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1. Introduction

It was a turning point in the literature of metric fixed point theory when Browder
[12] and Göhde [16] independently but simultaneously proved a fixed point result (in
1965), which states that every nonexpansive mapping defined on a nonempty closed
convex and bounded subset of a uniformly convex Banach space admits a fixed point.
This is one of the most fundamental results in the theory of nonexpansive mappings.
This result was further improved and enriched by Kirk [19] to a reflexive Banach space
equipped with a normal structure which is not the point of discussion in the present
paper. Thereafter, Goebel and Kirk [15] enlarged the class of nonexpansive mappings
by introducing the class of asymptotically nonexpansive mappings and obtained a
classical result for such mappings in a uniformly convex Banach space. In 2018,
Alfuraidan and Khamsi [6] extended the Goebel and Kirk fixed point theorem for
asymptotically nonexpansive mapping [15] to the case of monotone mappings in a
Banach space M endowed with the partial order ‘�’. For an extensive study of
fixed point theorems for various monotone nonexpansive mappings, one may consult
[5, 8, 9, 11, 14, 18] and the references cited therein. With the same spirit as Alam
and Imdad [3], very recently Alam et al. [2] proved a relation-theoretic analog of the
fixed point theorems of Browder [12] and Göhde [16] for R-nonexpansive mappings
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using a transitive binary relation which indeed generalize and extend the result of Bin
Dehaish and Khamsi [11] for monotone nonexpansive mappings.

Definition 1.1. [7] let (M, ‖ · ‖,�) be a partially ordered Banach space. A mapping
S : D(S) ⊆M →M is called

• monotone if S(r) � S(s) for all r, s ∈ D(S) with r � s,
• monotone nonexpansive if S is monotone and ‖S(r)− S(s)‖ ≤ ‖r− s‖ for all
r, s ∈ D(S) with r � s,

where, D(S) denotes the domain of the mapping S.

Clearly, a monotone nonexpansive mapping need not be continuous.

Definition 1.2. [7] Let (M,�) be a partial ordered set. For any r, s ∈M , the subsets

[a,→) = {r ∈M : a � r}
and

(←, b] = {r ∈M : r � b}
are called order intervals with initial point a and with end point b, respectively.

Also, the order intervals are closed and convex in a Banach lattice (cf. [22]).

Definition 1.3. [10] A Banach space (M, ‖ · ‖) is called uniformly convex if for every
ε > 0 there is a δ > 0 such that for any r, s ∈M with

‖r‖ ≤ 1, ‖s‖ ≤ 1, ‖r − s‖ ≥ ε

=⇒ 1

2
‖(r + s)‖ ≤ 1− δ.

Example 1.1. Euclidean space Rn is uniformly convex with Euclidean norm

‖r‖ =

(
n∑

i=1

r2i

) 1
2

,

while, under the norm ‖r‖ =
n∑

i=1

|ri|, it is not uniformly convex.

Now, we mention the following result of Alfuraidan and Khamsi [6], which is an
improvement over a corresponding fixed point result of Goebel and Kirk [15] proved
for monotone asymptotically nonexpansive mappings.

Theorem 1.1. [6] Let (M, ‖ · ‖,�) be a partially ordered uniformly convex Banach
space such that order intervals are convex and closed. Let K be a nonempty bounded
closed convex subset of M not reducible to a single point. Assume there exists r0 ∈ K
such that r0 and S(r0) are comparable, where S is a continuous monotone asymptot-
ically nonexpansive self-mapping on K. Then S admits a fixed point.

Very recently, using the Baire category approach, Reich and Zaslavski [21] have
shown that the fixed point problems for various types of monotone nonexpansive
mappings are well-posed.
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In this paper, we have obtained an illustrative example for asymptotically R-
nonexpansive mapping which is not an asymptotically nonexpansive in a Banach
space. Thereafter, as a main result we have established a sharpened version of Theo-
rem 1.1 in respect of the following observations:

• The partial ordering to endow on whole space M is not necessary, it is enough
to consider a transitive binary relation only on K.
• No need to use the assumption that all order intervals in M are convex and

closed. It suffices that order intervals in K are convex and closed.
• Boundedness of K must be replaced by a weaker assumption, boundedness of

orbit of r0.

