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LIYA LIU∗, ADRIAN PETRUŞEL∗∗, XIAOLONG QIN∗∗∗ AND JEN-CHIH YAO∗∗∗∗

∗School of Mathematics and Statistics, Southwest University Chongqing 400715, China
E-mail: liya42@swu.edu.cn

∗∗Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

E-mail: petrusel@math.ubbcluj.ro

∗∗∗Department of Mathematics, Zhejiang Normal University, Jinhua, China

E-mail: qxlxajh@163.com (Corresponding Author)

∗∗∗∗Research Center for Interneural Computing, China Medical University, Taichung 40447, Taiwan

E-mail: yaojc@mail.cmu.edu.tw

Abstract. We consider a convex constrained optimization problem composed in part of finding fixed
points of nonexpansive mappings and in part of solving a minimization problem. Two broadcast

incremental algorithms are proposed to solve it, in the spirit of the steepest-descent method and
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1. Introduction

Let H be a real Hilbert space associated with norm ‖ · ‖ and inner product 〈·, ·〉.
Let C be a convex and closed set in the space H. The norm (strong) convergence of a
vector sequence {xn}∞n=1 to a vector x is denoted by xn → x as n→∞, while the weak
convergence (convergence in the weak topology) of {xn}∞n=1 to x is denoted by xn ⇀ x
as n→∞ in H. Let F (i),G(i) : H → R be Fréchet differentiable and convex functions
and let S(i) : H → H be a nonexpansive operator, i.e., ‖S(i)x − S(i)y‖ ≤ ‖x − y‖,
∀x, y ∈ H, for each i = 0, 1, 2, · · · . In this paper, we aim to present optimization
algorithms for solving the following convex minimization problem

minimize
∑

i∈I∪{0}

(F (i)(x) + G(i)(x)) subject to x ∈
⋂

i∈I∪{0}

Fix(S(i)), (1.1)

where I := {1, 2, · · · , I} and Fix(S(i)) is the fixed-point set of mapping S(i). Problem
(1.1) includes some practical problems such as the signal processing, the storage
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allocation, the graph-based clustering, the power allocation and so on [22, 12, 30, 9,
26, 2, 28]. Problem (1.1) is one of the central convex optimization problems in the
nonlinear functional analysis and the numerical optimization theory.

The variety of real-world applications stimulates the search of iterative methods
for solving problem (1.1). In this sense, a well known iterative method named pro-
jection gradient method for solving the convex minimization problem, is stated as
follows. Given x0 ∈ C, define (xn)n∈N by xn+1 = ProjC(xn − λ∇W(xn)),∀n ≥ 0,
where λ is some positive real number, ProjC : H → C is the metric projection
from H onto C, ∇W is the gradient of a Fréchet differentiable and convex func-
tion W. Recently, the projection gradient method has received much attention and
been investigated extensively. However, this method requires the explicit expression
of ProjC , which is unfortunately always unknown. This might seriously affect the
efficiency of the method. For avoiding the calculation of ProjC , Yamada [36] intro-
duced a hybrid steepest descent method. It is of the form: given x0 ∈ C, define
(xn)n∈N by xn+1 = (I − αχnW)Sxn,∀n ≥ 0, where I denotes the identity operator
on H, the mapping W is κ-strongly monotone (i.e., κ‖x− y‖2 ≤ 〈x− y,Wx−Wy〉,
∀x, y ∈ H) and ι-Lipschitz continuous (i.e., ι‖x − y‖ ≥ ‖Wx − Wy‖, ∀x, y ∈ H)
on H and the mapping S : C → H is nonexpansive (i.e., ‖x − y‖ ≥ ‖Sx − Sy‖,
∀x, y ∈ H), α ∈ (0, 2κ/ι2) and (χn)n∈N ⊆ (0, 1) such that

∑∞
n=1 χn = ∞ and

limn→∞ χn = 0. Yamada established the convergent result of the above algorithm
in Hilbert spaces, see [36]. A big advantage of the steepest descent method is that
it avoids computing metric projections. Since then, this method has been exten-
sively investigated and further extended to solve some optimization problems, see
[16, 29, 18, 7, 11, 27, 33, 5]. Among which, Sahu and Yao [29] proposed a general-
ized hybrid steepest descent scheme, which stated as follows. Given x0 ∈ C, define
(xn)n∈N by yn = xn − αχnW(xn), xn+1 = (1 − λn)yn + λnS(yn), ∀n ≥ 0, where
W is a κ-strongly monotone, ι-Lipschitz continuous mapping on H, S is a nonex-
pansive mapping on C with Fix(S) 6= ∅, α ∈ (0, 2κ/ι2), λn ∈ (0, 1), χn ∈ (0, 1),
limn→∞ χn = 0 and

∑∞
n=1 χn = ∞. They proved a convergence result for solving

strongly monotone variational inequality over Fix(S).
There are two known optimization algorithms for solving problem (1.1).
(I) Broadcast optimization algorithm. We consider a system, in which user 0

can communicate with any other user i (i ∈ I), in the case that user 0 manages
the whole system. Accordingly, the broadcast optimization algorithm is suitable to
implement, see [13, 31, 19, 6] and references therein. In the iterative procedure, user

0 computes x
(0)
n ∈ H via xn and its own private information S(0) and F (0), i.e.,

x
(0)
n = x

(0)
n (xn,S(0),F (0)). User i(i ∈ I) computes x

(i)
n ∈ I, via the transmitted

information xn from user 0 and its own private information S(i) and F (i), i.e., x
(i)
n =

x
(i)
n (xn,S(i),F (i))(i ∈ I), and transmits x

(i)
n to user 0. Then user 0 computes xn+1 ∈

H by using all x
(i)
n (i ∈ {0}∪ I), i.e., xn+1 = xn+1(x

(0)
n , x

(1)
n , · · · , x(I)

n )(i ∈ I). Assume
that user 0 uses the transmitted information equally, (xn+1)n∈N will be defined by

xn+1 :=

∑
i∈{0}∪I x

(i)
n

I + 1
.
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(II) Incremental optimization algorithm. Assume that users can communicate with
their neighbor users on the network. Thus, users can use their own private information
and the transmitted information from their neighbor users. In this case, the incremen-
tal optimization algorithm is suitable to implement; see [21, 1, 20, 15] and references

therein. Assume that user 0 has the information yn = y
(0)
n ∈ H and user i(i ∈ I) has

the information y
(i−1)
n transmitted from user (i− 1), at the n-th iteration. Thus user

i can compute the next iteration y
(i)
n via y

(i−1)
n and its own private information S(i),

F (i), i.e., y
(i)
n = y

(i)
n (y

(i−1)
n ,S(i),F (i))(i ∈ I). User 0 computes yn+1 by using y

(I)
n and

its own private information S(0), F(0), i.e., yn+1 = yn+1(y
(I)
n ,S(0),F (0)).

From the above analysis of (I) and (II), we note here that the broadcast opti-
mization algorithm updates the next iteration xn+1, only after user 0 has all the

transmitted information x
(i)
n (i ∈ {0} ∪ I). Therefore, when it comes to large-scale

networked systems, this scheme will be time-consuming. The incremental optimiza-
tion algorithm requires to go through all users to update the next iteration yn+1.
It seems to be physically difficult to go through all users, specially, in large-scale
complex networked systems. Hence, the above two algorithms are not very efficient
and convenient in practical situations. This requests a new method for avoiding the
problems mentioned above. When each user i(i ∈ I) can communicate with its neigh-
bors, we construct a subnetwork that consists of its neighbors and the user i itself.
Hence, the network system can be divided into T subnetworks. In each subnetwork
t(t ∈ T := {1, 2, · · · , T}), users can implement the incremental optimization algo-
rithm, by using their own private information and the transmitted information from

their neighbor users. For each t ∈ T, we construct x
(t)
n via xn = y

(0)
n and the in-

cremental optimization algorithm. By using the broadcast distributed optimization
algorithm and the information transmitted from subnetworks, user 0 can compute

xn+1 via x
(t)
n (t ∈ {0} ∪ T), i.e., xn+1 = xn+1(x

(0)
n , x

(1)
n , · · · , x(T )

n ) =
x(0)
n +

∑
t∈T x

(t)
n

T+1 .
In this paper, by combining steepest-descent method with Mann’s iterative method

[24], we investigate broadcast incremental algorithms, which acts as a useful tool in
studying convex optimization problems (see [17, 14, 10]) for solving problem (1.1).
This can be implemented in a multiuser storage system. Through all users cooperating
in the system, which enables each user to obtain its own decision variable. This paper
is organized as follows. Section 2 gives some necessary mathematical preliminaries.
Section 3 gives the convergence analysis of our proposed iterative algorithms. Section
4 is devoted to a storage allocation problem and provides numerical experiences in a
peer to peer data system.

2. Preliminaries

W : H → R is an α-strongly convex function (see [3]), i.e., for any x, y ∈ H,

µW(x) + (1− µ)W(y) ≥ W(µx+ (1− µ)y) +
1

2
αµ(1− µ)‖x− y‖2, µ ∈ [0, 1].

Additionally assume that W is Fréchet differentiable. In such a case, we find that
∇W is strongly monotone. A space X is said to have the Opial’s condition if, for any
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{xn} ⊂ X with xn ⇀ x (n→∞), the following inequality holds

lim inf
n→∞

‖xn − y‖ > lim inf
n→∞

‖xn − x‖,

for y ∈ X with y 6= x, see [25]. Notably, the above inequality is equivalent to

lim sup
n→∞

‖xn − y‖ > lim sup
n→∞

‖xn − x‖,

for y ∈ X with y 6= x. The Opial’s condition plays a significant role in the convergence
analysis of various iterative algorithms. It is known that all Hilbert spaces satisfy the
Opial’s condition.

