces the author of [2] proved some results related to the existence, uniqueness and data dependence of fixed point for nonself operators, $f: Y \subset X \to X$, in the following two cases:

- (A) there exists $l \in (0,1)$ such that $d(f(x), f(y)) \leq ld(x, y)$, for all $x, y \in Y$
- (B) there exists a strong comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that $d(f(x), f(y)) \leq \varphi(d(x, y))$, for all $x, y \in Y$

More results about fixed points of operators on Kasahara spaces can be found in [12], [16], [3].

2. Main results

In [5] the authors proved a result related to the existence and uniqueness of fixed point for an operator $T: X \to X$ which satisfies the metric condition

$$G(d(Tx,Ty)) \le H(d(x,y)), \text{ for all } x, y \in X, \text{ with } Tx \ne Ty$$
 (2.1)

where $G, H: (0, \infty) \to \mathbb{R}$ are some suitable control mappings. The above results extended the results provided earlier by Proinov in [6]. More results in regards to generalized contractions satisfying the metric condition (2.1) can be found in [17]. Next, by following the results of [11], our goal is to get a saturated fixed point principle for a nonself operator

$$f:Y\subset X\to X$$

on a large Kasahara space in the case when

$$G(d(f(x), f(y))) \leq H(d(x, y))$$
, for all $x, y \in Y$, with $f(x) \neq f(y)$,

where $G, H: (0, \infty) \to \mathbb{R}$ and Y will be defined further during our considerations. In order to prove our main result we need the following definitions and auxiliary results.

Definition 2.1. We say that a function $G: (0,\infty) \to \mathbb{R}$ satisfies property \mathcal{P} if, for every sequence (t_k) of positive numbers one has $\lim_{k\to\infty} G(t_k) = -\infty$, implies $\lim t_k = 0.$ $k \rightarrow \infty$

Lemma 2.1. Let us consider a sequence $\{t_i\}_{i\in\mathbb{N}}$ of positive numbers, and let $G, H: (0, \infty) \to \mathbb{R}$ be such that:

- (i) $G(t_j) \le H(t_{j-1}), \ (\forall) j \ge 1;$
- (ii) for each $r \ge t > 0$ we have G(r) > H(t);
- (iii) $\liminf_{j \in \mathcal{F}} \left(G(t_j) H(t_j) \right) > 0;$
- (iv) G has the property \mathcal{P} .

Then $\{t_i\}_{i\in\mathbb{N}}$ is a decreasing sequence and $t_i \searrow 0$ as $j \to \infty$.

Proof. The assumptions (i) and (ii) lead us to $t_k < t_{k-1}$ and

$$G(t_k) - G(t_{k-1}) \le H(t_{k-1}) - G(t_{k-1}),$$

for any $k \geq 1$. Since $\{t_k\}_{k \in \mathbb{N}}$ is a decreasing sequence of positive numbers it follows that there exists $t \ge 0$ such that $t = \lim_{j \to \infty} t_j$. Next, arguing by contradiction we suppose that t > 0. Then, via (*iii*) we get

$$G(t_j) \le G(t_0) - \sum_{k=1}^{j} \left(G(t_{k-1}) - H(t_{k-1}) \right) \to -\infty,$$

as $j \to \infty$.

Since G has the property \mathcal{P} we conclude that $t_j \searrow 0$ as $j \to \infty$ which is a contradiction with the assumption t > 0.

Lemma 2.2. Let us consider the sequences $\{t_j\}_{j\in\mathbb{N}} \subset \mathbb{R}_+, \{s_j\}_{j\in\mathbb{N}}$ of positive numbers, $s_j \searrow 0$ as $j \to \infty$ and let $G, H : (0, \infty) \to \mathbb{R}$ be such that:

- (i) $G(t_j) \le H(s_j + t_{j-1}), \ (\forall) j \ge 1;$ (ii) $\liminf_{j \to \infty} \left(G(t_{j-1}) H(s_j + t_{j-1}) \right) > 0$
- (iii) G has the property \mathcal{P} .

