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Abstract. In this paper, we prove some fixed point theorems in metric vector spaces, in which
the continuity is not required for the considered mappings and the underlying set is not necessarily

compact. We provide some concrete examples to demonstrate these theorems. We also give some

counterexamples to show that every condition in the theorems is necessary for the considered mapping
to have a fixed point.
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1. Introduction

In fixed point theory, a topological vector space X is said to have the fixed point
property if any continuous self-mapping on an arbitrary given nonempty compact
and convex subset of X has a fixed point. In the concept of fixed point property, a
certain type of continuity of the considered mapping is absolutely required (see [4],
[6], [7]). In this paper, we prove a fixed point theorem in metric vector spaces. In
this theorem, the continuity is not a necessary condition for the considered mapping
to satisfy, which is replaced by a certain type of mapping convexity.

After K. Fan proved the so-called Fan-KKM theorem in 1961, it has been widely
applied in fixed point theory, optimization theory, variational inequalities and other
fields (see [5]). The theorems of this paper are also proved by using Fan-KKM theorem
in two different ways. Since Fan-KKM Theorem has more than one different version,
for easy reference, we briefly review the version of Fan-KKM Theorem used in this
paper (see [1], [2], [3], [5]).

In [2], Aliprantis and Border introduced more general definitions of KKM mappings
and they extended the Fan-KKM theorem to more general underlying spaces, which
will help to generalize the results proved in this paper to more general cases. For
example, the considered underlying set C in every theorem in this paper is assumed to
be closed and convex. If we apply the results in [2], the closedness and convexity of C
in the obtained results is not needed. By applying the results in [2], one may consider
to generalize the results in this paper by assuming that the considered function f
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takes values in the whole space X and the surjectivity condition is replaced with the
assumption that C should be a subset of f(C).

Let C be a nonempty convex subset of a vector space X. A set-valued mapping
G : C → 2X \ {∅} is called a KKM mapping if, for any finite subset {x1, x2, . . . , xn}
of C, we have

co{x1, x2, . . . , xn} ⊆
⋃

1≤i≤n

G(xi),

where co{x1, x2, . . . , xn} denotes the convex hull of {x1, x2, . . . , xn}.
Fan-KKM Theorem. Let C be a nonempty closed convex subset of a Hausdorff
topological vector space X and let G : C → 2X \ {∅} be a KKM mapping with closed
values. If there exists a point x∗ ∈ C such that G(x∗) is a compact subset of C, then⋂

x∈C
G(x) 6= ∅.

2. The first fixed point theorem in this paper

2.1. The main theorem.

Theorem 2.1. Let (X, d) be a metric vector space and let C be a nonempty closed
and convex subset of X. Let f : C → C be a single-valued mapping. Suppose that f
satisfies the following conditions:

(a) f : C → C is onto.
(b1) For each finite subset {x1, x2, . . . , xn} ⊆ C and for any point u from its convex

hull, we have

max{d(f(xi), u)− d(xi, u) : i = 1, 2, . . . , n} ≥ 0.

(c1) There is x∗ ∈ C such that the following subset of C is compact

{y ∈ C : d(x∗, y) ≤ d(f(x∗), y)}.
Then f has a fixed point.

Proof. We define a set-valued mapping G : C → 2C by

G(x) = {y ∈ C : d(x, y) ≤ d(f(x), y)}, for every x ∈ C.
For every x ∈ C G(x) is nonempty because x ∈ G(x). G(x) is a closed subset of C
since, for every fixed x ∈ C, d(f(x), ·)− d(x, ·) is a continuous function on C (on X).

Next, we show that G is a KKM mapping. To this end, for any finite subset
{x1, x2, . . . , xn} ⊆ C, let u by an arbitrary point from its convex hull. That is, u is
an arbitrary (linear) convex combination of x1, x2, . . . , xn. We can suppose that there

are positive numbers α1, α2, . . . , αn with

n∑
i=1

αi = 1 such that

u =

n∑
i=1

αixi.

By condition (b1) in this theorem, we have

max{d(f(xj), u)− d(xj , u) : j = 1, 2, . . . , n} ≥ 0.
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It follows that there must be an integer k with 1 ≤ k ≤ n such that

d(xk, u) ≤ d(f(xk), u).

That is,
n∑

i=1

αixi = u ∈ G(xk) ⊆
⋃

1≤i≤j

G(xj).