Lemma 1. [3] Assume that W : H → R is a convex and Gâteaux differentiable
function. For any x ∈ H, we have that W(x) + 〈y − x,∇W(x)〉 ≤ W(y), ∀y ∈ H.

Lemma 2. [36] Assume that W : H → R is Fréchet differentiable and ∇W : H → H
is ι-Lipschitz continuous and κ-strongly monotone with respect to ι, κ > 0. Assume
that S := I − αχ∇W, where α ∈ (0, 2κ/ι2) and χ ∈ [0, 1]. For any x, y ∈ H, we have

that (1− ϑχ)‖x− y‖ ≥ ‖S(x)− S(y)‖, where ϑ := 1−
√

1− α(2κ− αι2) ∈ (0, 1].

Lemma 3. [35] Let C be a convex and closed set of a Hilbert space H. Assume that
W : H → R is Fréchet differentiable and ∇W : H → H is ι-Lipschitz continuous and
κ-strongly monotone. Hence there exists a unique minimizer of W over C.

Lemma 4. [34] Let {µn} and {νn} be sequences of real constants such that µn ∈ [0, 1],∑∞
n=1 µn =∞ and lim

n→∞
νn ≤ 0. Let {χn} be a sequence of nonnegative real constants

such that (1− µn)χn + µnνn ≥ χn+1. Then lim
n→∞

χn = 0.

3. Algorithms and their convergence

We suppose that I := {1, 2, · · · , I} is a user set participating in a system Ξ.
Let It be a user set participating in a subnetwork t ∈ T of the system Ξ, where
T = {1, 2, · · · , T} is the set of subnetworks. Hence I =

⋃
t∈T It. Let us denote |It|

by the element number of It (t ∈ T). We set It := |It|. Doing so, we have that

I =
∑
t∈T It. Let us choose t ∈ T arbitrarily. Then we define I

(i)
t (i = 1, 2, · · · , It)

as follows. Without ambiguity, we write I
(1)
t := It. First, we randomly choose k

(1)
t

in I
(1)
t . Let I

(2)
t := I

(1)
t \{k

(1)
t }. Next, we randomly choose k

(2)
t in I

(2)
t . Following

a similar argument as above, one sets I
(i)
t := I

(i−1)
t \k(i−1)

t (i = 3, 4, · · · , It). Then,

we randomly choose k
(i)
t in I

(i)
t (i = 3, 4, · · · , It). Suppose that each user i has

its own private constraint condition, denoted by a convex closed set C(i)(⊂ H) and
its own private information, denoted by two convex, Fréchet differentiable objective
functions, F (i) : H → R and G(i) : H → R, for i ∈ I ∪ {0}. From now on, we employ
the following essential assumptions through the rest of the paper.

Assumption 1. We suppose that, for any i ∈ I ∪ {0},
(i) ∇F (i) : H → H is κ(i)-Lipschitz continuous and a(i)-strongly monotone for some

κ(i), a(i) > 0.
(ii) ∇G(i) : H → H is ι(i)-Lipschitz continuous and b(i)-strongly monotone for some

ι(i), b(i) > 0.
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(iii) S(i) : H → H is nonexpansive with Fix(S(i)) = C(i).

Under Assumption 1, we consider problem (1.1) with
⋂
i∈I∪{0} Fix(S(i)) 6= ∅.

Based on Assumption 1 (i), (ii), we have that

∇

 ∑
i∈I∪{0}

F (i)

 =
∑

i∈I∪{0}

∇F (i) and ∇

 ∑
i∈I∪{0}

G(i)

 =
∑

i∈I∪{0}

∇G(i)

are Lipschitz continuous and strongly monotone. Thus

∇

 ∑
i∈I∪{0}

F (i)(x)

+∇

 ∑
i∈I∪{0}

G(i)(x)

 = ∇

 ∑
i∈I∪{0}

(
F (i)(x) + G(i)(x)

)
is Lipschitz continuous and strongly monotone. In addition, in view of Assumption
1 (iii), one sees that

⋂
i∈I∪{0} Fix(S(i)) is a convex and closed set. Therefore, it

follows from Lemma 3 that problem (1.1) has a unique solution. Now, we are in the
position to present our main algorithm (see Algorithm 1, below).

Algorithm 1 The broadcast incremental algorithm

procedure Input((αn)n∈N, (βn)n∈N, µ, ν, T, T and (It)
T
t=1)

User 0 chooses x0 ∈ H arbitrarily
Set n← 0
while not converged do

User 0 computes x
(0)
n ∈ H as x

(0)
n = λn(I −µβn∇G(0))S(0)xn + (1− λn)(I −

ναn∇F (0))xn
for t in T do

User 0 transmits xn to user k
(1)
t

User k
(1)
t computes x

(k
(0)
t )

n as x
(k

(0)
t )

n = xn
end for
for t in T do

for i = 1, 2, · · · , It do
User k

(i)
t computes x

(k
(i)
t )

n ∈ H as x
(k

(i)
t )

n = λn(I −
µβn∇G(k

(i)
t ))S(k

(i)
t )x

k
(i−1)
t
n + (1− λn)(I − ναn∇F (k

(i)
t ))x

k
(i−1)
t
n

end for

User k
(It)
t transmits x

(k
(It)
t )

n to user k
(1)
t

User k
(1)
t computes x

(t)
n ∈ H as x

(t)
n = x

(k
(It)
t )

n

User k
(1)
t transmits x

(t)
n to user 0

end for

User 0 computes xn+1 ∈ H as xn+1 =
x(0)
n +

∑T
t=1 x

(t)
n

T+1
Set n← n+ 1

end while
return x = xn

end procedure



640 LIYA LIU, ADRIAN PETRUŞEL, XIAOLONG QIN AND JEN-CHIH YAO

Assumption 2. Assume that the following conditions are satisfied.

(i) The parameter sequences (αn)n∈N ⊂ (0, 1) and (βn)n∈N ⊂ (0, 1) satisfy
limn→∞ |αn/βn| <∞ and
∑∞
n=0 αn =∞,

limn→∞
1

αn+1

∣∣∣ 1
αn+1

− 1
αn

∣∣∣ = 0,

limn→∞ αn = 0,


∑∞
n=0 βn =∞,

limn→∞
1

βn+1

∣∣∣ 1
βn+1

− 1
βn

∣∣∣ = 0,

limn→∞ βn = 0.

(ii) Set µ ∈
(

0,mini∈{0}∪I
2b(i)

ι(i)2

)
and ν ∈

(
0,mini∈{0}∪I

2a(i)

κ(i)2

)
.

(iii) Let the sequence (λn)n∈N ⊂ (0, 1) satisfy
(a) 0 < e ≤ λn ≤ f < 1;

(b) limn→∞
|λn−1−λn|

α2
n

= 0; (c) limn→∞
|λn−1−λn|

β2
n

= 0.

Remark 1. Suppose that Assumptions 1, 2 are satisfied. All users participating in
the network share the similar property depicted as follows. In view of Lemma 2 and
Assumption 2 (i), (ii), one deduces that, for any x, y ∈ H, i ∈ {0} ∪ I,

‖(I − ναn∇F (i))x− (I − ναn∇F (i))y‖

≤
(

1−
(

1−
√

1− u(2a(i) − uκ(i)2)

)
αn

)
‖x− y‖ ≤ (1− αnρ)‖x− y‖,

and

‖(I − µβn∇G(i))x− (I − µβn∇G(i))y‖

≤
(

1−
(

1−
√

1− u(2b(i) − uι(i)2)

)
βn

)
‖x− y‖ ≤ (1− βnσ)‖x− y‖,

where

ρ := min
i∈{0}∪I

(1−
√

1− (2a(i) − uκ(i)2)u),

and

σ := min
i∈{0}∪I

(1−
√

1− (2b(i) − uι(i)2)u).

Set φn = min{%αn, σβn}. From Assumption 2, one has

(φn)n∈N ∈ (0, 1),
∞∑
n=0

φn =∞

and

lim
n→∞

φn = lim
n→∞

1

φn+1

∣∣∣∣ 1

φn+1
− 1

φn

∣∣∣∣ = lim
n→∞

|λn−1 − λn|
φ2
n

= 0.

Now, one is in a position to prove the main convergence result.

Theorem 1. Assume that Assumptions 1 and 2 are satisfied. Let (xn)n∈N and

(x
(k

(i)
t )

n )n∈N(t ∈ T, i = 1, 2, · · · , It) be sequences generated by Algorithm 1. Then
(xn)n∈N strongly converges to the solution of problem (1.1).
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Proof. Let us now fix z ∈ Λ. Remark 1 yields

‖x(0)
n − z‖

≤(1− λn)‖(I − ναn∇F (0))xn − (I − ναn∇F (0))z‖+ (1− λn)ναn‖∇F (0)z‖

+ λn‖(I − µβn∇G(0))S(0)xn − (I − µβn∇G(0))z‖+ µλnβn‖∇G(0)z‖

≤µλnβn‖∇G(0)z‖+ λn(1− σβn)‖xn − z‖+ (1− λn)(1− %αn)‖xn − z‖

+ (1− λn)ναn‖∇F (0)z‖

≤max
{
µβn‖∇G(0)z‖, ναn‖∇F (0)z‖

}
+ max {(1− σβn), (1− %αn)} ‖xn − z‖.

(3.1)

Set

ϕn = max {µβn, ναn} . (3.2)

With the help of (3.1), (3.2), it ensues that

‖x(0)
n − z‖ ≤M1ϕn + (1− φn)‖xn − z‖, (3.3)

where

M1 = max

{
‖∇G(0)z‖, ‖∇F (0)z‖, max

t∈T,i=1,2,··· ,It

{
‖∇G(kit)z‖, ‖∇F (kit)z‖

}}
.