Then $t_j \to 0$ as $j \to \infty$.

Proof. The condition (i) leads us to $G(t_k) - G(t_{k-1}) \leq H(t_{k-1} + s_k) - G(t_{k-1})$ for any $k \geq 1$. Then, via (ii) we get

$$G(t_j) \le G(t_0) - \sum_{k=1}^{j} \left(G(t_{k-1}) - H(t_{k-1} + s_k) \right) \to -\infty,$$

as $j \to \infty$. Since G satisfies the property \mathcal{P} we conclude that $t_j \to 0$ as $j \to \infty$. \Box

Lemma 2.3. Let us consider the sequence $\{t_j\}_{j\in\mathbb{N}} \subset \mathbb{R}_+$ converging to zero as $j \to \infty$, $g: \mathbb{R}_+ \to \mathbb{R}_+$ be a bijection with $g^{-1}: \mathbb{R}_+ \to \mathbb{R}_+$ an increasing function on \mathbb{R}_+ and $G, H: (0, \infty) \to \mathbb{R}$ be such that:

(i) $G(t_j) \leq H(t_{j-1}), \ (\forall) j \geq 1;$ (ii) there exists $M_0 > 0$ such that $g(t_j)(G(t_0) - G(t_j)) \leq M_0, \ (\forall) j \geq 1;$ (iii) $\sum_{j\geq 1} g^{-1} \left(\frac{M_0}{\sum\limits_{k=1}^{j} \left(G(t_{k-1}) - H(t_{k-1}) \right)} \right) < \infty;$

(iv) for each
$$r \ge t > 0$$
 we have $G(r) > H(t)$.
Then $\sum_{j\ge 1} t_j < \infty$.

Proof. First of all we remark that the condition (i) implies

$$G(t_k) - G(t_{k-1}) \le H(t_{k-1}) - G(t_{k-1}),$$

for any $k \ge 1$. Then by summing up for $k = \overline{1, j}$ we get

$$\begin{aligned} G(t_j) &\leq G(t_0) - \sum_{k=1}^j \left(G(t_{k-1}) - H(t_{k-1}) \right) \Rightarrow \\ &\sum_{k=1}^j \left(G(t_{k-1}) - H(t_{k-1}) \right) \leq G(t_0) - G(t_j) \Rightarrow \\ 0 &\leq g(t_j) \sum_{k=1}^j \left(G(t_{k-1}) - H(t_{k-1}) \right) \leq g(t_j) (G(t_0) - G(t_j)) \leq M_0 \Rightarrow \\ &t_j \leq g^{-1} \left(\frac{M_0}{\sum\limits_{k=1}^j \left(G(t_{k-1}) - H(t_{k-1}) \right)} \right) \Rightarrow \\ &\sum_{j \geq 1} t_j < \sum_{j \geq 1} g^{-1} \left(\frac{M_0}{\sum\limits_{k=1}^j \left(G(t_{k-1}) - H(t_{k-1}) \right)} \right) < \infty \end{aligned}$$

Definition 2.2. We say that the function $g : \mathbb{R}_+ \to \mathbb{R}_+$ belongs to the class \mathcal{R} iff

- (g_0) g is a bijection with g^{-1} increasing on \mathbb{R}_+ ;
- $(g_1) \lim_{t \searrow 0} g(t) = 0.$

Example 2.1. Let us consider $k \in (0,1)$ and $g : \mathbb{R}_+ \to \mathbb{R}_+$ defined by $g(t) = t^k$. Then $g \in \mathcal{R}$.

Definition 2.3. We say that the function $F : \mathbb{R}_+ \to \mathbb{R}$ is a regular function with respect to $g \in \mathcal{R}$ if and only if $\lim_{t \to 0} g(t)F(t) = 0$.