This implies that G : C → 2C is a KKM mapping with nonempty closed values in C.
By condition (c1) and by using Fan-KKM Theorem, we obtain⋂

x∈C
G(x) 6= ∅.

Then, taking any y0 ∈
⋂
x∈C

G(x), we have

d(x, y0) ≤ d(f(x), y0), for every x ∈ C. (2.1)

By condition (a) in this theorem, for the arbitrarily selected y0 ∈
⋂
x∈C

G(x) ⊆ C

satisfying (2.1), there is x0 ∈ C such that f(x0) = y0. Substituting x0 for x ı̂n (2.1)
gives

d(x0, f(x0)) = d(x0, y0) ≤ d(f(x0), y0) = d(y0, y0) = 0.

This implies that x0 is a fixed point of f , which proves this theorem. �

Corollary 2.2. Let (X, d) be a metric vector space and let C be a nonempty compact
and convex subset of X. Let f : C → C be a single-valued mapping. If f satisfies
conditions (a) and (b1) in Theorem 2.1, then f has a fixed point.

2.2. Examples regarding to Theorem 2.1. In the following examples, we always
take (X, d) = (R, | · |), let C be a closed interval of R, and f to be a single-valued
self-mapping on C.

Example 2.3. Let C = [0,∞) and the self-mapping f satisfies
(i) f(0) = 12;
(ii) 0 ≤ f(x) ≤ x, for 0 < x ≤ 6 and f(0, 6] = [0, 6];
(iii) f(x) ≥ x, for 6 ≤ x <∞ and f [6,∞) = [6,∞).

Then
(I) f satisfies all conditions (a, b1, c1) in Theorem 2.1;
(II) f has at least one fixed point, x = 6.

The following graph shows an example of such a function.
Proof. Conditions (i-iii) in this example show that f satisfies condition (a) in
Theorem 2.1. We next show that f satisfies conditions (b1). For any finite sub-
set {x1, x2, . . . , xn} ⊆ C, let u be a convex combination of x1, x2, . . . , xn with

u =

n∑
i=1

αixi, for some positive numbers α1, α2, . . . , αn with

n∑
i=1

αi = 1. Suppose

0 ≤ x1 < x2 < . . . < xn <∞. It follows that 0 ≤ x1 < u < xn <∞. Then the proof
is divided into two cases:
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Case 1. 0 ≤ x1 < u ≤ 6. By condition (ii), we have

0 < u− x1 ≤ u− f(x1), for any u with 0 < x1 < u ≤ 6

and

0 < u− 0 = u ≤ 12− u = f(0)− u, for any u with 0 = x1 < u ≤ 6.

Case 2. 0 < u < xn <∞. By condition (iii), we have

0 < xn − u ≤ f(xn)− u, for any u with 6 < u < xn <∞.

Finally, we show that f satisfies condition (c1) in Theorem 2.1. Take any point x∗

with x∗ > 6. Since f(x∗) ≥ x∗, we have

{y ∈ C : |x∗ − y| ≤ |f(x∗)− y|} =

[
0,
x∗ + f(x∗)

2

]
.

It is a compact subset in C. �

Example 2.4. Let C = [0,∞). Define two continuous functions ϕ,ψ on C as follows:

ϕ(x) =


1

2
x, for x ∈ [0, 4];

3x− 10, for x ∈ (4, 6];

3

2
x− 1, for x ∈ (6,∞),

and

ψ(x) =


3

4
x, for x ∈ [0, 4];

2x− 5, for x ∈ (4, 6];

5

4
x− 1

2
, for x ∈ (6,∞).

ϕ and ψ satisfy the following conditions:
(i) 0 < ϕ(x) < ψ(x) < x, for 0 < x < 5;
(ii) ϕ(x) > ψ(x) > x, for 5 < x <∞.
Then, we define f : C → C by

f(x) =

{
ϕ(x), for 0 ≤ x <∞ and x is rational;

ψ(x), for 0 ≤ x <∞ and x is irrational.

Then, we have
(I) f satisfies all conditions (a, b1, c1) in Theorem 2.1.
(II) f has two fixed points, x = 0 and x = 5.
(III) f is discontinuous at every point in (0,∞) \ {5}.