A similar argument gives that, for all t ∈ T, k = 1, 2, · · · , It,∥∥∥∥x(k
(i)
t )

n − z
∥∥∥∥ ≤M1ϕn + (1− φn)

∥∥∥∥x(k
(i)
t −1)

n − z
∥∥∥∥ .

This shows that, for all t ∈ T,

‖x(t)
n − z‖ ≤M1ϕn + (1− φn)

∥∥∥∥x(k
(It−1)
t )

n − z
∥∥∥∥

≤ItM1ϕn + (1− φn)

∥∥∥∥xk(0)t
n − z

∥∥∥∥ ≤ ItM1ϕn + (1− φn)‖xn − z‖.
(3.4)

By combining (3.3) with (3.4), one finds that

‖xn+1 − z‖ ≤
‖x(0)

n − z‖+
∑
t∈T ‖x

(t)
n − z‖

T + 1

≤
(
T (1− φn)‖xn − z‖+

∑
t∈T ItM1ϕn

)
+ (M1ϕn + (1− φn)‖xn − z‖)

T + 1

≤φn

(∑
t∈T

It + 1

)
M1ψn
T + 1

+ (1− φn)‖xn − z‖

≤max

{(∑
t∈T

It + 1

)
M1ψn
T + 1

, ‖xn − z‖

}
,

where ψn = ϕn

φn
. Due to Assumption 2 (i) and Remark 1, one concludes from (3.2)

that (ψn)n∈N is bounded. Thus one can easily check that there exists a real number
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M2 such that supn∈N ψn ≤M2. From this, one obtains that

‖xn − z‖ ≤ max

{(∑
t∈T

It + 1

)
M1M2

T + 1
, ‖x0 − z‖

}
.

Thus the sequence (xn)n∈N is bounded. By using (3.4), we find that

(x
(k

(i)
t )

n )n∈N(t ∈ T, i = 1, 2, · · · , It)

is also bounded. Now let us evaluate the term ‖x(0)
n+1 − x

(0)
n ‖.

‖x(0)
n+1 − x(0)

n ‖

≤
∥∥∥(1− λn+1)(I − ναn+1∇F (0))xn+1 − (1− λn+1)(I − ναn+1∇F (0))xn

− (1− λn+1)(I − ναn∇F (0))xn + (1− λn+1)(I − ναn+1∇F (0))xn

+ (1− λn+1)(I − ναn∇F (0))xn − (1− λn)(I − ναn∇F (0))xn

− λn+1(I − µβn+1∇G(0))S(0)xn + λn+1(I − µβn+1∇G(0))S(0)xn+1

+ λn+1(I − µβn+1∇G(0))S(0)xn − λn+1(I − µβn∇G(0))S(0)xn

+λn+1(I − µβn∇G(0))S(0)xn − λn(I − µβn∇G(0))S(0)xn

∥∥∥
≤(1− λn+1)(I − ραn+1)‖xn+1 − xn‖+ ν(1− λn+1)|αn − αn+1|‖∇F (0)xn‖

+ |λn+1 − λn|‖(I − ναn∇F (0))xn‖+ λn+1(I − σβn+1)‖xn+1 − xn‖

+ µλn+1|βn+1 − βn|‖∇G(0)S(0)xn‖+ |λn − λn+1|‖(I − µβn∇G(0))S(0)xn‖

≤(1− φn+1)‖xn − xn+1‖+ ν|αn+1 − αn|‖∇F (0)xn‖

+ µ‖∇G(0)S(0)xn‖|βn − βn+1|+
(
‖(I − µβn∇G(0))S(0)xn‖

+‖(I − ναn∇F (0))xn‖
)
|λn − λn+1|.

(3.5)

Recalling the fact that (xn)n∈N is bounded, together with the Lipschitz continuity of
∇F (0), ∇G(0), we deduce that

M3 = sup
n∈N

(
ν‖∇F (0)xn‖

)
<∞, M4 = sup

n∈N

(
µ‖G(0)S(0)xn‖

)
<∞,

M5 = sup
n∈N

(
‖(I − ναn∇F (0))xn‖+ ‖(I − µβn∇G(0))S(0)xn‖

)
<∞.

(3.6)

According to (3.5), one concludes from (3.6) that

‖x(0)
n+1 − x(0)

n ‖
≤|αn − αn+1|M3 + |βn − βn+1|M4 + |λn − λn+1|M5 + (1− φn+1)‖xn+1 − xn‖.

(3.7)
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By following a similar argument, one sees that, for all t ∈ T, i = 1, 2, · · · , It,

‖x(kit)
n+1 − x

(kit)
n ‖

≤ν|αn − αn+1|‖∇F (kit)x
(ki−1

t )
n ‖+ µ‖∇G(kit)S(kit)x

(ki−1
t )

n ‖|βn − βn+1|

+ (1− φn+1)‖x(ki−1
t )

n+1 − x(ki−1
t )

n ‖

+ |λn − λn+1|
(
‖(I − µβn∇G(kit))S(kit)x

(ki−1
t )

n ‖+ ‖(I − ναn∇F (kit))x
(ki−1

t )
n ‖

)
.

(3.8)
In view of the Lipschitz continuity of ∇F (0), ∇G(0) and Assumption 2 (i), one gets

M6 = max
t∈T, i=1,2,··· ,It

sup
n∈N

(
ν‖∇F (kit)x

(ki−1
t )

n ‖
)
<∞,

M7 = max
t∈T, i=1,2,··· ,It

sup
n∈N

(
µ‖∇G(kit)S(kit)x

(ki−1
t )

n ‖
)
<∞,

M8 = max
t∈T, i=1,2,··· ,It

sup
n∈N

{
‖(I − µβn∇G(kit))S(kit)x

(ki−1
t )

n ‖

+‖(I − ναn∇F (kit))x
(ki−1

t )
n ‖

}
<∞.

(3.9)

Successively using (3.8), (3.9), one has that, for all t ∈ T, i = 1, 2, · · · , It,

‖x(kit)
n − x(kit)

n+1‖ ≤|αn − αn+1|M6 + |βn − βn+1|M7

+ |λn − λn+1|M8 + (1− φn+1)‖x(ki−1
t )

n+1 − x(ki−1
t )

n ‖.
(3.10)

Hence, one arrives at

‖x(t)
n+1 − x(t)

n ‖ ≤(1− φn+1)‖x(k
It−1
t )

n+1 − x(k
It−1
t )

n ‖+ |αn − αn+1|M6

+ |βn − βn+1|M7 + |λn − λn+1|M8

≤(1− φn+1)‖xn+1 − xn‖+ It|αn − αn+1|M6

+ It|βn − βn+1|M7 + It|λn − λn+1|M8.

(3.11)

Combining (3.10) with (3.11), one immediately obtains that

‖xn − xn+1‖

≤
∑
t∈T ‖x

(t)
n−1 − x

(t)
n ‖+ ‖x(0)

n−1 − x
(0)
n ‖

T + 1

≤ 1

T + 1
{(1− φn)‖xn−1 − xn‖+ |αn−1 − αn|M3 + |βn−1 − βn|M4

+ |λn−1 − λn|M5 + T (1− φn)‖xn−1 − xn‖+
∑
t∈T

It|αn−1 − αn|M6

+
∑
t∈T

It|βn−1 − βn|M7 +
∑
t∈T

It|λn−1 − λn|M8

}
≤|αn−1 − αn|M9 + |βn−1 − βn|M10 + |λn−1 − λn|M11 + (1− φn)‖xn−1 − xn‖,
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where

M9 =
M3 +

∑
t∈T ItM6

T + 1
<∞,M10 =

M4 +
∑
t∈T ItM7

T + 1
<∞,

M11 =
M5 +

∑
t∈T ItM8

T + 1
<∞.

(3.12)

By a standard argument, one finds that

‖xn − xn+1‖
φn

≤(1− φn)
‖xn−1 − xn‖

φn−1
+ (1− φn)

‖xn−1 − xn‖
φn

− (1− φn)
‖xn−1 − xn‖

φn−1

+
|αn−1 − αn|

φn
M9 +

|βn−1 − βn|
φn

M10 +
|λn−1 − λn|

φn
M11

≤(1− φn)
‖xn−1 − xn‖

φn−1
+ φn

(
1

φn

∣∣∣∣ 1

φn−1
− 1

φn

∣∣∣∣M12 +
1

αn

∣∣∣∣ 1

αn
− 1

αn−1

∣∣∣∣ γ2
nM9

+
1

βn

∣∣∣∣ 1

βn
− 1

βn−1

∣∣∣∣ τ2
nM10 +

|λn−1 − λn|
φ2
n

M11

)
≤φnXn +

1− φn
φn−1

‖xn−1 − xn‖,

where

γn =
αn
φn
, τn =

βn
φn
,

M12 = sup
n∈N
‖xn − xn+1‖

and

Xn =
1

φn

∣∣∣∣ 1

φn−1
− 1

φn

∣∣∣∣M12 +
1

αn

∣∣∣∣ 1

αn
− 1

αn−1

∣∣∣∣ γ2
nM9 +

1

βn

∣∣∣∣ 1

βn
− 1

βn−1

∣∣∣∣ τ2
nM10

+
|λn−1 − λn|

φ2
n

M11.

