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Abstract. The study of the coagulation-fragmentation model has provided insights into various en-
gineering and scientific disciplines. However, the characteristics of particle ensembles are determined
by multiple parameters in a multidimensional parameter space, including mass, volume, porosity,
binder content, enthalpy, mole number, and more. This work focuses on establishing the existence of
a continuous solution for the higher dimensional model, subject to certain restrictions on the kernels.
Additionally, the conservation of volume of the solution are investigated. The results are derived
based on the compactness result of Arzela-Ascoli and the Banach contraction mapping principle.
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1. INTRODUCTION

The population balance model incorporating coagulation and fragmentation phe-
nomena in the particulate process is a well-established topic due to their generous
impact in many scientific and engineering disciplines, namely, pharmaceuticals re-
search, physical sciences, atmospheric engineering, astronomical disciplines etc. The
population balance models are the mean-field model of desired properties for a pop-
ulation of particles subjected to different processes that result in the formation and
disappearance of particles. In the one-dimensional population balance equation time
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evolution of the particle depend only on one property of the particle. To characterize
the particle, though, additional distributed features (in a variety of physical situations
like polymer degradation, combustion, grinding of minerals, fluidized bed agglomera-
tion, or pharmaceutical processes) are frequently required. Thus, a multidimensional
framework is prerequisite to describe the particle distribution function properly.

1.1. Mathematical description of the problem. In industrial plants and other
sectors, particles (in dispersed media, batch crystallization, thermodynamic systems,
etc.) are commonly characterized by multiple internal properties. These properties
may include mass, volume, porosity, binder content, enthalpy, mole number, and more.
[21, 16]. Denoting & = (z1,z2,...,24) € R‘i as the property characteristics vector,
we define Z6 i = (1 —y1,%2 — Y2, ..., Ta —Ya), LY = (1 + y1, T2 + Y2, .., Ta +
ya) and ¥ ® § = (x1y1, Tay2, T3Ys, .., Tayd). Also, & < ¥ implies z; < y; for all
i = 1,2,...,d. With these notations, the mathematical form of the multidimension
coagulation fragmentation model (multi-D CFM) is the following;:

6T _ /K D7 D) dj - ftx/ K(@f(t9)dj

+ / WS @) (1) 47 — S(@)f(t.7), (11)

T

supported with the initial data

f(0,2) = fo(¥) = 0. (1.2)
In the preceding model,

e f(t, ) is the particle number density function characterized by the property
vector ¥ at time t > 0.

° K(f;o;’) is the rate of formation of a particle identified by Z @® Z’ from two
smaller particles characterized by Z, 2 and is symmetric with respect to its
respective characteristic argument.

e The selection function S(Z) describes the rate at which particles characterized
by Z are selected to fragment.

e The daughter distribution function b(Z|y) describes the rate at which particles
characterized by & are produced from a particle characterized by 3. Volume
conservation requires that

d Y1 Y2 Yd d
(Hyz) :/ / / (Hxi)b(xhxg,--- s Zaly1, Y2, Ya)dxg . .. drodey.
i=1 o Jo 0 i=1

Consequently, the average number of objects produced per fragmentation
(linear) event is

Y1 Y2 Yd
N(ylvaa" 7yd / / b .T1,$27"' 7xd|y17y27"' 7yd)d1}d...d$2d$1.
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Similarly, the mass conservation along the axes indicates

d Y1 Y2 Y d
<Zyz) :/ / / (in)b(xhx%‘” s Taly1, Y2, Ya)dza ... draday.
i=1 0 Jo 0 i=1

o0 oo oo
n n n
Mnl,m,,__,nd(t):/ / / g, at f(t e, xe, .., xg)dag . doody.
o Jo 0

Here the zeroth moment, My, . o(t) is proportional to the total number of particles,
whereas, the cross moment pq(t) = My 1,.1,..1(t) (1 in all the position) describes
the total hyper-volume. Hyper-volume conservation indicates that

d
— t)=20.
dtﬂl() 0

1.2. Literature review and motivation. Over the last two decades, the general
population balance model incorporating a one-dimensional coagulation fragmentation
model has had a huge growth. In this regard, the mathematical study of existence-
uniqueness result [15, 13, 10, 20], well-posedness of the solution [6], analytical so-
lution by the developed Lie group analysis method [18], self-similar behavior of so-
lution [4], stability and equilibrium criterion of the solution [14, 11, 7], large time
asymptotic dynamics [12, 3|, development of numerical techniques [19, 23], stochastic
interpretation of solution [8] are of great interests. Recently, the numerical solution of
multi-dimensional pure coagulation or pure fragmentation or combined problem have
attracted many researchers [24, 23]. There is another circumstance where mother
particle break into only two daughter particles in a linear breakage process [17]. In
this case the corresponding model equation considered as
g oo xT

D ot [ rG-sorepag- fe [ FE-goag 03
In the above model (1.3), the fragmentation kernel F(Z; §) is the rate of fragmentation
of an object with volume characterized by [(z1 + v1), (2 +y2), ... (z4 + ya4)] into two
objects characterized by (x1,...,24), (y1,-.-,ya4). It is shown that the model (1.3) is
a particular case of (1.1) for pure linear pure fragmentation case (coagulation kernel
is considered to be zero there) by

29F (21, ..., Ta; Y1 — X1y, Yd — Tq)

S(yla"'ayd) .
It is pertinent to mention that literature reveals only few mathematical investigations
have been presented for the coagulation-fragmentation process with more than one
degrees of freedom [1, 2] and also on collisional breakage problem [20]. These circum-
stances are motivated us to a brief mathematical study on multi-dimensional problem.
The dynamics of coagulation-fragmentation model in the space inhomogeneous veloc-
ity fields has been a recent topic of interest to the science and engineering community,
due to its enormous applications e.g., Chemistry (reacting polymers), Physics (aggre-
gation of colloidal particles, growth of gas bubbles in solids), Industrial sectors (food
processing, mineral processing, pharmaceutics, etc.), Astrophysics (formation of stars
and planets), Meteorology (merging of drops in atmospheric clouds) etc.