An example is also provided to demonstrate the genuineness of our main result over
corresponding relevant known results. Also, at the end, we have provided yet another
fixed point result in order to replace the continuity condition of the involved mapping
by an alternative suitable condition, namely R-weak Opial condition.

2. Relation-theoretic notions

Throughout this manuscript, N and N0 denote the sets of natural numbers and
whole numbers, respectively (i.e., N0 = N ∪ {0}). In this section, to make our
exposition self-contained, we recall some basic definitions, notions related to binary
relations, which will be utilized to prove our main results.

A binary relation on a nonempty set M is a subset R of M2 (i.e., R ⊆M2 := M ×
M). Trivially, M2 and ∅ being subsets of M2 are binary relations on M , often called
the universal relation (or full relation) and empty relation, respectively. Throughout
this paper, R stands for a nonempty binary relation. For the sake of simplicity, we
often write ‘binary relation’ instead of ‘nonempty binary relation’.

Definition 2.1. [17] Let R a binary relation on a nonempty set M .

(i) The inverse (or transpose/dual relation) of R, denoted by R−1, is defined by
R−1 := {(r, s) ∈M2 : (s, r) ∈ R}.

(ii) The symmetric closure of R, denoted by Rs, is defined to be the set R ∪R−1
(i.e., Rs := R ∪ R−1). Clearly, Rs is the smallest symmetric relation on M
containing R.

Definition 2.2. [3] Let R be a binary relation on a nonempty set M and r, s ∈ M .
We say that r and s are R-comparable if either (r, s) ∈ R or (s, r) ∈ R. We denote
it by [r, s] ∈ R.

Proposition 2.1. [3] For a binary relation R on a nonempty set M ,

(r, s) ∈ Rs ⇐⇒ [r, s] ∈ R.

Definition 2.3. [3] Let M be a nonempty set and R a binary relation on M . A
sequence {rn} ⊂M is called R-preserving if

(rn, rn+1) ∈ R ∀ n ∈ N0.
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Definition 2.4. [3] Let M be a nonempty set and S : M →M . A binary relation R
on M is called S-closed if for all r, s ∈M ,

(r, s) ∈ R ⇒ (Sr, Ss) ∈ R.

Proposition 2.2. [4] Let R a binary relation on a nonempty set M and S a self-
mapping on M . If R is S-closed, then, for all n ∈ N0, R is also Sn-closed, where Sn

denotes nth-iterate of S.

Definition 2.5. [1, 2] Let R be a binary relation on a nonempty set K, the image
of an element a ∈ K(associated with binary relation R) is a subset of K defined by

Im(a,R) = {r ∈ K : (a, r) ∈ R or r = a}.
Similarly, the pre-image of a ∈ K is a subset of K defined by

PreIm(a,R) = {r ∈ K : (r,a) ∈ R or r = a}.
These subsets of K based on point a ∈ K are called R-intervals.

Remark 2.1. [2, 1] The following conclusions are obvious.

• Im(a,R) = PreIm(a,R−1),

• PreIm(a,R) = Im(a,R−1),

• Im(a,Rs) = PreIm(a,Rs).

Remark 2.2. The following implications also hold. The proofs are straightforward
in view of Definition 2.5.

(i) If x ∈ Im(a,R) ⇐⇒ a ∈ Im(x,R−1),
(ii) If x ∈ PreIm(a,R) ⇐⇒ a ∈ PreIm(x,R−1),

(iii) If x ∈ Im(a,Rs) ⇐⇒ a ∈ Im(x,Rs).

Remark 2.3. Under R :=� (partial ordering), Im(a,R) and PreIm(a,R) coincide
with order intervals [a,→) and (←,a], respectively.

It is a well-established fact that the Lipschitzian mappings play a significant role
in the existence and uniqueness of solutions for ordinary differential equation and
have nice topological behavior (such as: uniform continuity). Here, we introduce the
notion of R-Lipschitzian mappings in a metric space.

Definition 2.6. Let (M,d) be a metric space and R a binary relation on M . A
mapping S : M →M is called R-Lipschitzian if

(i) R is S-closed,
(ii) there exists α ≥ 0 such that

d(Sr, Ss) ≤ αd(r, s).

for all r, s ∈M with (r, s) ∈ R.