The boundedness of (xn)n∈N gives that M12 < ∞. Successively using Remark 1,
Assumption 2 (i), (iii) and (3.12), one deduces that lim supn→∞Xn ≤ 0. In light of
Lemma 4, it suffices to prove that

lim
n→∞

‖xn − xn+1‖
φn

= 0. (3.13)

In addition, one finds from Remark 1 that

lim
n→∞

‖xn − xn+1‖ = 0. (3.14)
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In terms of Remark 1, one further asserts that

‖x(0)
n − z‖2

≤‖xn − z‖2 + 2αnν(I − ραn)‖xn − z‖‖∇F (0)z‖+ ν2α2
n‖∇F (0)z‖2

+ 2µβn(I − βnσ)‖xn − z‖‖∇G(0)z‖+ µ2β2
n‖∇G(0)z‖2

− λn(1− λn)‖xn − S(0)xn‖2

+ 2(1− λn)λn‖xn − S(0)xn‖
(
ναn‖∇F (0)xn‖+ µβn‖∇G(0)S(0)xn‖

)
+ (1− λn)λn‖αnν∇F (0)xn − µβn∇G(0)S(0)xn‖2.

With the help of Assumption 2 (ii), the above inequality yields that

‖x(0)
n − z‖2 ≤ ‖xn − z‖2 + αnM13 + βnM14 − λn(1− λn)‖xn − S(0)xn‖2, (3.15)

where

M13 = sup
n∈N

(2ν‖xn − z‖‖∇F (0)z‖+ ν2αn‖∇F (0)z‖+ 2ν‖xn − S(0)xn‖‖∇F (0)xn‖

+ 2ν2αn‖∇F (0)xn‖2) <∞,

M14 = sup
n∈N

(
2µ‖xn − z‖‖∇G(0)z‖+ βnµ

2‖∇G(0)z‖2

+2βnµ
2‖∇G(0)S(0)xn‖2 + 2µ‖xn − S(0)xn‖‖∇G(0)S(0)xn‖

)
<∞.

(3.16)
By a similar argument, we have that, for all t ∈ T, i = 1, 2, · · · , It,

‖x(kit)
n −z‖2 ≤ ‖x(kit−1)

n −z‖2 +αnM15 +βnM16−λn(1−λn)‖x(kit−1)
n −S(kit)x

(kit−1)
n ‖2,

where

M15 = max
t∈T,i=1,2,··· ,It

sup
n∈N

(
2ν
∥∥∥x(kit−1)

n − z
∥∥∥∥∥∥∇F (kit)z

∥∥∥+ ν2αn

∥∥∥∇F (kit)z
∥∥∥

+2ν
∥∥∥x(kit−1)

n − S(kit)x
(kit−1)
n

∥∥∥∥∥∥∇F (kit)x
(kit−1)
n

∥∥∥
+2ν2αn

∥∥∥∇F (kit)x
(kit−1)
n

∥∥∥2
)
<∞,

M16 = max
t∈T,i=1,2,··· ,It

sup
n∈N

(
2µ
∥∥∥x(kit−1)

n − z
∥∥∥∥∥∥∇G(kit)z

∥∥∥+ µ2βn

∥∥∥∇G(kit)z
∥∥∥2

+2µ
∥∥∥x(kit−1)

n − S(kit)x
(kit−1)
n

∥∥∥∥∥∥∇G(kit)S(kit)x
(kit−1)
n

∥∥∥
+2µ2βn

∥∥∥∇G(kit)S(kit)x
(kit−1)
n

∥∥∥2
)
<∞.

(3.17)

An elementary calculation gives that, for all t ∈ T, i = 1, 2, · · · , It,

‖x(t)
n − z‖2 ≤‖xn − z‖2 + αnItM15 + βnItM16

− λn(1− λn)

It∑
i=1

∥∥∥∥x(k
i−1)
t

n − S(k
It
t )x

(ki−1
t )

n

∥∥∥∥2

.
(3.18)
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By putting (3.15) and (3.18) together, one concludes that

‖xn+1 − z‖2 ≤
‖x(0)

n − z‖2 +
∑
t∈T ‖x

(t)
n − z‖2

T + 1

≤‖xn − z‖2 +
1

T + 1

(
αn

(
M13 +

∑
t∈T

ItM15

)

+βn

(
M14 +

∑
t∈T

ItM16

)
− λn(1− λn)‖xn − S(0)xn‖2

−(1− λn)λn

It∑
i=1

‖x(k
i−1)
t

n − S(kit)x
(ki−1

t )
n ‖2

)
.

Let us reformulate the above expression as

0 ≤λn(1− λn)

T + 1

(
‖S(0)xn − xn‖2 +

It∑
i=1

∥∥∥∥x(k
i−1)
t

n − S(kit)x
(ki−1

t )
n

∥∥∥∥2
)

≤(‖xn − z‖+ ‖xn+1 − z‖)‖xn − xn+1‖

+
1

T + 1

(
αn

(
M13 +

∑
t∈T

ItM15

)
+ βn

(
M14 +

∑
t∈T

ItM16

))
.

(3.19)

By successively using (3.14), (3.16), (3.17) and Assumption 1 (i), one observes that
the right-hand side of (3.19) converges to 0 as n goes to infinity. Accordingly,

lim
n→∞

‖xn − S(0)xn‖ = 0, (3.20)

and

lim
n→∞

∥∥∥∥x(k
i−1)
t

n − S((kit)x
(ki−1

t )
n

∥∥∥∥ = 0 (t ∈ T, i = 1, 2, · · · , It). (3.21)

Recalling the definition of x
(0)
n , one further has∥∥∥x(0)

n − xn
∥∥∥ ≤λn ∥∥∥xn − S(0)xn

∥∥∥+ (1− λn)ναn

∥∥∥∇F (0)xn

∥∥∥+ λnµβn

∥∥∥∇G(0)S(0)xn

∥∥∥ .
By passing to the limit in the above inequality, one concludes that

lim
n→∞

‖x(0)
n − xn‖ = 0. (3.22)

In addition, one also has

lim
n→∞

∥∥∥x(ki−1
t )

n − x(kit)
n

∥∥∥ = 0, (3.23)

and

‖x(0)
n − x

(kit)
n ‖ ≤

i∑
j=1

∥∥∥x(kj−1
t )

n − x(kjt )
n

∥∥∥ (t ∈ T, i = 1, 2, · · · , It, n ∈ N). (3.24)

From (3.23) and (3.24), one arrives at

lim
n→∞

∥∥∥x(0)
n − x

(kit)
n

∥∥∥ = 0 (t ∈ T, i = 1, 2, · · · , It). (3.25)
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By collecting (3.20), (3.22) and (3.25), one concludes that

lim
n→∞

∥∥∥xn − x(kit)
n

∥∥∥ = 0 (t ∈ T, i = 1, 2, · · · , It). (3.26)

The boundedness of the sequence (xn)n∈N yields that there is a subsequence
(xnj

)j∈N(⊂ (xn)n∈N) such that (xnj
)j∈N converges weakly to x̂ ∈ H. Let t ∈ T

(i ∈ {1, 2, · · · , It}) be chosen arbitrarily. If x̂ /∈ Fix(S(kit)), then the Opial’s condition

and the nonexpansivity of S(kit) guarantee that

lim sup
j→∞

‖xnj
− x̂‖ ≥ lim sup

j→∞

∥∥∥S(kit)xnj
− S(kit)x̂

∥∥∥
= lim sup

j→∞

∥∥∥(xnj
− S(kit)xnj

) + (T (kit)xnj
− S(kit)x̂)

∥∥∥
= lim sup

k→∞

∥∥∥xnj − S(kit)x̂
∥∥∥

> lim sup
j→∞

∥∥xnj
− x̂
∥∥ .

This yields a contradiction. Hence, x̂ ∈ Fix(S(kit)), i.e., x̂ ∈
⋂
t∈T

⋂It
i=1 Fix(S(kit)) =⋂

i∈I Fix(S(i)). If x̂ /∈ Fix(S(0)), then

lim sup
k→∞

‖x0 − x̂‖ ≥ lim sup
n→∞

‖xnk
− S(0)x̂‖ > lim sup

k→∞
‖xnk

− x̂‖.

This shows x̂ ∈ Fix(S(0)). So x̂ ∈ ∩i∈{0}∪IFix(S(i)). In view of ∇F (0)(xn) =

∂F (0)(xn), we have F (0)(x) ≥ F (0)(xn) +
〈
z − xn,∇F (0)xn

〉
. An application of the

nonexpansivity of S(0) gives that

‖x(0)
n − z‖2

≤λn
∥∥∥S(0)xn − µβn∇G(0)S(0)xn − z

∥∥∥2

+ (1− λn)
∥∥∥xn − ναn∇F (0)xn − z

∥∥∥2

=(1− λn)

[
‖xn − z‖2 − 2ναn

〈
xn − z,∇F (0)xn

〉
+ ν2α2

n

∥∥∥∇F (0)xn

∥∥∥2
]

+ λn

[∥∥∥S(0)xn − z
∥∥∥2

− 2µβn

〈
S(0)xn − z,∇G(0)S(0)xn

〉
+µ2β2

n

∥∥∥∇G(0)S(0)xn

∥∥∥2
]

≤‖xn − z‖2 − 2(1− λn)ναn

〈
xn − z,∇F (0)xn

〉
+ ν2α2

n

∥∥∥∇F (0)xn

∥∥∥2

− 2µλnβn

〈
S(0)xn − z,∇G(0)S(0)xn

〉
+ µ2β2

n

∥∥∥∇G(0)S(0)xn

∥∥∥2

≤‖xn − z‖2 + 2ναn(1− λn)(F (0)(z)−F (0)(xn))) + ν2α2
n

∥∥∥∇F (0)xn

∥∥∥2

+ µ2β2
n

∥∥∥∇G(0)S(0)xn

∥∥∥2

+ 2µλnβn

(
G(0)(z)− G(0)(S(0)xn)

)
.