Example 2.2. Let us consider g as in Example 2.1, $0 < \alpha < k$ and $F : \mathbb{R}_+ \to \mathbb{R}$ defined by $F(t) = -\frac{1}{t^{\alpha}}$. Then F is a regular function with respect to g.

Lemma 2.4. Let us consider $G, H : (0, \infty) \to \mathbb{R}$ such that:

- (a) G is left lower semicontinuous and satisfies property \mathcal{P} ;
- (b) *H* is increasing;
- (c) $\liminf_{s\searrow t} (G(s) H(s)) > 0$ for each t > 0; (d) for each $r \ge t > 0$ we have G(r) > H(t).

Then the function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ defined by

$$\varphi(t) = \sup\{s \ge 0 \mid G(s) \le H(t)\}$$

$$(2.2)$$

has the following properties:

- (i) φ is a comparison function;
- (ii) if there exists $g \in \mathcal{R}$ such that G is regular with respect to g and

$$\sum_{j\geq 1} g^{-1} \left(\frac{M}{\sum_{k=1}^{j} \left(G(t_{k-1}) - H(t_{k-1}) \right)} \right) < \infty$$

for any $M \in (0,\infty)$ and $\{t_j\}_{j\in\mathbb{N}}$ a decreasing sequence of positive numbers converging to zero then φ is a strong comparison function;

- (iii) if H is upper semicontinuous on \mathbb{R}_+ and $\{t_j\}_{j\in\mathbb{N}}$ is a bounded sequence of positive numbers such that $\lim_{j\to\infty}(t_j-\varphi(t_j))=0$ then:
 - (a) φ is upper semicontinuous on \mathbb{R}_+ and $\limsup_{t \to \varepsilon} \varphi(t) < \varepsilon$ for any $\varepsilon > 0$;

(β) $t_j \to 0$ as $j \to \infty$.

Proof. (i) Let t > 0. Since G satisfies the property \mathcal{P} it follows that the set

$$\{s \ge 0 \mid G(s) \le H(t)\}$$

is not empty. On the other hand we remark that (d) implies

$$\{s \ge 0 \mid G(s) \le H(t)\} \subseteq [0, t]$$

and thus there exists

$$\sup\{s \ge 0 \mid G(s) \le H(t)\} =: \varphi(t) \le t, \text{ for all } t > 0.$$

Further let us consider $0 \le t_1 \le t_2$. Since H is increasing it follows that

$$\varphi(t_1) = \sup\{s \ge 0 \mid G(s) \le H(t_1)\} \le \sup\{s \ge 0 \mid G(s) \le H(t_2)\} = \varphi(t_2)$$

and from here one has that φ is increasing i.e condition (i) of Definition 1.3 is verified. Moreover, since G is left lower semicontinuous and taking into account the definition of φ we get that

$$G(s) \le H(t), \ (\forall)s \in [0,\varphi(t)) \Rightarrow G(\varphi(t)) \le \liminf_{s \nearrow \varphi(t)} G(s) \le H(t).$$
(2.3)

ION MARIAN OLARU

In order to check the condition (*ii*) of Definition 1.3 let us consider t > 0 and the decreasing sequence $\{t_n\}_{n \in \mathbb{N}}$ defined by

$$t_0 = t, \ t_n = \varphi(t_{n-1}), \ n \ge 1.$$

The sequence $\{t_n\}_{n\in\mathbb{N}}$ being decreasing it follows that there exists $t \ge 0$ such that $t = \lim_{n\to\infty} t_n$. Next, arguing by contradiction we suppose that t > 0. Then, via relation (2.3) and summation over $k = \overline{1, n}$ we have

$$G(t_k) \le H(t_{k-1}) \Rightarrow G(t_k) - G(t_{k-1}) \le H(t_{k-1}) - G(t_{k-1}) \Rightarrow$$
$$G(t_n) \le G(t_0) - \sum_{k=1}^n \left(G(t_{k-1}) - H(t_{k-1}) \right) \to -\infty,$$

as $n \to \infty$. Since G has the property \mathcal{P} we conclude that $t_n \searrow 0$ as $n \to \infty$ which is a contradiction with the assumption t > 0.