Remark 2.4. The following conclusions are obvious.

(i) Under universal relationR = M2, the notion ofR-Lipschitzian mapping reduces
to Lipschitzian mapping.

(ii) R-Lipschitzian mapping need not necessarily be continuous.
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(iii) If we choose R to be partial ordering (i.e., R :=�) on M , then we obtain the
notion of monotone Lipschitzian mappings (cf. [6]).

Now, we give the definition of asymptotically R-nonexpansive mappings in metric
space.

Definition 2.7. Let (M,d) be a metric space and R a binary relation on M . A
mapping S : M →M is said to be asymptotically R-nonexpansive if

(i) R is S-closed,
(ii) there exists a sequence of positive numbers {αn}n∈N such that lim

n→∞
αn = 1 and

d(Sn(r), Sn(s)) ≤ αnd(r, s)

for all r, s ∈M with (r, s) ∈ R.

Remark 2.5. The following are some immediate conclusions.

(i) If we choose R to be partial ordering (i.e., R :=�) on M in Definition 2.7, then
we obtain the notion of monotone asymptotically nonexpansive mappings (cf.
[6]).

(ii) Trivially, every asymptotically nonexpansive mapping is asymptotically R-
nonexpansive, but the converse need not be true in general. The below example
in a Banach space consideration substantiates this fact.

Example 2.1. Let M = (l2, ‖ · ‖2), the space of all absolute square summable se-
quences and K := {r ∈ l2 : ‖r‖2 ≤ 1

3} ∪ {e1} ⊂ l2, wherein e1 := (1, 0, · · · , 0, · · · ).
Consider S : K → K such that

S(r1, r2, r3, · · · ) = (0, r21, c2r2, c3r3, · · · ),
where 0 < ci < 1 such that

∏∞
i=2 ci = 1. Now if we consider a binary relation R on

M as follows:

R := {(r, s) ∈ R ⇐⇒ ‖r − s‖2 ≤
1

3
, ∀ r, s ∈M}.

Then for any (r, s) ∈ R we have ‖S(r) − S(s)‖2 ≤ ‖r − s‖2 ≤ 1
3 , implying that R is

S-closed. Also, for any (r, s) ∈ R it is easy to observe that

‖Sj(r)− Sj(s)‖2 ≤ ‖r + s‖2
j∏

i=2

ci‖r − s‖2 ≤ αi‖r − s‖2,

wherein αi =
∏j

i=2 ci and limi→∞ αi = 1. Hence, S is asymptotically R-nonexpansive
mapping. However, for any r ∈ K with ‖r‖2 ≤ 1

3 and s = e1, we get

‖Sj(r)− Sj(e1)‖2 ≤ ‖r + e1‖2
j∏

i=2

ci‖r − e1‖2 ≤ βi‖r − e1‖2,

where βi = 4
3

∏j
i=2 ci 9 1(as i → ∞). This shows that S is not asymptotically

nonexpansive.

For the sake of simplicity, we record a well-known results due to Smulian [23],
which characterizes reflexivity of the underlying Banach space.
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Lemma 2.1. [23] A Banach space M is reflexive iff every decreasing sequence {An}
of nonempty bounded, closed and convex subsets of M have nonempty intersection,
i.e.,

⋂∞
n=0An 6= ∅.

Definition 2.8. [11] Let (M, ‖ · ‖) be a Banach space, K ⊆M and {rn} a bounded
sequence in K. Then a function τ : K → [0,∞) defined by

τ(r) = lim sup
n→∞

‖rn − r‖ ∀r ∈ K,

is called a type function generated by {rn}.

The following lemma is crucial in our main result. Although the root of this lemma
can be traced out in the work of Edelstein [13]. However, detailed and systematic
proof can be found in the recent work of Alfuraidan and Khamsi [6].

Lemma 2.2. Let K be a nonempty, closed and convex subset of a uniformly convex
Banach space (M, ‖ · ‖) and τ : K → [0,∞) a type function. Then τ has a unique
minimum point x ∈ K such that

τ(x) = inf{τ(r) : r ∈ K} = τ0.

Moreover, if {xn} is a minimizing sequence in K, (i.e., limn→∞ τ(xn) = τ0) then
{xn} converges (strongly) to x.