(3.27)
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Following a similar argument as above, one sees that

‖x(kit)
n − z‖2 ≤‖x(ki−1

t )
n − z‖2 + 2(1− λn)ναn

(
F (kit)(z)−F (kit)(x

(ki−1
t )

n ))
)

+ ν2α2
n‖∇F (kit)x

(ki−1
t )

n ‖2 + 2µλnβn

(
G(kit)(z)G(kit)(S(kit)x

(ki−1
t )

n )
)

+ µ2β2
n‖∇G(kit)S(kit)x

(ki−1
t )

n ‖2,
(3.28)

which in turn implies that

‖x(t)
n − z‖2

≤‖x(k
It−1
t )

n − z‖2 + 2ναn(1− λn)

(
F (k

It
t )(z)−F (k

It
t )(x

(k
It−1
t )

n )

)
+ ν2α2

n‖∇F (k
It
t )x

(k
It−1
t )

n ‖2 + 2µλnβn(G(k
It
t )(z)− G(k

It
t )(S(k

It
t )x

(k
It−1
t )

n ))

+ µ2β2
n‖∇G(k

It
t )S(k

It
t )x

(k
It−1
t )

n ‖2

≤‖xn − z‖2 + 2(1− λn)ναn

It∑
i=1

(
F (kit)(x)−F (kit)(x

(ki−1
t )

n )
)

+ β2
nµ

2
It∑
i=1

‖∇G(kit)S(kit)x
(ki−1

t )
n ‖2 + 2µβnλn

It∑
i=1

(
G(kit)(z)

−G(kit)(S(kit)x
(ki−1

t )
n )

)
+ α2

nν
2
It∑
i=1

‖∇F (kit)x
(ki−1

t )
n ‖2.

Summing up the above inequality over all t leads to

∑
t∈T

‖x(t)
n − z‖2

≤T‖xn − z‖2 + 2(1− λn)ναn
∑
t∈T

It∑
i=1

(
F (kit)(z)−F (kit)(x

(ki−1
t )

n )
)

+ β2
nµ

2
It∑
i=1

‖∇G(kit)S(kit)x
(ki−1

t )
n ‖2

+ 2µβnλn
∑
t∈T

It∑
i=1

(
G(kit)(x)− G(kit)(S(kit)x

(ki−1
t )

n )
)

+ α2
nν

2
∑
t∈T

It∑
i=1

‖∇F (kit)x
(ki−1

t )
n ‖2.

(3.29)
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Coming back to (3.27) and (3.29), one sees that

‖xn+1 − z‖2

=

∑
t∈T ‖x

(t)
n − z‖2 + ‖x(0)

n − z‖2

T + 1

≤ 1

T + 1

{
T‖xn − z‖2 + ‖xn − z‖2 + 2(1− λn)ναn(F (0)(z)−F (0)(xn))

+ 2(1− λn)ναn
∑
t∈T

It∑
i=1

(
F (kit)(z)−F (kit)(x

(ki−1
t )

n )
)

+ 2µλnβn

(
G(0)(z)− G(0)

(
S(0)xn

))
+ 2µλnβn

∑
t∈T

It∑
i=1

(
G(kit)(z)− G(kit)

(
S(kit)x

(ki−1
t )

n

))
+ ν2α2

n

∥∥∥∇F (0)xn

∥∥∥2

+ν2α2
n

∑
t∈T

It∑
i=1

∥∥∥∇F (kit)x
(ki−1

t )
n

∥∥∥2

+ µ2β2
n

∥∥∥∇G(0)S(0)xn

∥∥∥2

+µ2β2
n

It∑
i=1

∥∥∥∇G(kit)S(kit)x
(ki−1

t )
n

∥∥∥2
}
.

Putting δn = βn

αn
, one concludes from the above inequality that

2(1− λn)ν
(
F (0)(xn)−F (0)(z)

)
+ 2(1− λn)ν

∑
t∈T

It∑
i=1

(
F (kit)

(
x

(ki−1
t )

n

)
−F (kit)(z)

)
+ 2µλnδn

(
G(0)(S(0)xn)− G(0)(z)

)
+ 2µλnδn

∑
t∈T

It∑
i=1

(
G(kit)

(
S(kit)x

(ki−1
t )

n

)
− G(kit)(z)

)
≤‖xn − xn+1‖(‖xn − z‖+ ‖xn+1 − z‖)

αn

+ αn(T + 1)

(
ν2
∥∥∥∇F (0)xn

∥∥∥2

+ ν2
∑
t∈T

It∑
i=1

∥∥∥∇F (kit)x
(ki−1

t )
n

∥∥∥2
)

+ βn(T + 1)

(
µ2δn

∥∥∥∇G(0)S0)xn

∥∥∥2

+ µ2δn

It∑
i=1

∥∥∥∇G(kit)S(kit)x
(ki−1

t )
n

∥∥∥2
)

≤M14‖xn − xn+1‖
αn

+ αnM15 + βnM16,

(3.30)
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where

M14 = sup
n∈N

(‖xn − z‖+ ‖xn+1 − z‖) <∞,

M15 = max
t∈T,i=1,2,··· ,It

sup
n∈N

{
(T + 1)

(
ν2
∥∥∥∇F (0)xn

∥∥∥2

+ν2
∑
t∈T

It∑
i=1

∥∥∥∇F (kit)x
(ki−1

t )
n

∥∥∥2
)}

<∞,

M16 = max
t∈T,i=1,2,··· ,It

sup
n∈N

{
(T + 1)

(
µ2δn

∥∥∥∇G(0)S0)xn

∥∥∥2

+µ2δn

It∑
i=1

∥∥∥∇G(kit)S(kit)x
(ki−1

t )
n

∥∥∥2
)}

<∞.

(3.31)

Set

F :=
∑
t∈T

It∑
i=1

F (kit) + F (0) =

I∑
i=1

F (i) + F (0),

G :=
∑
t∈T

It∑
i=1

G(kit) + G(0) =

I∑
i=1

G(i) + G(0).

(3.32)

By rearranging the terms of the left-hand side of (3.30), we infer that

2(1− λn)ν
(
F (0)(xn)−F (0)(z)

)
+ 2(1− λn)ν

∑
t∈T

It∑
i=1

(
F (kit)

(
x

(ki−1
t )

n

)
−F (kit)(z)

)
+ 2µλnδn

(
G(0)

(
S(0)xn

)
− G(0)(z)

)
+ 2µλnδn

∑
t∈T

It∑
i=1

(
G(kit)

(
S(kit)x

(ki−1
t )

n

)
− G(kit)(z)

)

=2ν(1− λn)

[
F(xn)−F(z) +

∑
t∈T

It∑
i=1

(
F (kit)

(
x

(ki−1
t )

n

)
− F (kit)(xn)

)]
+ 2µλnδn

{
G(xn)− G(z) +

[
G(0)

(
S(0)xn

)
− G(0)(xn)

]
+
∑
t∈T

It∑
i=1

(
G(kit)

(
S(kit)x

(ki−1
t )

n

)
− G(kit)

(
x

(ki−1
t )

n

))

+
∑
t∈T

It∑
i=1

(
G(kit)(x

(ki−1
t )

n )− G(kit)(xn)
)}

.

(3.33)
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Set κ = min{2(1 − λn)ν, 2µλnδn} > 0. The condition κ > 0 is guaranteed by As-
sumption 2 (iii). Hence, it follows immediately from (3.30) and (3.33) that

κ[F(xn) + G(xn)− (F(z) + G(z))]

≤‖xn − xn+1‖M14

αn
+ αnM15 + βnM16

+ 2(1− λn)ν

[∑
t∈T

It∑
i=1

(
F (kit)(xn)−F (kit)

(
x

(ki−1
t )

n

))]
+ 2µλnδn{

[
G(0)(xn)− G(0)(S(0)xn)

]
+
∑
t∈T

It∑
i=1

(
G(kit)

(
x

(ki−1
t )

n

)
− G(kit)

(
T (kit)x

(ki−1
t )

n

))

+
∑
t∈T

It∑
i=1

(
G(kit)(xn)− G(kit)

(
x

(ki−1
t )

n

))
}.

(3.34)

Due to Assumption 2 (i) and (3.13), one concludes that

lim sup
n→∞

‖xn − xn+1‖
αn

= 0. (3.35)

By applying Proposition 1 , the Cauchy-Schwarz inequality and (3.26), one concludes
that, for all t ∈ T,

0 ≤ lim sup
n→∞

∑
t∈T

It∑
i=1

[
F (kit)(xn)−F (kit)

(
x

(ki−1
t )

n

)]

≤
∑
t∈T

It∑
i=1

(
lim sup
n→∞

[
F (kit)(xn)−F (kit)

(
x

(ki−1
t )

n

)])

≤
∑
t∈T

It∑
i=1

(
lim sup
n→∞

〈
xn − x

(ki−1
t )

n ,∇F (kit)(xn)
〉)

≤
∑
t∈T

It∑
i=1

(
lim sup
n→∞

∥∥∥∇F (kit)(xn)
∥∥∥∥∥∥xn − x(ki−1

t )
n

∥∥∥) = 0.

(3.36)

On the other hand, Lemma 1, Assumption 1 (ii), (3.20), the boundedness of (xn)n∈N
and the Cauchy-Schwarz inequality infer that

0 = lim sup
n→∞

‖xn − S(0)xn‖‖∇G(0)(xn)‖

≥ lim sup
n→∞

〈xn − S(0)xn,∇G(0)(xn)〉

≥ lim sup
n→∞

(G(0)(xn)− G(0)(S(0)xn)).