Proof. Verifying of condition (a) in Theorem 2.1. f(C) is the range of f . We have
{0, 5} ⊆ f(C). For any b ∈ (0,∞) \ {5}, the horizontal line y = b intersects each
of the curves y = ϕ(x) and y = ψ(x) at exactly one point. Suppose that (x1, b)
and (x2, b) are the intersections of the line y = b and the curves y = ϕ(x) and
y = ψ(x), respectively. Then if b is rational, both x1 and x2 are rational. It follows
that f(x1) = ϕ(x1) = b. If b is irrational, then both x1 and x2 are irrational. It
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follows that f(x2) = ψ(x2) = b. This proves (a). Similarly to the proof of Example
2.3, we can show that f satisfies condition (b1) in Theorem 2.1.

Finally we show that f satisfies condition (c1) in Theorem 2.1. Take point x∗ = 6.
By f(6) = 8, we have

{y ∈ C : |6− y| ≤ |f(6)− y|} = {y ∈ C : |6− y| ≤ |8− y|} = [0, 7].

It is a compact subset in C. �

2.3. Counter examples regarding to Theorem 2.1. Next, we give three counter
examples to show that every condition in Theorem 2.1 is necessary for the considered
mapping to have a fixed point.

Example 2.5. Let C = [0,∞) and let f : C → C be the function given in Example
2.4. Based on f , we define a function g : C → C by

g(x) =


f(x), for x 6∈ {0, 5};
10, for x = 0;

8, for x = 5.

Then g satisfies condition (b1, c1) but not (a) in Theorem 2.1 and g has no fixed point.

Example 2.6. Let C = [0, 10]. Let f : C → C be given by

f(x) =



0, forx = 10;

4

5
x, forx ∈ (0, 5);

6

5
x− 2, forx ∈ [5, 10);

10, forx = 0.

Then f satisfies condition (a, c1) but not (b1) in Theorem 2.1 and f has no fixed point.

Proof. We only prove that f does not satisfy condition (b1) in Theorem 2.1. Take
n = 2 with x1 = 0 and x2 > 5. We can take x2 very close to 10 such that there is u
with 5 < u < x2 satisfying u < f(x2). Then we have

0 < u− x1 = u > 10− u = (0)− u
and

x2 − u > f(x2)− u > 0.

It shows that f does not satisfy condition (b1) in Theorem 2.1. �

Example 2.7. Let C = (−∞,∞) and define a linear function f(x) = x− 1. Then f
satisfies conditions (a, b1) but not (c1) in Theorem 2.1 and f has no fixed point.

Proof. It is clear that f satisfies condition (a). Similar to the proof of Example
2.3, we can show that f satisfies condition (b1) in Theorem 2.1. From the function
f(x) = x− 1, we have

{y ∈ C : |x− y| ≤ |f(x)− y|} = {y ∈ C : |x− y| ≤ |x− 1− y|}

=

[
x− 1

2
,∞
)
, for any x ∈ (−∞,∞).
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This proves that f does not satisfy condition (c1). �

3. The second fixed point theorem in this paper

The proof of the following theorem is similar to the proof of Theorem 2.1. Hence,
we only give a proof sketch.

Theorem 3.1. Let (X, d) be a metric vector space and let C be a nonempty closed
and convex subset of X. Let f : C → C be a single-valued mapping. Suppose that f
satisfies the following conditions:

(a) f : C → C is onto;
(b2) For each finite subset {x1, x2, . . . , xn} ⊆ C and for any point u from its convex

hull, we have

max{d(f(xi), u)− d(f(xi), xi) : i = 1, 2, . . . , n} ≥ 0;

(c2) There is x∗ ∈ C such that the following subset of C is compact

{y ∈ C : d(f(x∗), x∗) ≤ d(f(x∗), y)}.
Then f has a fixed point.

Proof. We define a set-valued mapping G : C → 2C by

G(x) = {y ∈ C : d(f(x), x) ≤ d(f(x), y)}, for every x ∈ C.
Similarly to the proof of Theorem 2.1, by condition (b2), we can show that G : C → 2C

is a KKM mapping with nonempty closed values on C. By condition (c2) and by using

Fan-KKM Theorem, we obtain
⋂
x∈C

G(x) 6= ∅. Then, taking any y0 ∈
⋂
x∈C

G(x), we

have
d(f(x), x) ≤ d(f(x), y0), for every x ∈ C. (3.1)

By condition (a) in this theorem, for the arbitrarily selected y0 ∈
⋂
x∈C

G(x) ⊆ C

satisfying (3.1), there is x0 ∈ C such that f(x0) = y0. Substituting x0 for x in (3.1)
gives

d(f(x0), x0) ≤ d(f(x0), y0) = d(y0, y0) = 0.