3. Main result

Since the main result of this paper is aimed to obtain in a Banach space, we mention
analogous relation-theoretic variant of asymptotically nonexpansive mappings in a
Banach space (M, ‖ · ‖) for the sake of convenience.

Definition 3.1. Let K be a subset of Banach space (M, ‖·‖) and R a binary relation
on K. A mapping S : K → K is said to be asymptotically R-nonexpansive if

(i) R is S-closed,
(ii) there exists a sequence of positive numbers {αn}n∈N such that lim

n→∞
αn = 1 and

‖Sn(r)− Sn(s)‖ ≤ αn‖r − s‖
for all r, s ∈M with (r, s) ∈ R.

Now, we present relation-theoretic variant of Goebel and Kirk fixed point theorem
for asymptotically nonexpansive mappings (see [15]) under a transitive binary relation.
We essentially adopt similar approaches which appeared in the works of Alam et al.
[2] and Alfuraidan-Khamsi [6].

Theorem 3.1. Let (M, ‖·‖) be a uniformly convex Banach space and K a nonempty,
closed and convex subset of M not reducible to a single point. Let R be a transitive
binary relation on K and S : K → K an asymptotically R-nonexpansive mapping. If
there exists r0 ∈ K such that

(i) S(r0) ∈ Im(r0,R),
(ii) Im(Sn(r0),R) is nonempty, closed and convex for each n ∈ N0,

(iii) {Sn(r0)} is bounded,
(iv) S is continuous,
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then S admits a fixed point.

Proof. By assumption, choose r0 ∈ K such that S(r0) ∈ Im(r0,R) which implies that
(r0, S(r0)) ∈ R. Hence, using S-closedness of R and Proposition 2.2, we obtain

(Sn(r0), Sn+1(r0)) ∈ R, ∀n ∈ N0 (1)

i.e.,

Sn+1(r0) ∈ Im(Sn(r0),R).

In view of assumption (ii), for each n ∈ N0, An := Im(Sn(r0),R) is a closed and
convex subset of M . Then {An} is bounded as {Sn(r0)} is bounded (by assumption
(iii)). Clearly, {An} is decreasing i.e., An ⊃ An+1, for all n. Hence, {An} is a bounded
decreasing sequence of closed and convex subsets of M. Also, being uniformly convex,
the Banach space M is reflexive. Therefore, using Lemma 2.1, we get

A :=

∞⋂
n=0

Im(Sn(r0),R) 6= ∅.

Take r ∈ A, then (Sn(r0), r) ∈ R for each n ∈ N0. Using S-closedness of R, we obtain

(Sn+1(r0), S(r)) ∈ R. (2)

Using (1), (2) and transitivity of R, we deduce

(Sn(r0), S(r)) ∈ R, ∀n ∈ N0,

which yielding hereby

S(A) ⊆ A. (3)

By assumption (iii), {Sn(r0)} is bounded. Now, consider the type function τ : M →
[0,∞) generated by {Sn(r0)}, i.e.,

τ(r) = lim sup
n→∞

‖Sn(r0)− r‖. (4)

Then Lemma 2.2 ensures that there exists a unique minimum point x ∈ A, i.e.,
τ(x) = inf

r∈M
τ(r) = τ0.

Also, as x ∈ A, from (3), we have Sl(x) ∈ A, for any l ∈ N. Now, using (4), we obtain

τ(Sl(x)) = lim sup
n→∞

‖Sn(r0)− Sl(x)‖ = lim sup
n→∞

‖Sn+l(r0)− Sl(x)‖. (5)

Since x ∈ A, we get (Sn(r0), x) ∈ R. Hence, by S-closedness of R and Proposition
2.2, we deduce

(Sn+l(r0), Sl(x)) ∈ R. (6)

Using (6) and asymptotically R-nonexpansiveness of S, we obtain

‖Sn+l(r0)− Sl(x)‖ ≤ αl‖Sn(r0)− x‖, (7)

where, {αl}l∈N is given by condition (ii) of Definition 3.1 such that lim
l→∞

αl = 1.