(3.37)
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By applying Lemma 1, Assumption 1 (ii), the Cauchy-Schwarz inequality, together

with (3.21), the boundedness of (x
(k

(i)
t )

n )n∈N (t ∈ T, i = 1, 2, · · · , It), we conclude that

lim sup
n→∞

∑
t∈T

It∑
i=1

[
G(kit)

(
x

(ki−1
t )

n

)
− G(kit)

(
S(kit)x

(ki−1
t )

n

)]

≤
∑
t∈T

It∑
i=1

(
lim sup
n→∞

[
G(kit)

(
x

(ki−1
t )

n

)
− G(kit)

(
S(kit)x

(ki−1
t )

n

)])

≤
∑
t∈T

It∑
i=1

(
lim sup
n→∞

〈
x

(ki−1
t )

n − S(kit)x
(ki−1

t )
n ,∇G(kit)

(
x

(ki−1
t )

n

)〉)

≤
∑
t∈T

It∑
i=1

(
lim sup
n→∞

∥∥∥∇G(kit)
(
x

(ki−1
t )

n

)∥∥∥∥∥∥x(ki−1
t )

n − S(kit)
(
x

(ki−1
t )

n

)∥∥∥) = 0.

(3.38)

Similarly, one has

lim sup
n→∞

∑
t∈T

It∑
i=1

[
G(kit)(xn)− G(kit)

(
x

(ki−1
t )

n

)]

≤
∑
t∈T

It∑
i=1

(
lim sup
n→∞

[
G(kit)(xn)− G(kit)

(
x

(ki−1
t )

n

)])

≤
∑
t∈T

It∑
i=1

(
lim sup
n→∞

〈
xn − x

(ki−1
t )

n ,∇G(kit)(xn)
〉)

≤
∑
t∈T

It∑
i=1

(
lim sup
n→∞

∥∥∥xn − x(ki−1
t )

n

∥∥∥ ∥∥∥∇G(kit)(xn)
∥∥∥) = 0.

(3.39)

Thanks to (3.32)-(3.39), one reaches

lim sup
n→∞

(F(xn) + G(xn)− (F(z) + G(z))) ≤ 0. (3.40)

We use Assumption 1 (i), (ii) to deduce that

F :=
∑

i∈{0}∪I

F (i)

and

G :=
∑

i∈{0}∪I

F (i)

are convex and continuous. Then there exists a subsequence (xnj
)j∈N of (xn)n∈N such

that (xnj )j∈N converges weakly to x̂ ∈
⋂
i∈{0}∪I Fix(S(i)). As we shall see, this fact

implies that

lim inf
j→∞

G(xnj
) ≥ G(x̂), lim inf

j→∞
F(xnj

) ≥ F(x̂). (3.41)



ON THE CONVERGENCE OF BROADCAST INCREMENTAL ALGORITHMS 653

As a classical result, (3.32), (3.40) and (3.41) guarantee that, for all z ∈⋂
i∈{0}∪I Fix(S(i)),∑

i∈{0}∪I

[
F (i)(x̂) + G(i)(x̂)

]
=F(x̂) + G(x̂) ≤ lim inf

j→∞
F(xnj

) + lim inf
j→∞

G(xnj
)

≤ lim inf
j→∞

[
F(xnj

) + G(xnj
)
]
≤ lim sup

j→∞

[
F(xnj

) + G(xnj
)
]

≤F(z) + G(z) =
∑

i∈{0}∪I

[
F (i)(z) + G(i)(z)

]
.

(3.42)

Accordingly, one concludes that x̂ ∈ Λ is the solution of problem (1.1). In view of
Lemma 3, one finds that x̂ is the unique solution of problem (1.1). Suppose that
there exists another weakly convergent subsequence, (xnl

)l∈N of (xn)n∈N. Proceeding
as in the proof above, we can derive that (xnl

)l∈N also weakly converges to the unique
solution x̂ ∈ Λ. Hence, we can conclude that (xn)n∈N weakly converges to x̂ ∈ Λ.

Using (3.26), one obtains that x
k
(i)
t
n also weakly converges to x̂ ∈ Λ, for all t ∈ T,

i = 1, 2, · · · , It. With the help of the elementary inequality ‖a+ b‖2 ≤ ‖a‖2 − 2〈a, b〉,
a, b ∈ H and Remark 1, one has that

‖x(0)
n − x̂‖2

≤(1− λn)‖(I − ναn∇F (0))xn − (I − ναn∇F (0))x̂− ναn∇F (0)x̂‖2

+ λn‖(I − µβn∇G(0))S(0)xn − (I − µβn∇G(0))S(0)x̂− µβn∇G(0)S(0)x̂‖2

≤(1− λn)
[
(I − ραn)2‖xn − x̂‖2 − 2ναn〈∇F (0)x̂, (I − ναn∇F (0))xn − x̂〉

]
+ λn

[
(I − σβn)2‖xn − x̂‖2 − 2µβn〈∇G(0)S(0)x̂, (I − µβn∇G(0))S(0)xn − x̂〉

]
≤(1− φn)‖xn − x̂‖2 + φn

{
2νγn(1− λn)〈∇F (0)x̂, x̂− xn〉

+2µτnλn〈∇G(0)S(0)x̂, x̂− S(0)xn〉+ αnM17 + βnM18

}
,

(3.43)
where

γn =
αn
φn
, τn =

βn
φn
,M17 = sup

n∈N

(
2ν2γn‖∇F (0)x̂‖‖∇F (0)xn‖

)
,

M18 = sup
n∈N

(
2µ2τn‖∇G(0)S(0)x̂‖‖∇G(0)S(0)xn‖

)
.

(3.44)

A calculation similar to (3.43) guarantees that, for all t ∈ T, i = 1, 2, · · · , It,

‖x(kit)
n − x̂‖2

≤(1− φn)
∥∥∥x(ki−1

t )
n − x̂

∥∥∥2

+ φn

{
2νγn(1− λn)

〈
∇F (kit)x̂, x̂− x(ki−1

t )
n

〉
+2µτnλn

〈
∇G(kit)S(kit)x̂, x̂− S(kit)x

(ki−1
t )

n

〉
+ αnM19 + βnM20

}
,
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where

M19 = max
t∈T,i=1,2,··· ,It

sup
n∈N

(
2ν2γn

∥∥∥∇F (kit)x̂
∥∥∥∥∥∥∇F (kit)x

(ki−1
t )

n

∥∥∥) ,
M20 = max

t∈T,i=1,2,··· ,It
sup
n∈N

(
2µ2τn

∥∥∥∇G(kit)S(kit)x̂
∥∥∥∥∥∥∇G(kit)S(kit)x

(ki−1
t )

n

∥∥∥) . (3.45)

Accordingly, one has that, for all t ∈ T

‖x(t)
n − x̂‖2

≤(1− φn)‖xn − x̂‖2 + φn

{
2νγn(1− λn)

It∑
i=1

〈
∇F (kit)x̂, x̂− x(ki−1

t )
n

〉
+2µτnλn

It∑
i=1

〈
∇G(kit)S(kit)x̂, x̂− S(kit)x

(ki−1
t )

n

〉
+ αn

It∑
i=1

M19 + βn

It∑
i=1

M20

}
.

Summing up the above inequality over all t ∈ T shows that∑
t∈T

‖x(t)
n − x̂‖2

≤T (1− φn)‖xn − x̂‖2 + φn

{
2νγn(1− λn)

∑
t∈T

It∑
i=1

〈
∇F (kit)x̂, x̂− x(ki−1

t )
n

〉

+2µτnλn
∑
t∈T

It∑
i=1

〈
∇G(kit)S(kit)x̂, x̂− S(kit)x

(ki−1
t )

n

〉

+αn
∑
t∈T

It∑
i=1

M19 + βn
∑
t∈T

It∑
i=1

M20

}
.

(3.46)

Hence, by combining (3.43) with (3.46), we derive that

‖xn+1 − x̂‖2 ≤
∑
t∈T ‖x

(t)
n − x̂‖2 + ‖x̂− x(0)

n ‖2

T + 1

≤ (1− φn)‖xn − x̂‖2

+φn

{
2νγn(1− λn)

T + 1

[
〈∇F (0)x̂, x̂− xn〉+

∑
t∈T

It∑
i=1

〈
∇F (kit)x̂, x̂− x(ki−1

t )
n

〉]

+
2µτnλn
T + 1

[〈
∇G(0)S(0)x̂, x̂− S(0)xn

〉
+
∑
t∈T

It∑
i=1

〈
∇G(kit)S(kit)x̂, x̂− S(kit)x

(ki−1
t )

n

〉]

+αn

[
M17 +

∑
t∈T

∑It
i=1M19

T + 1

]
+ βn

[
M18 +

∑
t∈T

∑It
i=1M20

T + 1

]}
= (1− φn)‖xn − x̂‖2 + φnYn, (3.47)
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where

Yn =
2νγn(1− λn)

T + 1

[
〈∇F (0)x̂, x̂− xn〉+

∑
t∈T

It∑
i=1

〈
∇F (kit)x̂, x̂− x(ki−1

t )
n

〉]

+
2µτnλn
T + 1

[
〈∇G(0)S(0)x̂, x̂− S(0)xn〉

+
∑
t∈T

It∑
i=1

〈
∇G(kit)S(kit)x̂, x̂− S(kit)x

(ki−1
t )

n

〉]

+ αn

[
M17 +

∑
t∈T

∑It
i=1M19

T + 1

]
+ βn

[
M18 +

∑
t∈T

∑It
i=1M20

T + 1

]
.

