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Abstract. We present a unified approach to describe a possibly wide class of separable Banach
spaces which are extremal with respect to the minimal displacement of k-Lipschitz self-maps of the

closed unit ball. The prominent member of this class, which plays a central role in our considerations,

is the Banach space c0 of real sequences converging to 0, provided with the maximum norm. Indeed,
we show that if a separable Banach space X contains an isomorphic (resp. isometric) copy of c0,

then X as well as all subspaces of X of finite codimension are extremal (resp. strictly extremal). Our

result encompasses and significantly extends a collection of all known examples of separable Banach
spaces which are extremal (resp. strictly extremal).
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1. Introduction

Suppose C is a bounded, closed and convex subset of an infinite-dimensional real
Banach space X. If C is compact, then every continuous self-map T of C has a fixed
point by the famous Schauder’s theorem [20]. However, in noncompact setting it is
always possible to construct a continuous map T : C → C without a fixed point.
The general construction of such a map, which works in any space X, is due to Klee
[15]. There are many various examples of uniformly continuous, k-Lipschitz, and even
nonexpansive maps T : C → C without fixed points. It is usually the case that the
minimal displacement of maps of the above type is zero, that is,

d(T ) = inf {‖x− Tx‖ : x ∈ C} = 0.

This property is natural for certain classes of maps. For example, all nonexpansive
self-maps of bounded, closed and convex sets have this feature. This is no longer the
case if we consider a class of k-Lipschitz maps with k > 1.
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Goebel [9] was probably the first to observe that there are k-Lipschitz maps T :
C → C (in short, T ∈ L(k)) having a positive minimal displacement. In the quoted
paper, he proves the basic inequality

d(T ) ≤
(

1− 1

k

)
r(C),

where r(C) denotes the Chebyshev radius of C, i.e., r(C) = infx∈C supy∈C ‖x− y‖,
and gives examples of sets and maps for which the above estimate is exact. By
following [9], we define the minimal displacement characteristic of the set C as

ϕC(k) = sup {d(T ) | T : C → C, T ∈ L(k)} , k ≥ 1.

The minimal displacement problem involves finding or evaluating the function ϕ for
concrete sets. One of the strongest result in this matter was obtained in 1985 by Lin
and Sternfeld [16]: given k > 1 and a bounded, closed, convex but noncompact subset
C of a Banach space X, one can always construct T : C → C such that T ∈ L(k) and
d(T ) > 0. In other words, ϕC(k) > 0 for every k > 1. However, there are still many
quantitative aspects of the theory left.

Throughout we will be concerned in the most important case C = BX , where BX

denotes the closed unit ball in X. In this special case, we will denote the minimal
displacement characteristic of BX by ψX , that is,

ψX(k) = sup {d(T ) | T : BX → BX , T ∈ L(k)} , k ≥ 1.

Hence, for every space X,

ψX(k) ≤ 1− 1

k
.

For some spaces the above estimate is exact, that is, for every k ≥ 1

ψX(k) = 1− 1

k
.

We call such spaces extremal. Moreover, we say that X is strictly extremal if for every
k ≥ 1 there exists a map T : BX → BX such that T ∈ L(k) and ‖x− Tx‖ > 1− 1/k
for every x ∈ BX .

It is well-known that the space c0 is strictly extremal (see Example 20.2 in [11] or
Example 12.4 in [10]). Since this space will play a key role in our approach, we now
recall the rationale for this.

Example 1.1. Let α : R→ [−1, 1] be defined as

α(t) =

 −1 if t ≤ −1,
t if t ∈ [−1, 1],
1 if t ≥ 1.

Fix k ≥ 1. Let T : Bc0 → Bc0 be defined for every x = (x(1), x(2), . . . ) ∈ Bc0 by

T (x(1), x(2), . . . ) = (1, α(kx(1)), α(kx(2)), . . . ) .

Since α ∈ L(1), it follows that T ∈ L(k), that is,

‖Tx− Ty‖ ≤ k ‖x− y‖
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for any x, y ∈ Bc0 . Moreover,

‖x− Tx‖ > 1− 1

k

for any x ∈ Bc0 . Indeed, the opposite inequality ‖x− Tx‖ ≤ 1 − 1/k implies that
x(i) ≥ 1/k for every i ∈ N, contradicting the fact that x ∈ c0. Consequently, the
space c0 is strictly extremal.