(ii) Let us consider t > 0 and the decreasing sequence $\{t_n\}_{n \in \mathbb{N}}$ defined by

$$t_0 = t, \ t_n = \varphi(t_{n-1}), \ n \ge 1.$$

By considering the same arguments as in the proof of (i) we get that $t_n \to 0$ as $n \to \infty$ and $G(t_j) \leq H(t_{j-1})$ for any $j \geq 1$. On the other hand, since G is regular with respect to $g \in \mathcal{R}$ we have that $\lim_{t \to 0} g(t)(G(t_0) - G(t)) = 0$. Consequently, there exists $M_0 > 0$ such that $g(t_j)(G(t_0) - G(t_j)) \leq M_0$, $(\forall) j \geq 1$. Now, by applying Lemma 2.3 to the sequence $\{t_j\}_{j \in \mathbb{N}}$ defined above, we get that φ is a strong comparison function.

(iii) (α) Let us consider $a \in \mathbb{R}_+$, $\mathcal{U}_a(\varphi) = \{t \in \mathbb{R}_+ \mid \varphi(t) \ge a\}$ and $\{t_j\}_{j \in \mathbb{N}}$ such that $t_j \to t$ as $j \to \infty$. Since $t_j \in \mathcal{U}_a(\varphi)$ we get that

$$a \leq \varphi(t_j) = \sup\{s \geq 0 \mid G(s) \leq H(t_j)\}$$

$$\leq \sup\{s \geq 0 \mid G(s) \leq \limsup_{j \to \infty} H(t_j)\}$$

$$\leq \sup\{s \geq 0 \mid G(s) \leq H(t)\} = \varphi(t).$$

From here we get that $t \in \mathcal{U}_a(\varphi)$ and therefore $\mathcal{U}_a(\varphi)$ is closed i.e φ is upper semicontinuous. Moreover for any $\varepsilon > 0$ we have

$$\limsup_{t \to \varepsilon} \varphi(t) \le \varphi(\varepsilon) < \varepsilon.$$

(β) Arguing by contradiction we suppose that the sequence $\{t_j\}_{j\in\mathbb{N}}$ does not converge to zero. Since it is bounded it follows that there exists $\varepsilon > 0$ and a subsequence t_{n_k} such that $t_{n_k} \to \varepsilon$ as $k \to \infty$. Then

$$\varphi(\epsilon) < \varepsilon = \lim_{k \to \infty} t_{n_k} = \lim_{k \to \infty} \varphi(t_{n_k}) \le \limsup_{t \to \varepsilon} \varphi(t) \le \varphi(\epsilon),$$

which is a contradiction.

The diameter functional $\delta : P(X) \to \mathbb{R}_+ \cup \{\infty\}$ is defined by:

$$\delta(A) := \sup\{d(a,b) \mid a, b \in A\}, \text{ for all } A \in P(X)$$

Remark 2.1. Let us consider $G, H : (0, \infty) \to \mathbb{R}$ and $f : Y \to X$ be an operator such that

$$G(\delta(f(B))) \le H(\delta(B)),$$

for all $B \in P_b(Y)$, with $\delta(f(B)) \neq 0$. Then

$$G(d(f(x), f(y))) \le H(d(x, y)),$$

for all $x, y \in Y$, with $f(x) \neq f(y)$;

Proof. Let us consider $x, y \in Y$ such that $f(x) \neq f(y)$. Then by using hypothesis for $B = \{x, y\}$ we get the conclusion.