(3.48)

Since xn ⇀ x̂ and x
(k

(i)
t )

n ⇀ x̂ (t ∈ T, i = 1, 2, · · · , It), we find from (3.20) and

(3.21) that S(0)xn ⇀ x̂ and S(kit)x
(k

(i−1)
t )

n ⇀ x̂ (t ∈ T, i = 1, 2, · · · , It). Therefore, by
applying Assumption 2, Remark 1, (3.44), (3.45), (3.48), and the boundeness of (xn)

and (x
(k

(i)
t )

n )n∈N (t ∈ T, i = 1, 2, · · · , It), one concludes that limn→∞ Yn = 0. Hence,
Lemma 4, Remark 1, (3.47) and (3.48) send us to

lim
n→∞

‖xn − x̂‖ = 0. (3.49)

This implies that (xn)n∈N converges strongly to x̂. In addition,

‖x(kit)
n − x̂‖ ≤ ‖x(kit)

n − xn‖+ ‖xn − x̂‖ (t ∈ T, i = 1, 2, · · · , It). (3.50)

By combining (3.26), (3.49) with (3.50), we find that

lim
n→∞

‖x(kit)
n − x̂‖ = 0 (t ∈ T, i = 1, 2, · · · , It),

that is, (x
(kit
n ))n∈N (t ∈ T, i = 1, 2, · · · , It) also converges strongly to x̂. This proves

Theorem 1. �

Remark 2. Theorem 1 is more general in nature. It is an improvement upon corre-
sponding results of Sahu and Yao [29], Ceng and Ansari et al. [4], and Maingé [23].

Assumption 3. The sequences (αn)n∈N(⊂ (0, 1)) and (βn)n∈N(⊂ (0, 1)) satisfy

∑∞
n=0 αn =∞,

limn→∞
1

αn+1

∣∣∣ 1
αn+1

− 1
αn

∣∣∣ = 0,

limn→∞ αn = 0,



∑∞
n=0 βn =∞,

limn→∞
1

βn+1

∣∣∣ 1
βn+1

− 1
βn

∣∣∣ = 0,

limn→∞ βn = 0.

Remark 3. Assume that (αn)n∈N ⊂ (0, p) and (βn)n∈N ⊂ (0, q), where

p := min
i∈{0}∪I

2ai/κ
2
i , q := min

i∈{0}∪I
2bi/ι

2
i .
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With the help of Assumption 3, one concludes from Lemma 1 that

‖(I − αn∇F (i))x− (I − αn∇F (i))y‖ ≤(1− αnϑ(i))‖x− y‖ ≤ (1− αnϑ)‖x− y‖,

‖(I − βn∇G(i))x− (I − βn∇G(i))y‖ ≤(1− βnς(i))‖x− y‖ ≤ (1− βnς)‖x− y‖,
(3.51)

where

ϑ := min
i∈{0}∪I

1−
√

1− p(2a(i) − pκ(i)2) and ς := min
i∈{0}∪I

1−
√

1− q(2b(i) − qι(i)2).

Remark 4. Assumption 3 guarantees that there exists n0 ∈ N such that (αn)n≥n0
⊂

(0, p), (βn)n≥n0 ⊂ (0, q), (3.51) holds. Without loss of generality, we may assume that
(3.51) is always true for all n ∈ N.

Assumption 3 and Remark 3 naturally lead us to construct the following simple
algorithm.

Algorithm 2 The broadcast incremental algorithm

procedure Input((αn)n∈N, (βn)n∈N, T and (It)
T
t=1)

User 0 chooses x0 ∈ H arbitrarily
Set n← 0
while not converged do

User 0 computes x
(0)
n ∈ H as x

(0)
n = (1 − λn)(I − αn∇F (0))xn + λn(I −

βn∇G(0))S(0)xn
for t = 1, 2, · · · , T do

User 0 transmits xn to user k
(1)
t

User k
(1)
t computes x

(k
(0)
t )

n as x
(k

(0)
t )

n = xn
end for
for t = 1, 2, · · · , T do

for i = 1, 2, · · · , It do
User k

(i)
t computes x

(k
(i)
t )

n ∈ H as x
(k

(i)
t )

n = (1 − λn)(I −
αn∇F (k

(i)
t ))x

k
(i−1)
t
n + λn(I − βn∇G(k

(i)
t ))S(k

(i)
t )x

k
(i−1)
t
n

end for

User k
(It)
t computes x

(t)
n as x

(t)
n = x

(k
(It)
t )

n

User k
(It)
t transmits x

(t)
n to user 0

end for

User 0 computes xn+1 as xn+1 =
x(0)
n +

∑T
t=1 x

(t)
n

T+1
Set n← n+ 1

end while
return x = xn

end procedure

Corollary 1. Under Assumption 3, the sequences (xn)n∈N and (x
i(j)s
n )n∈N (t ∈ T, i =

1, 2, · · · , It) generated by Algorithm 2 strongly converge to the solution of problem
(1.1).



ON THE CONVERGENCE OF BROADCAST INCREMENTAL ALGORITHMS 657

Remark 5. Inspired and motivated by problem (3.1), in the next step, we will con-
sider a more general problem wherein user i (i ∈ I∪{0}) has more private information
such as S(i),F i1,F i2, · · · ,F im (m ∈ N). The main objective of this problem is to

minimize
∑

i∈I∪{0}

(
m∑
q=1

F (i)
q (x)

)
subject to x ∈

⋂
i∈I∪{0}

Fix(S(i)) (m ∈ N)

where F (i)
q : H → R (i ∈ I ∪ {0}, q ∈ {1, 2, · · · ,m}) is Fréchet differentiable,

∇F (i)
q : H → H (i ∈ I ∪ {0}, q ∈ {1, 2, · · · ,m}) is strongly monotone and Lipschitz

continuous, S(i) : H → H (i ∈ I ∪ {0}) is nonexpansive with
⋂
i∈I∪{0} Fix(S(i)) 6= ∅.

4. Applications

In a peer-to-peer (P2P) storage network, participants act as not only the service
users but also the service providers. In other word, each participant enjoys the service
by storing her own online data in the network and at the same time provides the service
by offering some memory space to the others. To work properly, an economic model
developed for P2P file sharing systems has already been applied to the P2P storage
service allocation. This leads to a mechanism where the contribution of each peer
should equal her use in the storage system. Such a mechanism is called a symmetric
scheme, see [8, 32]. Based on the monetary transaction, users can ’sell’ their own
memory space to the system at a fixed unit price and ’buy’ the storage space from
the system at another unit price. Thus, the P2P data storage system can be managed
by a simple payment-based mechanism. Recalling that, we can fix such prices so as
to maximize the revenue in a profit-maximizing entity.

Let us consider a P2P data storage system network with its user set denoted by
I. Assume that a peer i (i ∈ I) benefits from the service by demanding a storage
capacity Csi that is to be used for storing its own data and offers a storage capacity Coi
that is to be shared with other users. Based on a simple payment-based mechanism,
users can ’sell’ some of their own memory space for a unit price (denoted by po) and
’buy’ storage space in the system for a unit price (denoted by ps). Meanwhile, the
two price thresholds pmax

i and pmin
i correspond to ps, the maximum value of the unit

price such that user i buys some storage space and po, the minimum value of the unit
price such that she sells some of her memory space. As depicted in Figure 1, two
price sensitivities ai and bi respectively represent the increase of the sold capacity
when the unit price satisfies pmin

i ≤ po and the decrease of the bought storage space
when the unit price satisfies ps ≤ pmax

i . Let us give p(≥ 0). Assume that di(p) (resp.,
si(p)) is the amount of storage capacity that peer i would choose to buy (resp., sell),
if user i was charged (resp., paid) a unit price p for it (also see, Figure 1).

Assumption 4. Suppose that the supply function and demand function of user
i (i ∈ I) are affine. There exist some values ai, bi, p

min
i , pmax

i ≥ 0 such that

di(p) := b(i)[pmax
i − p]+, si(p) := a(i)[p− pmin

i ]+,

where mini p
max
i > maxi p

min
i and x+ = max{0, x}.
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Figure 1. Reactions to prices and the utility of user i ∈ I under
Assumption 4.

In the profit-oriented pricing scheme, the operator (peer 0) plays a role of the
manager in the P2P data storage system. Here, it is used to maximize the profit out
of the business in the system by selling/buying the total amount of storage space.
Suppose that peer 0 knows that peer i(i ∈ I) will buy d(i)(ps) and sell s(i)(po). In
this case, the utility function is defined as follows

U (0)(ps, po) :=
∑
i∈I

[
psd(i)(ps)− pos(i)(po)

]
. (4.1)

It strives to choose optimal prices ps and po so as to maximize its profit U (0)(ps, po).
As a matter of fact,

∑
i∈I Csi =

∑
i∈I di(p

s), which is used for storing the data, must
not exceed

∑
i∈I Coi =

∑
i∈I si(p

o) offered by the peers. Accordingly, we define the

objective function and the constrained set of peer 0 by, for all (ps, po) ∈ R2,

F (0)(ps, po) = −
∑
i∈I

psd(i)(ps), G(0)(ps, po) =
∑
i∈I

pos(i)(po),

C(0) = R2
+ ∩

{
(ps, po) ∈ R2 :

∑
i∈I

di(p
s) ≤

∑
i∈I

si(p
o)

}
.