In what follows, by a subspace of a given Banach space X we always mean a closed
linear subspace.

Below we provide currently known examples of strictly extremal spaces, pointing
out that they are only a special case of our results. Let us start with the following:

• the Banach space C([0, 1]) of all continuous real-valued functions on [0, 1],
endowed with the maximum norm (see Example 20.1 in [11] or Example 12.3
in [10]);
• the Banach space c of convergent sequences, provided with the supremum

norm (see Claim 1 in [17]);
• the space of differentiable functions C(n)([0, 1]) provided with the norm ‖
f ‖=

∑n−1
i=0 |f (i)(0)|+ maxt∈[0,1] |f (n)(t)| (see [2]);

• every separable infinite-dimensional L1-predual (see Theorem 2.5 in [4]), in
particular, every separable space C0(K), where K is a locally compact Haus-
dorff space and C0(K) denotes the Banach space of all continuous real-valued
functions vanishing at infinity on K, furnished with the maximum norm; we
recall that a function f : K → R is said to vanish at infinity on K if for every
ε > 0 the set {x ∈ K : |f(x)| ≥ ε} is compact.

It is well-known that each of the above mentioned space contains an isometric copy
of c0; here we only recall an old result by Zippin [21] stating that every infinite-
dimensional L1-predual contains an isometric copy of c0. Therefore, all the results
mentioned above follow from Theorem 3.1.

It is also known that

• every subspace of C([0, 1]) of finite codimension is strictly extremal (see [3]).

This result, in turn, is a consequence of Corollary 3.4.
Finally,

• the spaces of differentiable functions C(n)([0, 1]) provided with the norm ‖
f ‖=

∑n
i=0 maxt∈[0,1] |f (n)(t)| are extremal (see [2]);

• the space C([0, 1]) renormed to be uniformly convex in every direction is
extremal (see [1]).

Observe that the above space (in fact, with any equivalent norm) contains an isomor-
phic copy of c0. Therefore, its extremality follows directly from Theorem 2.2.

To present the landscape surrounding the issue under discussion, we recall that a
Hilbert space H is not extremal and we have:

1−
2
√√

2(k + 1)

k
≤ ψH(k) ≤

(
1− 1

k

)√
k

k + 1
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(see [9] and [5]). More generally, uniformly convex spaces are not extremal (see
Theorem 20.2 in [11]). It should be emphasized here that the space `1 is also not
extremal and we have (see Example 12.5 in [10]):

ψ`1(k) ≤

{
2+
√

3
4

(
1− 1

k

)
for 1 ≤ k ≤ 3 + 2

√
3,

k+1
k+3 for k > 3 + 2

√
3.

The reader interested in the minimal displacement and related problems is referred
to the books [10], [11], [18] and papers [6], [12], [13].

We use the standard notation and terminology of Banach space theory. In partic-
ular, if A ⊂ X, then [A] stands for the closed linear span of A. The dual of X is
denoted by X∗.

2. Spaces containing an isomorphic copy of c0

A classical James’s Distortion Theorem for c0 states that whenever a Banach space
contains a subspace isomorphic to c0, then, for every ε > 0, it contains a subspace that
is (1+ε)-isomorphic to c0 (see [14]). In some cases one can even find (1+ε)-isomorphic
copies of c0 which are (1 + ε)-complemented. Indeed, Dowling, Randrianantoanina,
and Turett [8] proved the following result:

Theorem 2.1 (Theorem 6 in [8]). Let X be a Banach space whose closed unit ball in
X∗ is weak∗ sequentially compact and let ε > 0. If X contains a subspace isomorphic
to c0, then there exists a subspace Z of X and a projection P from X onto Z such that
Z is (1 + ε)-isomorphic to c0 and ‖P‖ 6 1 + ε. Moreover, if X contains a subspace
isometric to c0, then there exists a subspace Z of X such that Z is isometric to c0
and ‖P‖ = 1.

It is worth noting that the above theorem can be also concluded from the proof of
1969 Zippin’s result. Recall that Zippin [21] proved that every infinite-dimensional
L1-predual X contains an isometric copy of c0. Moreover, he showed that if we
additionally assume that X is separable, then it contains an isometric copy of c0
which is 1-complemented in X. This part of Zippin’s proof can be generalized in a
natural way to the case of spaces satisfying the assumptions of Theorem 2.1. As a
result, we obtain exactly the same construction as in [8]. For completeness, we include
the proof of the case when X contains an isometric copy of c0.