Remark 2.2. Let us consider $G, H : (0, \infty) \to \mathbb{R}$ increasing and left continuous and let $f : Y \to X$ be an operator such that

$$G(d(f(x), f(y))) \le H(d(x, y)),$$

for all $x, y \in Y$, with $f(x) \neq f(y)$ Then

$$G(\delta(f(B))) \le H(\delta(B)),$$

for all $B \in P_b(Y)$, with $\delta(f(B)) \neq 0$.

Proof. Let us consider $B \in P_b(Y)$ such that $\delta(f(B)) \neq 0$. Since G, H are increasing on $(0, \infty)$ it follows that

$$\begin{aligned} G(\delta(f(B))) &= G(\sup_{x,y\in B} d(f(x), f(y))) = \sup_{x,y\in B} G(d(f(x), f(y))) \\ &\leq \sup_{x,y\in B} H(d(x,y)) = H(\sup_{x,y\in B} d(x,y)) = H(\delta(B)). \end{aligned}$$

Next we shall provide our main results in which is proved a saturated fixed point principle for nonself operators $f : Y \subseteq X \to X$ on large Kasahara spaces under generalized contractive conditions.

Theorem 2.1. Let $(X, \stackrel{F}{\rightarrow}, d)$ be a large Kasahara space, $Y \subset X$ be a closed subset of $(X, \stackrel{F}{\rightarrow})$ and $f: Y \to X$ be an operator. We suppose that:

- (a₁) there exists the bounded sequence $(y_n)_{n \in \mathbb{N}^*} \in Y$ such that $f^i(y_n)$ is defined for all $i = \overline{1, n}, n \in \mathbb{N}^*$;
- (a₂) f is continuous in $(X, \stackrel{F}{\rightarrow})$;
- (a₃) there exists $G, H : (0, \infty) \to \mathbb{R}$ such that:

(i)
$$G(\delta(f(B))) \leq H(\delta(B))$$
, for all $B \in P_b(Y)$, $\delta(f(B)) \neq 0$;

- (ii) for each $r \ge t > 0$ we have G(r) > H(t);
- (iii) there exists $g \in \mathcal{R}$ such that G is regular with respect to g and

$$\sum_{j\geq 1} g^{-1} \left(\frac{M}{\sum_{k=1}^{j} \left(G(t_{k-1}) - H(t_{k-1}) \right)} \right) < \infty$$

for any $M \in (0, \infty)$ and $\{t_j\}_{j \in \mathbb{N}}$ a decreasing sequence of positive numbers converging to zero;

(iv) G has the property \mathcal{P} and H is increasing;

ION MARIAN OLARU

(v)
$$\begin{split} \liminf_{j\to\infty}(G(t_j)-H(s_{j+1}+t_j))>0 \mbox{ for any sequences } \{t_j\}_{j\in\mathbb{N}},\ \{s_j\}_{j\in\mathbb{N}} \mbox{ of positive numbers, } s_j\to 0 \mbox{ and } t_j\to t>0 \mbox{ as } j\to\infty \ . \end{split}$$

Then

- (b₁) there exists $x^* \in X$ such that $f^n(y_n) \xrightarrow{F} x^*$, as $n \to \infty$;
- (b_2) $F_f = \{x^*\};$
- $\begin{array}{l} (b_3) \ f^n(y_n) \xrightarrow{d} x^*, \ as \ n \to \infty; \\ (b_4) \ if \ the \ function \ \varphi \ defined \ by \ (2.2) \ is \ subadditive, \ G \ is \ left \ lower \ semicontinuous \end{array}$ and $\{z_n\}_{n\in\mathbb{N}}\subset Y$ such that $d(z_{n+1},f(z_n))$ converges to 0 as $n\to\infty$ then $z_n \xrightarrow{d} x^*$, as $n \to \infty$.