Therefore, Equations (5) and (7) yielding hereby

τ(Sl(x)) ≤ αl lim sup
n→∞

‖Sn(r0)− x‖ = αl · τ0,



596 MD HASANUZZAMAN AND MOHAMMAD IMDAD

implies that τ0 ≤ τ(Sl(x)) ≤ αl · τ0, for every l ∈ N. Consequently, by the squeeze (or
sandwich) theorem of limits, we obtain

lim
l→∞

τ(Sl(x)) = τ0.

Which shows that {Sl(x)}l∈N is a minimizing sequence of τ . Again, by using Lemma
2.2 we conclude that {Sl(x)}l∈N converges to x.
Now, if S is continuous then

lim
l→∞

S(Sl(x)) = lim
l→∞

Sl+1(x) = S(x).

Owing to the uniqueness of limit, we obtain S(x) = x, i.e., x is a fixed point of S. �

We adopt the following example to demonstrate the genuineness of our main result
over corresponding relevant known results.

Example 3.1. Let M = (l2, ‖ · ‖2), the space of all absolute square summable se-
quences and K := {r ∈ l2 : ‖r‖2 ≤ 1

3} ∪ {e1} ⊂ l2, wherein e1 := (1, 0, · · · , 0, · · · ).
Define S : K → K by

S(r) = S(r1, r2, r3, · · · , rn, · · · ) = (c1r1, r
2
1, c2r2, c3r3, · · · , cnrn, · · · ),

where 0 < ci < 1 such that
∏∞

i=1 ci = 1. Now, we consider a binary relation R on M
as follows:

R :=
{

(r, s) ∈ R ⇐⇒ “‖r − s‖2 ≤
1

3
and r ≺ s”, ∀ r, s ∈M

}
, (8)

where, r = (r1, r2, r3, · · · , rn, · · · ), s = (s1, s2, s3, · · · , sn, · · · ).
Define r ≺ s by “r ≺ s ⇐⇒ ri < si, for all i”. Then, for any (r, s) ∈ R we have
‖S(r) − S(s)‖2 ≤ ‖r − s‖2 ≤ 1

3 , and r ≺ s i.e., ri < si for all i. Now, by definition
of S, we get S(r) ≺ S(s) so that R is S-closed. Also, for any (r, s) ∈ R it is easy to
observe that

‖Sj(r)− Sj(s)‖2 ≤ ‖r + s‖2
j∏

i=1

ci‖r − s‖2 ≤ αi‖r − s‖2,

wherein αi =
∏j

i=1 ci and limi→∞ αi = 1. Hence, S is asymptotically R-nonexpansive
mapping. Observe that the binary relation R defined by (8) is not a partial order
on M due to the absence of reflexivity and hence, the given mapping S is not a
monotone asymptotically nonexpansive mapping. Therefore, one can not use the
results of [6] in the context of present example whereas our main result is applicable
which substantiates the utility of our newly proved result. On the other hand, observe
that for any r ∈ K with ‖r‖2 ≤ 1

3 and s = e1, we get

‖Sj(r)− Sj(e1)‖2 ≤ ‖r + e1‖2
j∏

i=1

ci‖r − e1‖2 ≤ βi‖r − e1‖2,

where βi = 4
3

∏j
i=1 ci 9 1(as i → ∞). This shows that S is not asymptotically

nonexpansive as well.
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4. Result involving τ-Opial condition and binary relation

Throughout this section we assume that K is nonempty bounded and convex subset
ofM not reducible to one point. Let S : K → K be an asymptoticallyR-nonexpansive
mapping. Now, we recall the definition of τ -Opial condition [20] and also define
relation-theoretic analog of the same, which play a crucial role in the forthcoming
result.

Definition 4.1. [20] A Banach space M is said to satisfy the τ -Opial condition if for
any sequence {rn} ⊂M τ -converges to r, we have

lim sup
n→∞

‖rn − r‖ < lim sup
n→∞

‖rn − s‖

for any s ∈M such that s 6= r.

Definition 4.2. Let R be a binary relation on (M, ‖·‖), then M is said to be satisfied
R-τ -Opial condition if whenever any R-preserving sequence {rn} in M τ -converges
to r, we have

lim sup
n→∞

‖rn − r‖ ≤ lim sup
n→∞

‖rn − s‖

for any s ∈M such that (r, s) ∈ R.