This implies that x0 is a fixed point of f , which proves this theorem. �

Corollary 3.2. Let (X, d) be a metric vector space and let C be a nonempty compact
and convex subset of X. Let f : C → C be a single-valued mapping. If f satisfies
conditions (a) and (b2) in Theorem 3.1, then f has a fixed point.

Similar to the examples regarding to Theorem 2.1, we give three examples below
for Corollary 3.2. The readers interested in these topics can construct more examples
and counter examples to demonstrate Theorem 3.1 and Corollary 3.2.

Example 3.3. Let C = [0, 10]. Let f : C → C be defined with f(C) = C and

f(x) ≤ x, for all x ∈ C.
f satisfies conditions (a, b2) in Corollary 3.2 has at least two fixed points, x = 0 and
x = 10.
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Proof. f(C) = C is assumed, which proves (a). Next, we prove that f satisfies condi-
tion (b2). For any finite subset {x1, x2, . . . , xn} ⊆ C, let u be a convex combination

of x1, x2, . . . , xn with u =

n∑
i=1

αixi, for some positive numbers α1, α2, . . . , αn with

n∑
i=1

αi = 1. Suppose 0 ≤ x1 < u < xn < 10. Then, we have

0 ≤ x1 − f(x1) < u− f(x1), for any y with 0 ≤ x1 < u < 10. �

Similar to Example 3.3, we have

Example 3.4. Let C = [0, 10]. Let f : C → C be defined with f(C) = C and

f(x) ≥ x, for all x ∈ C.

Then, f satisfies conditions (a) and (b2) in Corollary 3.2 and f has at least two fixed
points, x = 0 and x = 10.

Proof. From the proof of Example 3.3, we have

0 ≤ f(xn)− xn < (xn)− u, for any u with 0 < u < xn ≤ 10. �

As a special case of the above Example 3.3, we have the following example.

Example 3.5. Let C = [0, 10]. Define two continuous functions ϕ,ψ on [0, 10] as
follows:

ϕ(x) =


3

5
x, for x ∈ [0, 5];

7

5
x− 4, for x ∈ [5, 10]

and

ψ(x) =


2

5
x, for x ∈ [0, 5];

8

5
x− 6, for x ∈ [5, 10].

Based on the above given continuous functions ϕ,ψ, we define a function f : C → C
by

f(x) =

{
ϕ(x), for 0 ≤ x ≤ 10 and x is rational;

ψ(x), for 0 < x < 10 and x is irrational.

Then, we have
(I) f satisfies conditions (a, b2) in Corollary 3.2;
(II) f has two fixed points, x = 0 and x = 10;
(III) f is discontinuous at every point in (0, 10).

Proof. The proofs of (a) and (b2) in this example are similar to the proofs of (a) in
Example 2.4 and the proof of (b1) in Example 3.3, respectively. �
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4. The third fixed point theorem in this paper

4.1. The theorem. In this subsection, we use the Fan-KKM theorem to prove the
third fixed point theorem in this paper. The way, the proof is different from the proofs
of Theorems 2.1 and 3.1, is said to be ”a proof by indirectly applying the Fan-KKM
theorem”. For a self-mapping f on a given set, let F(f) denote the collection of fixed
point(s) of f .

Theorem 4.1. Let (X, d) be a metric vector space and let C be a nonempty compact
and convex subset of X. Let f : C → C be a single-valued mapping. Suppose that f
satisfies the following conditions:

(a) f : C → C is onto;
(b3) For each finite subset {x1, x2, . . . , xn} ⊆ C and for any point u from its convex

hull, we have

d(f(u), u) ≤ max{d(f(xi), u) : i = 1, 2, . . . , n};
(c3) {x ∈ C : d(f(x), x) ≤ β} is closed, for any β > 0.
Then F(f) is a nonempty closed subset of C.