Proof. (b_1) First of all we remark that the set $\{f^i(y_n) \mid i = \overline{0, n-1}, n \in \mathbb{N}^*\}$ is bounded. Indeed, we remark that for a given $y_0 \in Y$ there exists R > 0 such that $d(y_0, y_n) \leq R$ for each $n \in \mathbb{N}^*$. Then by considering (a_3) , (ii) we have

$$d(y_0, f(y_n)) \le d(y_0, f(y_0)) + d(f(y_0), f(y_n))$$

$$\le d(y_0, f(y_0)) + d(y_0, y_n)$$

$$\le d(y_0, f(y_0)) + R.$$

Let us consider the sequence $\{t_j\}_{j\geq 1}$ defined by $t_j = d(f^j(y_n), f^{j+1}(y_n)) > 0$. From (a_3) (i) and Remark 2.1 we get that $G(t_j) \leq H(t_{j-1})$. Since H is increasing and considering $(a_3)(v)$ one has

$$\liminf_{j \to \infty} (G(t_j) - H(t_j)) \ge \liminf_{j \to \infty} (G(t_j) - H(t_j + s_{j+1})) > 0.$$

Lemma 2.1 implies that $\{t_j\}_{j\in\mathbb{N}}$ is a decreasing sequence and $t_j \searrow 0$ as $j \to \infty$. On the other hand, the regularity of G implies that there exists $g \in \mathcal{R}$ such that

$$\lim_{t \searrow 0} g(t)(G(t_0) - G(t)) = 0.$$

Consequently, there exists $M_0 > 0$ such that $g(t_j)(G(t_0) - G(t_j)) \leq M_0$, $(\forall)j \geq 1$. Now by using (a_3) (*iii*) and applying Lemma 2.3 we get that $\sum_{j>1} t_j < \infty$ and therefore

there exists $M_1 > 0$ such that $\sum_{j=1}^{i-1} t_j < M_1$ for any $i \ge 2$. Then for each $i \ge 2$ we have

$$d(y_0, f^i(y_n)) \le d(y_0, f(y_0)) + d(f(y_0), f^i(y_n)))$$

$$\le d(y_0, f(y_0)) + d(f(y_0), f(y_n)) + d(f(y_n), f^i(y_n))$$

$$\le d(y_0, f(y_0)) + R + \sum_{i=1}^{i-1} t_i \le d(y_0, f(y_0)) + R + M_1.$$

It follows that there exists $A \in P_b(Y)$ such that

$$\{f^i(y_n) \mid i = \overline{0, n-1}, n \in \mathbb{N}^*\} \subseteq A.$$

Let $A_1 =: f(A), A_2 = f(A_1 \cap A), \cdots, A_{n+1} = f(A_n \cap A)$. From the above construction we get that $A_{n+1} \subseteq A_n$ and $f^n(y_n) \in A_n$ for each $n \ge 1$. Further we state that the

condition (a_3) (i) leads us to $G(d_{n+1}) \leq H(d_n)$, where $d_n := \delta(A_n)$. Indeed, the fact that H is increasing it easily implies that

$$G(d_{n+1}) = G(\delta(A_{n+1})) = G(\delta(f(A_n \cap A)))$$

$$\leq H(\delta(A_n \cap A)) \leq H(\delta(A_n)) = H(d_n).$$

By applying Lemma 2.1 for the sequence $\{d_n\}_{n\in\mathbb{N}}$ we get that $d_n \to 0$ as $n \to \infty$. Since $f^n(y_n) \in A_n$ and $f^{n-1}(y_n) \in A_{n-1} \cap A \subseteq A_{n-1}$ we get $\{f^n(y_n)\}_{n\geq 1}$ and $\{f^{n-1}(y_n)\}_{n\geq 1}$ are fundamental sequences in (X,d). Therefore by the condition (i) of Definition 1.2 one has $f^n(y_n) \xrightarrow{F} u^*$ and $f^{n-1}(y_n) \xrightarrow{F} v^*$. On the other hand, $d(f^{n-1}(y_n), f^n(y_n))) \xrightarrow{n\to\infty} 0$ and consequently the condition (ii) of Definition 1.2 implies that $u^* = v^* =: x^*$.