Proof. Since X contains an isometric copy of c0, there exists a sequence (xn)n∈N in
X such that ∥∥∥∥∥

∞∑
n=1

λnxn

∥∥∥∥∥ = max
n∈N
|λn|

for all (λn) ∈ c0. Put Y = [{xn : n ∈ N}] and define x∗n : Y → R by

x∗n

( ∞∑
i=1

λixi

)
= λn.

Then x∗n ∈ Y ∗ and ‖x∗n‖ = 1 for every n ∈ N. Let y∗n’s be norm one extensions of
x∗n’s to the whole space X. By our assumption, we can choose a weak∗ convergent
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subsequence
(
y∗nk

)
k∈N of (y∗n)n∈N. Let Z =

[{
xn2k

− xn2k−1
: k ∈ N

}]
. Then Z is

isometric to c0. Moreover, it is 1-complemented in X. Indeed, the formula

Px =
1

2

∞∑
k=1

((
y∗n2k

(x)− y∗n2k−1
(x)
)
xn2k

+
(
y∗n2k−1

(x)− y∗n2k
(x)
)
xn2k−1

)
defines a linear projection from X onto Z such that ‖P‖ = 1. �

By following the above reasoning in tandem with the aforementioned James’s Dis-
tortion Theorem for c0, we get the first part of Theorem 2.1.

We are now in a position to prove the following

Theorem 2.2. Let X be a Banach space whose closed unit ball in X∗ is weak∗

sequentially compact. If X contains an isomorphic copy of c0, then X is extremal,
that is,

ψX(k) = 1− 1

k

for every k ≥ 1.

Proof. Fix ε > 0. By Theorem 2.1, there exists a subspace Z of X which is (1 + ε)-
isomorphic to c0 and (1 + ε)-complemented in X. Let P denote a projection from X
onto Z with ‖P‖ ≤ 1 + ε and let φ : Z → c0 be an isomorphism such that for every
x ∈ Z we have

‖x‖ ≤ ‖φx‖ ≤ (1 + ε)‖x‖.

Choose any k ≥ 1. There exists a map T : Bc0 → Bc0 such that T ∈ L(k) and

‖x−Tx‖ > 1−1/k for every x ∈ Bc0 (see Example 1.1). Let T̂ : (1+ε)Bc0 → (1+ε)Bc0

be given by

T̂ x = (1 + ε)T

(
1

1 + ε
x

)
.

Obviously, T̂ ∈ L(k). Moreover, for any x ∈ (1 + ε)Bc0 ,

∥∥∥T̂ x− x∥∥∥ = (1 + ε)

∥∥∥∥T ( 1

1 + ε
x

)
− 1

1 + ε
x

∥∥∥∥ > (1 + ε)

(
1− 1

k

)
.

Consider now a map S : (1 + ε)BZ → (1 + ε)BZ defined by

Sx =
(
φ−1 ◦ T̂ ◦ φ

)( 1

1 + ε
x

)
.
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Then, S ∈ L(k) and for any x ∈ (1 + ε)BZ we have

‖Sx− x‖ =

∥∥∥∥φ−1T̂ φ

(
1

1 + ε
x

)
− 1

1 + ε
x− ε

1 + ε
x

∥∥∥∥
≥
∥∥∥∥φ−1T̂ φ

(
1

1 + ε
x

)
− 1

1 + ε
x

∥∥∥∥− ε
≥ 1

1 + ε

∥∥∥∥T̂ φ( 1

1 + ε
x

)
− φ

(
1

1 + ε
x

)∥∥∥∥− ε
> 1− 1

k
− ε.

Finally, let Ŝ : BX → BX be given by

Ŝx =
1

1 + ε
SPx.

Clearly, Ŝ ∈ L(k). Moreover, for any x ∈ BX ,∥∥∥Ŝx− x∥∥∥ =

∥∥∥∥ 1

1 + ε
SPx− 1

1 + ε
x− ε

1 + ε
x

∥∥∥∥
≥ 1

1 + ε
‖SPx− x‖ − ε

1 + ε

≥ 1

(1 + ε)2
‖SPx− Px‖ − ε

1 + ε

>
1

(1 + ε)2

(
1− 1

k
− ε
)
− ε

1 + ε
.