Remark 4.1. An analogous definition can also be obtained for R-reversing sequence
(i.e., {rn} is a sequence such that (rn+1, rn) ∈ R, ∀n ∈ N0).

If we consider τ to be the ‘weak topology’ then we have the following immediate
consequence.

Definition 4.3. Let R be a binary relation on (M, ‖ · ‖), then M is said to satisfy
R-weak Opial condition if whenever any R-preserving sequence {rn} in M weakly
converges to r, we have

lim sup
n→∞

‖rn − r‖ ≤ lim sup
n→∞

‖rn − s‖

for any s ∈M such that (r, s) ∈ R.

Now, we utilize the notion of R-weak Opial condition in order to relax the conti-
nuity condition of the involved mapping S in Theorem 3.1.

Theorem 4.1. Let (M, ‖·‖) be a uniformly convex Banach space and K a nonempty,
closed and convex subset of M not reducible to a single point. Let R be a transitive
binary relation on K and S : K → K an asymptotically R-nonexpansive mapping. If
there exists r0 ∈ K such that

(i) S(r0) ∈ Im(r0,R),
(ii) R-intervals (nonempty) are closed and convex,

(iii) {Sn(r0)} is bounded,
(iv) M satisfies R-weak Opial condition,

then S has a fixed point.
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Proof. As proceed in Theorem 3.1, by our assumption we get an R-preserving
bounded sequence {Sn(r0)} ⊂ K. As the underlying space M is reflexive, the se-
quence {Sn(r0)} converges weakly to some point (say r∗) in K, i.e., Sn(r0) ⇀ r∗

such that r∗ ∈ Im(Sn(r0),R), for any n ∈ N. Now, since M enjoys R-weak Opial
condition, we have

lim sup
n→∞

‖Sn(r0)− r∗‖ ≤ lim sup
n→∞

‖Sn(r0)− z‖,

for any z ∈ K̂ := K ∩ Im(r∗,R). Clearly, K̂ is a nonempty closed and convex subset
of K due to assumption (ii). Therefore, if we consider the type function generated
by {Sn(r0)}, then Lemma 2.2 ensures that r∗ is the desired unique minimum point in

K̂. In a similar fashion, as we have already done in the proof of Theorem 3.1, we also
obtain {Sl(r∗)}l∈N converges strongly to r∗. Next, our aim is to show (r∗, S(r∗)) ∈ R.
As Sn(r0) ∈ Im(r∗,R−1) ∩ K for every n ∈ N , the S-closedness of R implies that
Sn+1(r0) ∈ Im(S(r∗),R−1) ∩ K. Now the weak-limit r∗ of {Sn+1(r0)} also lies in
the set Im(S(r∗),R−1) ∩ K, due to its convexity and closedness property. That is
r∗ ∈ Im(S(r∗),R−1) ∩ K =⇒ (r∗, S(r∗)) ∈ R. Thus, {Sn(r∗)} is an R-preserving
sequence that converges to r∗ such that (r∗, S(r∗)) ∈ R. SinceR is transitive, S-closed
and S is asymptotically R-nonexpansive mapping, we assert that

0 ≤ ‖S(r∗)− r∗‖ ≤ α1‖r∗ − Sl(r∗)‖+ ‖Sl+1(r∗)− r∗‖,

for any l ∈ N. Therefore, taking the limit (as l→∞), we get S(r∗) = r∗. This shows
that S admits a fixed point. �

5. Conclusion

In this paper we introduced the notion of asymptoticallyR-nonexpansive mappings
and proved some fixed point results for such mappings on a subset K of a uniformly
convex Banach space equipped with a transitive binary relation R. Our main result
(i.e., Theorem 3.1) is indeed a relation-theoretic variant of Goebel and Kirk fixed
point theorem for asymptotically nonexpansive mappings (see [15]). We also have
provided an example of asymptotically R-nonexpansive mapping which is not mono-
tone asymptotically nonexpansive in a Banach space. Since, a directed graph or a
partial order ‘�’ can be realized as a specific binary relation, we can easily deduce
corollaries for such consideration from our main results (i.e., Theorems 3.1 and 4.1).

Acknowledgment. Both the authors are thankful to all the anonymous referees for
constructive and fruitful comments which led to several improvements, especially the
addition of Example 3.1.
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