 (b_2) Since f is continuous in $(X, \stackrel{F}{\rightarrow})$ we get

$$f^n(y_n) = f(f^{n-1}(y_n)) \xrightarrow{F} f(x^*).$$

So, $\{x^*\} \subseteq F_f$. From Remark 2.1 and (a_3) (ii) it follows that f is a contractive operator and thus $F_f = \{x^*\}$.

 (b_3) Since

$$G(d(f^n(y_n), x^*)) \le H(d(f^{n-1}(y_n), x^*)), \ (\forall)n \ge 1$$

we get, via (a_3) (ii), that

$$d(f^{n}(y_{n}), x^{*}) < d(f^{n-1}(y_{n}), x^{*}) < \dots < d(y_{n}, x^{*}), \ (\forall)n \ge 1$$

and consequently the sequence $\{d(f^n(y_n), x^*)\}_{n \in \mathbb{N}}$ is bounded. Let us consider

$$t_n := d(f^n(y_n), x^*)$$
 and $s_n := d(f^{n-1}(y_n), f^{n-1}(y_{n-1})) \ge 0.$

We remark that

$$f^{n-1}(y_n) \in A_{n-1}, \ (\forall)n \ge 1$$

$$f^{n-1}(y_{n-1}) \in A_{n-1} \ \ (\forall)n \ge 1$$

and therefore $s_n \to 0$ as $n \to \infty$. Moreover,

$$G(t_n) = G(d(f^n(y_n), x^*)) \le H(d(f^{n-1}(y_n), x^*))$$

$$\leq H(d(f^{n-1}(y_n), f^{n-1}(y_{n-1})) + d(f^{n-1}(y_{n-1}), x^*)) = H(s_n + t_{n-1}),$$

for each $j \geq 1$. Hence the hypothesis of Lemma 2.2 are fulfilled and thus $t_n \to 0$ as $n \to \infty$. Therefore $d(f^n(y_n), x^*) \to 0$ as $n \to \infty$.

 (b_4) Let us consider $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ defined as in Lemma 2.4. Then we remark that

$$d(f(x), f(y)) \le \varphi(d(x, y)),$$

for each $x, y \in Y$. On the other hand for $n \ge 0$ we have

$$d(z_{n+1}, x^*) \le d(z_{n+1}, f(z_n)) + d(f(z_n), f(x^*)) \le d(z_{n+1}, f(z_n)) + \varphi(d(z_n, x^*)).$$
(2.4)
In the same way we get

$$d(z_n, x^*) \le d(z_n, f(z_{n-1})) + \varphi(d(z_{n-1}, x^*))$$

which applied back to (2.4) and considering the subadditivity of φ yield

$$d(z_{n+1}, x^*) \le d(z_{n+1}, f(z_n)) + \varphi(d(z_n, f(z_{n-1}))) + \varphi^2(d(z_{n-1}, x^*)).$$

By induction we get

 $\begin{aligned} &d(z_{n+1},x^*) \leq d(z_{n+1},f(z_n)) + \varphi(d(z_n,f(z_{n-1}))) + \dots + \varphi^n(z_1,f(z_0)) + \varphi^{n+1}(d(x_0,x^*)). \end{aligned}$ Now the conclusion follows by taking into account that φ is a comparison function and by applying Lemma 1.2 for φ and the sequence $b_n = d(z_{n+1},f(z_n))$, for all $n \in \mathbb{N}^*$. \Box

Example 2.3. Let us consider g as in Example 2.1, F as in Example 2.2, $\tau > 0$ and $G, H: (0, \infty) \to \mathbb{R}$ defined by

$$G(t) = \tau + F(t)$$
$$H(t) = F(t).$$

Then G, H verify the hypothesis $(a_3)(ii), (iii), (iv), (v)$ from Theorem 2.1.