Letting ε→ 0 we conclude that X is an extremal space. �

Remark 2.3. The above result significantly improves Proposition 2.4 in [4], which
states that

ψX(k) ≥ 1

2
− 1

k
, k ≥ 1,

for every separable Banach space X containing an isometric copy of c0.

It is a known fact that any infinite-dimensional subspace of c0 contains a further
subspace that is isomorphic to c0 (see e.g. Theorem 6 in [7], where a stronger result
is proved). Hence, by applying Theorem 2.2, we obtain the following

Corollary 2.4. Let X be a Banach space whose closed unit ball in X∗ is weak∗

sequentially compact. If X contains an isomorphic copy of c0, then every subspace of
X of finite codimension is extremal.

3. Spaces containing an isometric copy of c0

In this section we investigate in more details the case when a Banach space contains
an isometric copy of c0.

Theorem 3.1. Let X be a Banach space whose closed unit ball in X∗ is weak∗ se-
quentially compact. If X contains an isometric copy of c0, then X is strictly extremal.
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Proof. It is enough to follow the proof of Theorem 2.2 with ε = 0. �

Perhaps the following lemma is known, but we were not able to find a suitable
reference.

Lemma 3.2. Every subspace of c0 of finite codimension contains an isometric copy
of c0.

Proof. For x = (x(1), x(2), . . . ) ∈ c0 we put

supp x = {i ∈ N : x(i) 6= 0} .

Let (xn)n∈N be a sequence in c0 such that:

(1) supp xn is finite for every n ∈ N,
(2) max supp xn < min supp xn+1 for every n ∈ N,
(3) ‖xn‖ = 1 for every n ∈ N.

Obviously, [{xn : n ∈ N}] is isometric to c0. Take any non-zero functional

f = (f(1), f(2), . . . ) ∈ `1 = c∗0.

Let

A =

{
n ∈ N : f(xn) =

∞∑
i=1

f(i)xn(i) = 0

}
.

We have two cases.
Case 1. The set A is infinite. Then [{xn : n ∈ A}] ⊂ ker f is isometric to c0.
Case 2. The set A is finite. W.L.O.G. we can assume that A is empty. Since

limn→∞ f(xn) = 0, there exist a subsequence (xnk
)k∈N of (xn)n∈N and a sequence

(λk)k∈N ⊂ [−1, 1] such that

f(xn2k
) = λkf(xn2k−1

)

for k ∈ N. Observe that the sequence
(
xn2k

− λkxn2k−1

)
k∈N satisfies (1), (2), (3), and[{

xn2k
− λkxn2k−1

: k ∈ N
}]
⊂ ker f is isometric to c0.

Now, if Y is a subspace of c0 of codimension m, we begin with a sequence (xn)n∈N
defined as xn = en for n ∈ N, where en = (0, . . . , 0, 1, 0, 0, . . . ) and 1 appears in the
n-th position. Then, by applying the above procedure m times, we conclude that Y
has a subspace isometric to c0. �

As noted on page 387 in [7], there is an infinite-dimensional subspace of c0 which
does not contain an isometric copy of c0. Thus, Lemma 3.2 can be considered as the
optimal result of this type.

Corollary 3.3. If a Banach space X contains an isometric copy of c0, then every
subspace of X of finite codimension contains an isometric copy of c0.

Proof. Let Z be a subspace of X isometric to c0 and let Y be a subspace of X of
finite codimension. Since Z ∩ Y is a subspace of Z of finite codimension, it contains
an isometric copy of c0 by Lemma 3.2. �
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Corollary 3.4. Let X be a Banach space whose closed unit ball in X∗ is weak∗

sequentially compact. If X contains an isometric copy of c0, then every subspace of
X of finite codimension is strictly extremal.

Proof. It follows from Corollary 3.3 and Theorem 3.1. �

4. Questions

We finish our paper with two open problems.

1. In [19], it is proved that there exists a bounded, closed and convex set C ⊂ c0 with
the Chebyshev radius r(C) = 1 such that for every k ≥ 1 there is a k-contractive
map T : C → C such that ‖x−Tx‖ > 1−1/k for any x ∈ C; recall that T is called
k-contractive if ‖Tx− Ty‖ < k‖x− y‖ for all x 6= y. A natural question that still
remains unanswered is whether Bc0 has this property.

2. We do not know if the assumption of weak∗ sequential compactness of the closed
unit ball in X∗ in Theorem 2.2 can be removed. In particular, it is unknown
whether the space `∞ is extremal.
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