(4.2)

Taking account of the fact that d(i) and s(i) are affine, both F (0) and G(0) in (4.2)
are strongly convex. Furthermore, we find that both ∇F (0) and ∇G(0) are Lipschitz
continuous and strongly monotone. Let S(0) : R2 → R2 be a function defined by,

S(0)(ps, po) :=
ProjR2

+
{ProjĈ(0)(ps, po)}+ (ps, po)

2
, ∀(ps, po) ∈ R2, (4.3)

where Ĉ(0) :=
{

(ps, po) ∈ R2 :
∑
i∈I di(p

s) ≤
∑
i∈I si(p

o)
}
. Thus, we find that S(0) is

nonexpansive. Furthermore, since Fix(S(0)) = Fix(ProjR2
+
ProjĈ(0)) = R2

+ ∩ Ĉ(0) =

C(0), it leads to Fix(S(0)) := C(0).
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The utility function U (i) of peer i (i ∈ I) can be represented by

U (i)(Csi , Coi , ε(i)) := V(i)(Csi )− ε(i) − P(i)(Coi ). (4.4)

(i) V(i)(Csi ) is the storage service valuation of user i. It can be expressed as a
quadratic function for the opportunity and valuation cost (∧ denotes the min),

V(i)(Csi ) :=
bip

max
i (Csi ∧ bipmax

i )− (Csi∧bip
max
i )2

2

bi
.

(ii) P(i)(Coi ) is the overall non-monetary cost of user i for offering capacity Coi to the
system, which is of the form

P(i)(Coi ) := pmin
i Coi +O(i)(Coi ),

(a) O(i)(Coi ) is an opportunity cost of offering capacity Coi for other peers with-
out using Coi for itself. This actually corresponds to

O(i)(Coi ) := (1/ai)(Coi )2/2.

(b) pmin
i Coi is the data transfer cost used for the data protection mechanism

implemented by the system.
(iii) The monetary price (possible negative) paid by peer i is ε(i) := psCsi − poCoi ,

where Coi = si(p
o) and Csi = di(p

s).

Let consider a performance measure, called the social welfare. It can be viewed as
the sum of the utility functions of all peers in the whole system. Because user 0
is a member of the society, all money it exchanges with other users stays within
the system and therefore does not influence the social welfare. It follows from (4.1)
and (4.2) that the social welfare W : R2 → R can be expressed as follows. For all
Cs := (Cs1 , Cs2 , · · · , CsI )T , Co := (Co1 , Co2 , · · · , CoI )T ∈ RI ,

W(Cs, Co) :=
∑
i∈I

U (i)(Csi , Coi , ε(i)) + U (0)(ps, po) =
∑
i∈I

[
V(i)(Csi )− P(i)(Coi )

]
. (4.5)

Since the social welfare makes the system reliable and stable, we would like to max-
imize W. Through all users cooperating in the system, it is desirable to enable each
user i (i ∈ I) to decide the optimal (Csi , Coi ) ∈ R2, by maximizing its own private
welfare. We call W(i) : R2 → R the welfare of peer i (i ∈ I), which is defined by, for
all (Csi , Coi ) ∈ R2 (resp.(di(p

s), si(p
o)) ∈ R2 ),

W(i)(Csi , Coi ) := V(i)(Csi )− P(i)(Coi ).

Taking account of the fact that peer i(i ∈ I) will behave selfishly in order to choose
a strategy that maximize its own welfare W(i). Therefore, the objective function and
the box constrained set of peer i(i ∈ I) can be defined as, for all (ps, po) ∈ R2,

F (i)(ps, po) = −V(i)(di(p
s)), G(i)(ps, po) = P(i)(si(p

o)),

C(i) = [pmin
i , pmax

i ]× [pmin
i , pmax

i ] (i ∈ I).
(4.6)

Because di and si are affine, one sees that F (i),G(i)(i ∈ I) in (4.6) satisfy the strong
convexity condition. As a consequence, one has that both ∇F (i) and ∇G(i)(i ∈ I)
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are strongly monotone and Lipschitz continuous. Let us define mappings S(i) : R2 →
R2 (i ∈ I) by, for all (ps, po) ∈ R2,

S(i)(ps, po) = ProjC(i)(p
s, po). (4.7)

It can be easily checked that S(i) (i ∈ I), defined in (4.7), satisfies the nonexpansive
condition with

Fix(S(i)) = Fix(ProjC(i)) =
{

(ps, po) ∈ R2 : S(i)(ps, po) = (ps, po)
}

= C(i).

The main aim of the profit-oriented pricing scheme is to determine optimal prices
po and ps, in order to maximize U (0), the profit of operator (user 0). To make our
system reliable and stable, one may maximize the social welfare W. Accordingly, one
can construct the storage allocation problem of the form

Problem 1. (The storage allocation problem)

Maximize (1−$)W(ps, po) +$U (0)(ps, po)

=−

[
(1−$)

∑
i∈I

(F (i) + G(i)) +$(G(0) + F (0))

]
(ps, po)

subject to

(ps, po) ∈
⋂
i∈I

[pmin
i , pmax

i ]× [pmin
i , pmax

i ] ∩

{
(ps, po) ∈ R2

+ :
∑
i∈I

di(p
s) ≤

∑
i∈I

si(p
o)

}
=

⋂
i∈{0}∪I

Fix(S(i)),

where $ ∈ (0, 1), F (i) : R2 → R, G(i) : R2 → R and S(i) : R2 → R(i ∈ {0} ∪ I) are
respectively defined as in (4.2), (4.3), (4.6) and (4.7).

Let us consider two computational experiments for solving Problem 1 with $ = 1
2 .

Experiment 1 is generated with Matlab version 5.0. Experiment 2 is generated with
Python 3.7. All calculations are performed on a personal computer Intel(R) Core(TM)
i5-8250U CPU @ 1.60GHz.

Experiment 1. Consider a storage networked system with I = 120, T = 1, 2, 6, 12,
60, 120. Thus the element number of each subnetwork is It = I/T . One randomly
chooses the values in the range of (0, 10] for a(i) and b(i). One randomly chooses
pmin
i in the range of [20, 30] and pmax

i in the range of [120, 130] (i = 1, 2, · · · , 120).

One sets αn := 10−3

(n+1)0.35 , βn := 0.5 × 10−3

(n+1)0.35 and λn := 0.5 (∀n ∈ N). It ensures

that (αn)n∈N and (βn)n∈N satisfy Assumption 3 . Algorithm 2 is initialized with the
staring point x0 = (ps0, p

o
0)T randomly chosen in the range of [0, 100]× [0, 100]. We set

the number of iterations N = 10000, 200000, 500000 as the stoping criterion. Now we
will compare the computational performance with different number of subnetworks.
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Figure 2. (a)-(b): Behaviors of ps and po with the number of sub-
networks T = 1, 2, 6, 12. The number of iterations is 10000.

Figure 3. (e1)-(e3): Behaviors of ps and po with the number of
subnetworks T = 60. The number of iterations is
10000, 50000, 200000

Figures 2, 3, 4 describe the changing processes of po and ps in the case of T =
1, 2, 6, 12, 60, 120, respectively. Those results indicate that Algorithm 2 with T =
1, 2, 6, 12, 20, 60 dramatically reduces the required number of iterations and enjoys a
better rate of the convergence than Algorithm 2 with T = 120.
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Figure 4. (f1)-(f3): Behaviors of ps and po with the number of
subnetworks T = 120. The number of iterations is
10000, 100000, 500000.

Hence, one concludes that Algorithm 2 has a better behavior with T < 120 than the
conventional broadcast optimization algorithm (i.e., Algorithm 2 with I = T = 120).
Meanwhile, these figures indicate the relation between the number of iterations and
the number of subnetworks. As many peers as possible participate in subnetworks,
the operator can quickly find the optimization solution to Problem 1 due to full
cooperation from many peers. Note that it is not easy for all peers to implement
the incremental optimization algorithm (i.e., Algorithm 2 with I = 120, T = 1),
especially when the real networked system is composed of a number of subnetworks.
As a consequence, our proposed algorithm is efficient to solve convex optimization
problems in a large scale networked system.

Experiment 2. Consider a storage networked system with I = 20, T = 10, 2, It =
I/T . Let us randomly choose the values in the range of (0, 10] for a(i) and b(i). The
lower bound pmin

i is a random value chosen in the range of [10, 20]. Meanwhile, the
upper bound pmax

i is a random value chosen in the range of [90, 100] (i = 1, 2, · · · , 20).

We set αn := 10−4

(n+1)10−3 , βn := 10−4

(n+1)10−3 and λn := 0.5 (∀n ∈ N) for Algorithm 2.

The initial points are generated randomly in the range of [0, 100] × [0, 100]. Let us
take the number of iterations N = 10000 as our stopping criterion.

We depict the changing process of (ps, po) for Algorithm 2. As shown in Figure
5 (g1), when the number of subnetworks is 2, the optimal (ps, po)T is convergent
to (65.57, 42.20)T , user 0’s revenue U (0)(ps, po) is approximately 85398.44. On the
other hand, from Figure 5 (g2), we have that when the number of subnetworks is 10,
the optimal (ps, po)T is convergent to (55.70, 41.12)T . In this case, user 0’s revenue
U (0)(ps, po) has a approximate value 84228.42. Note that all the subfigures in Figure
5 in this experiment plot that the optimal po (denoted by p̂o) is smaller than the
optimal ps (denoted by p̂s). In this case, user 0’s revenue U (0)(p̂s, p̂o) is nonnegative.
In other words, user 0 makes a profit in this system.



ON THE CONVERGENCE OF BROADCAST INCREMENTAL ALGORITHMS 663

Figure 5. Behaviors of ps and po (Left). Behaviors of U (0)(ps, po)
(Right). The number of iterations is 30000.

5. Conclusion

In this paper, we discussed the minimization problem for the sum of objective
functions over the intersection of fixed point sets of a family of nonexpansive mappings
in a real Hilbert space. Our proposed iterative algorithms are devised by combining
the broadcast distributed idea, the incremental optimization idea with the steepest
descent method. We obtained the corresponding norm convergence results. Finally,
we gave the numerical examples for the data storage allocation in a peer to peer
data system, which demonstrates the computational effectiveness and convergence
performance of our proposed algorithm.
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