Proof. (ii) Let us consider $r \ge t > 0$. Then

$$G(r) = \tau - \frac{1}{r^{\alpha}} \ge -\frac{1}{t^{\alpha}} \ge -\frac{1}{t^{\alpha}} = H(t).$$

(iii) Let us consider $M \in (0, \infty)$ and $\{t_j\}_{j \in \mathbb{N}}$ a decreasing sequence of positive numbers converging to zero and let us denote $p = \frac{1}{k} > 1$ and $q = \left(\frac{M}{\tau}\right)^p$. Then

$$\sum_{j\geq 1} g^{-1} \left(\frac{M}{\sum_{k=1}^{j} \left(G(t_{k-1}) - H(t_{k-1}) \right)} \right) = q \sum_{j\geq 1} \frac{1}{j^p} < \infty$$

(iv) Obviously.

(v)Let us consider the sequences $\{t_j\}_{j\in\mathbb{N}}, \{s_j\}_{j\in\mathbb{N}}$ of positive numbers such that $s_j \to 0$ and $t_j \to t > 0$ as $j \to \infty$. Then $\liminf_{j\to\infty} (G(t_j) - H(s_{j+1} + t_j)) = \tau > 0$. \Box

References

- M.A. Chiş-Novac, R. Precup, I.A. Rus, Data dependence of Fixed points for non-self generalized contractions, Fixed Point Theory, 10(2009), 73-87.
- [2] A.D. Filip, Fixed point theorems for nonself operators on large Kasahara space, Fixed Point Theory, 24(2023), 583-594.
- [3] A.D. Filip, Fixed Point Theory in Kasahara Spaces, Casa Cărții de Știință, Cluj-Napoca, 2015.
- [4] M. Frechet, Les Espaces Abstraits, Gauthier-Villars, Paris, 1928.
- [5] I.M. Olaru, N.A. Secelean, A new approach of some contractive mappings on metric spaces, Mathematics 9(12)2021, https://doi.org/10.3390/math9121433.
- [6] P.D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 21(2020), 1-27.
- [7] S. Reich, A.J. Zaslavski, A note on Rakotch contractions, Fixed Point Theory, 9(2008), no. 1, 267-273.
- [8] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
- [9] I.A. Rus, Kasahara spaces, Sci. Math. Jpn., 72(2010), no. 1, 101-110.
- [10] I.A. Rus, The generalized retraction methods in fixed point theory for nonself operators, Fixed Point Theory, 15(2014), no. 2, 559-578.
- [11] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babes-Bolyai Math., 61(2016), no. 3, 343-358.
- [12] I.A. Rus, A.D. Filip, Fixed point theory for nonself generalized contractions in Kasahara spaces, Analele Universității de Vest, Timişoara, Seria Matematica-Informatica, LVII, 1(2019), 66-76.
- [13] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, 2008.

- [14] I.A. Rus, A. Petruşel, M.A. Şerban, Weakly Picard operators: equivalent definitions, applications and open problems, Fixed Point Theory, 7(2006), no. 1, 3-22.
- [15] I.A. Rus, M.A. Şerban, Some generalizations of a Cauchy lemma and applications, in: St. Cobzas (Ed.), Topics in Mathematics, Computer Science and Philosophy, Cluj University Press, Cluj-Napoca, 2008, pp. 173-181.
- [16] I.A. Rus, M.A. Şerban, Some fixed point theorems for nonself generalized contractions, Miskolc Math. Notes, 17(2016), no. 2, 1021-1031.
- [17] M. Zhou, X. Liu, N. Saleem, A. Fulga, A new study on the fixed point sets of Proinov-type contractions via rational forms, Symmetry, 14(2022), no. 1, 1-31.

Received: January 30, 2022; Accepted: August 30, 2023.

ION MARIAN OLARU