Proof. F(f) is precisely defined by F(f) = {x ∈ C : d(f(x), x) = 0}. Assume, by
contradiction, that

F(f) = ∅. (4.1)

Under the assumption (3), we show that there is δ > 0 such that

{x ∈ C : d(f(x), x) ≤ δ} = ∅. (4.2)

Assume again, by contradiction, that (4.2) does not hold for any δ > 0. That is,

{x ∈ C : d(f(x), x) ≤ δ} 6= ∅, for any δ > 0. (4.3)

Let

Em =

{
x ∈ C : d(f(x), x) ≤ 1

m

}
, for m = 1, 2, . . .

By the assumption (4.3) and condition (c3) in this theorem, Em is a nonempty closed
subset of C, for m = 1, 2, . . .. Then {Em} is a decreasing (with respect to the inclusion
ordering) sequence of nonempty closed subsets of the given compact subset C of X.
It follows that

∞⋂
m=1

Em 6= ∅.

Since

F(f) =

∞⋂
m=1

Em, (4.4)

it yields a contradiction to the assumption (4.1). Then (4.2) is proved. Hence, there

is δ > 0 that satisfies (4.2). Then we take
δ

2
> 0 such that

d(f(x), x) ≥ δ

2
, for every x ∈ C. (4.5)
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With respect to this fixed
δ

2
> 0 given in (4.5), we define a set-valued mapping

G : C → 2C by

G(x) =

{
y ∈ C : d(f(x), y) ≥ δ

2

}
, for every x ∈ C.

By the assumption (4.5), we have x ∈ G(x), for every x ∈ C. It follows that

C ⊇ G(x) 6= ∅, for every x ∈ C.

Since, for every fixed x ∈ C, d(f(x), ·) is a continuous function on C (on X), it follows
that, for every x ∈ C, G(x) is a nonempty closed subset of C.

Next, we show that G is a KKM mapping. To this end, for any finite subset
{x1, x2, . . . , xn} ⊆ C, let u by an arbitrary point from its convex hull. That is, u
is an arbitrary (linear) convex combination of x1, x2, . . . , xn. We can suppose that

there are positive numbers α1, α2, . . . , αn with
n∑

i=1

αi = 1 such that u =

n∑
i=1

αixi. By

condition (b3) in this theorem, we have

d(f(u), u) = d

(
f

(
n∑

i=1

αixi

)
,

n∑
i=1

αixi

)

≤ max

{
d(f(xj),

n∑
i=1

αixi) : j = 1, 2, . . . , n

}
.

This implies that there must be an integer k with 1 ≤ k ≤ n such that

d(f(u), u) = d

(
f

(
n∑

i=1

αixi

)
,

n∑
i=1

αixi

)
≤ d

(
f(xk),

n∑
i=1

αixi

)
.

By (4.5), it follows that

d

(
f(xk),

n∑
i=1

αixi

)
≥ δ

2
.

That is,

u =

n∑
i=1

αixi ∈ G(xk) ⊆
⋃

1≤j≤n

G(xj).

This implies that G : C → 2C is a KKM mapping with nonempty closed values in

C. Since C is compact, by Fan-KKM Theorem, we obtain
⋂
x∈C

G(x) 6= ∅. Taking any

y0 ∈
⋂
x∈C

G(x), we have

d(f(x), y0) ≥ δ

2
, for every x ∈ C. (4.6)
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By condition (a) in this theorem, for the selected y0 ∈ C satisfying (4.6), there is
x0inC such that f(x0) = y0. Substituting x0 for x in (4.6) gives

d(y0, y0) = d(f(x0), y0) ≥ δ

2
> 0.

It is a contradiction. Hence (4.1) does not hold. That is, we must have F(f) 6= ∅. By
(4.4), F(f) is the intersection of a decreasing sequence of nonempty closed subsets of
C. It follows that F(f) is closed. This proves this theorem. �

Remark 4.2. The following (stronger) condition implies condition (b3) in Theorem
4.1

d(f(u), u) ≤
n∑

j=1

αjd(f(xj), u).

4.2. Examples regarding to Theorem 4.1. In the following examples, we take
C = [0, 10]. Let f be a single-valued self-mapping on C.

Example 4.3.

f(x) =



−5

3
x+ 10, for 0 ≤ x < 3;

1, for x = 3;

5, for 3 < x < 7;

9, for x = 7;

−5

3
x+

50

3
, for 7 < x ≤ 10.

Then we have
(i) f satisfies all conditions in Theorem 4.1;
(ii) f has one fixed point, x = 5;
(iii) f is neither lower semi-continuous, nor upper semi-continuous.

Proof. It is straightforward to check that f satisfies conditions (a, c3) in Theorem 4.1,
and therefore it is omitted here. We only show that f satisfies conditions (b3). For
any finite subset {x1, x2, . . . , xn} ⊆ C, let u be a convex combination of x1, x2, . . . , xn

with u =
n∑

i=1

αixi for positive numbers α1, α2, . . . , αn with
n∑

i=1

αi = 1. Suppose

0 ≤ x1 < x2 < . . . < xn ≤ 10. So we have 0 ≤ x1 < u < xn ≤ 10. Then, we have

|f(u)− u| ≤ |f(x1)− u|, for x1 < u ≤ 5

and

|f(u)− u| ≤ |f(xn)− u|, for 5 < u < xn. �

Similar to Example 4.3, we construct more complicated examples. The proofs of
the following two examples are similar to the proof of Example 4.3 and are omitted.
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Example 4.4. Example 10.

f(x) =



−5

3
x+ 10, for 0 ≤ x < 3;

2x− 5, for 3 ≤ x ≤ 7 and x is rational;

5, for 3 < x < 7 and x is irrationa;

−5

3
x+

50

3
, for 7 < x ≤ 10.

Then
(i) f satisfies all conditions in Theorem 4.1 and f has one fixed point, x = 5;
(ii) f is continuous on [0, 3) ∪ (7, 10] ∪ {5};
(iii) f is discontinuous at every point in [3, 7] \ {5};
(iv) f is neither lower semi-continuous, nor upper semi-continuous on C.

Example 4.5.

f(x) =


−5

3
x+ 10, for 0 ≤ x < 3;

2x− 5, for 3 ≤ x ≤ 7;

−5

3
x+

50

3
, for 7 < x ≤ 10.

Then
(i) f satisfies all conditions in Theorem 4.1 and f has one fixed point, x = 5;
(ii) f is continuous on [0, 10] \ {3, 7}’
(iii) f is neither lower semi-continuous, nor upper semi-continuous on C.

4.3. Counter examples regarding to Theorem 4.1. Now we provide three coun-
terexamples to show that every condition in Theorem 4.1 is necessary for the consid-
ered mapping to have a fixed point.

Example 4.6.

f(x) =

{
6, for x ∈ [0, 5);

4, for x ∈ [5, 10).

Then f satisfies conditions (b3) and (c3) but not (a) in Theorem 4.1 and f has no
fixed point.

Proof. The proof is straightforward and it is omitted here. �

Example 4.7.

f(x) =



0, for x = 10;

4

5
x, for x ∈ (0, 5);

6

5
x− 2, for x ∈ [5, 10);

10, for x = 0.

Then f satisfies conditions (a) and (b3) but not (c3) in Theorem 4.1 and f has no
fixed point.
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Proof. It is clear to see that f satisfies condition (a). We next show that f satisfies
conditions (c). For any finite subset {x1, x2, . . . , xn)} ⊆ C, let u be an arbitrary

convex combination of x1, x2, . . . , xn with u =

n∑
i=1

αixi, for some positive numbers

α1, α2, . . . , αn with

n∑
i=1

αi = 1. Suppose 0 ≤ x1 < x2 < . . . < xn ≤ 10. It implies that

0 ≤ x1 < u < xn ≤ 10. Then, we calculate

0 < u− f(u) < u− f(x1), for any 0 < x1 < u < xn ≤ 10

and

0 < u− f(u) < 10− u, for any 0 = x1 < u < xn ≤ 10.

It shows that f satisfies condition (b3). Since d(f(0), 0) = 10, it implies that {x ∈
C : d(f(x), x) ≤ β} is not closed, for any β with 0 < β < 1. condition (c3) is not
satisfied. f does not have a fixed point. �

Example 4.8.

f(x) =



−5

3
x+ 10, for x ∈ [0, 3];

x+ 2, for x ∈ (3, 5);

x− 2, for x ∈ [5, 7];

−5

3
x+

50

3
, for x ∈ (7, 10].

Then f satisfies conditions (a) and (c3) but not (b3) in Theorem 4.1 and f has no
fixed point.

Proof. It is clear to see that f satisfies conditions (a) and (c3). Take x1 = 3, x2 = 7
and let u = 5. We have f(x1) − 5 = f(x2) − 5 = 0, and f(u) − 5 = 2. So, condition
(b3) is not satisfied. �
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