b($17"'axd|y1a"~ayd): (14)
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In this context [5] considered corresponding representation by the following model

of(t, %, z)

9 +div,(v(z, 2) f(t, T, 2))

+2d/ f(t, @,z (x’@x;x)df’ff(t,f,z)/jF(f@ sxl)da, (1.5)

0

supported with the initial data,
f(0,%,2) = fo(#,2) >0, forall x; >0. (1.6)

Here v(Z, z) € R? is a known velocity of transfer of particle with properties # in the
space position z € R3.

We examine the key findings of mathematical analysis i.e., the existence of a unique
continuous solution for the multi-dimension population balance model. The article
is constructed in the following pattern. In Section 2.1 the kernels truncation and
assumptions on the kernels are considered. Section 2.2 deal with the existence of
a solution in the truncated subspace or domain whereas Section 2.3 describes the
existence of solution in the whole domain for the parameter space in a finite domain.
An exquisite physical property of Hyper-volume conservation law is shown in Section
2.3. Finally, the conclusion of this research work is given in Section 3.

2. STEP 1: EXISTENCE OF SOLUTION

2.1. The kernels truncation. Using the truncation idea of [9, 22], we show that
solution of (1.1)-(1.2) exists for the “cut-off” kernels K5, Sy, bi and (5 respectively,
where

oL K(Z,), when0<x;+y; <ng, ii=(ny,ng,...,ng) € N?
K (Z,9) = (9) ( ) (2.1)
0, elsewhere.
r h < z; < ng,
(@) = S(Z), when0<uz;<n (2.2)
0, elsewhere,

and,

) - bj?ja Whenog.fi,yi,ZiSni,

bty = { 1) (23)
0, elsewhere.
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For the truncated kernel, f7 is the solution of the following equation

corresponding truncated initial data is as follows

fo(f)a 0§$7§n77
0, T; > Ny

ﬁ&m=ﬁ@={

In the next, we introduce some spaces. To do this, let’s define the strip
P(T,X)={(t,7): 0<t <T,0 < 2; <X},

where T and X; are finite real numbers. We denote F(T') as the set of continuous
functions with the following norm

IfIl = b /: [ +z)lf ¢, %) d7 < 0.

Denote F7(T) as the set of all continuous functions f over the truncated domain with
the following bounded norms

1 = sup / T+ 2l (t,7)] 47 < oo.
0<t<T J§

In the next, F7(T) indicates the cone of the non-negative functions in F(T').

Assumptions: Let us assume the following restriction on the kernels to prove the
desired result:

(A1) The coagulation kernel K (7, ) is non-negative continuous functions on R% x
R4 and
K(Z,9) = K(4, 7).
(A2) The kernels S(7) and b(Z|§) are continuous, non-negative on R} and R} xR,

respectively.
(A3) The coagulation kernel satisfies the following,

d
K(Z§) < k[ [+ )1 + ),

i=1

where k is a positive constant.
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(A4) For some positive constant Sp, selection function satisfies the following con-
dition:

d
S(@) < 8 [ i
=1

(A5) The breakage function satisfies the following condition
lim  sup b(Z,y) < bV 0 < T <y <D,

Y00 ge(F,72]
and b is a constant.
2.2. Local existence of solution.

Theorem 2.1. If the kernel conditions (A1-A5) and the initial condition fo(Z) €
F+(0), then for each n;, the problem (2.4), (2.5) possesses a unique solution f" in
F(T) with f*(t,Z) >0, for0 < x; < n; andt € [0,T]. Also, the volume conservation
law holds, i.e.,

[nffﬁ(t,f)df:[onifﬁ(O,f)df, for0<t<T. (2.6)
0 0

Proof. The truncated problem (2.4) can be reformulated in the following equivalent
form

) _ _ _ B}
5 [exp(J(f™,t, &) f"(t,Z)] = exp(J(f",t, &) E(t,Z, f") (2.7)
where . .
J ﬁ v = ﬁ _” i " b y 7] ﬁ .
hed)= [ [ Kat@ i+ e s 23)
and
B3 %) = 3 [ K@ e g e ) g
+ [ @RS @ fatt.5) (2.9)
Integrating from 0 to ¢, we obtain
f(t,@) = C(fM)(t, 7) (2.10)
where

CU™)(t7) = [ exp(—I (71, 2))
4 / exp{—[J(f7.t,%) — J(f7, 5, )]} E(s., 7, {7)ds. (2.11)

In order to prove the main result, we go through some Lemmas. To do this, we shall
focus on the contraction mapping principle for the operator C' on some interval [0, to],
for some to > 0. Let L = || f§||(1 + N;T [[,(1 + n;)n;) and choose #',#” > 0 such that

exp(2Mt(L + 1)) [1 +t<]\24L + NSy H(l + nz)ﬂ <2for0<t<t,
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and

exp(Mt(L+ 1))

LMt + Mt? (A;B + NS, L H(l + ni)> + tSIN, H(l + ;)
<1, for0<¢<t" Z Z (2.12)
Lemma 2.2. For f,g € F™(ty) we have for 0 < s <t <ty and 0 < z; < n;,
[H{(t,5,2)] < M(t = s)[|f = gl|” exp{BM(t - s)} (2.13)

where H(t,s, @) = exp{—[J(f,t,Z) — J(f,s,%)]} — exp{—[J(g,t,%) — J(g,s,Z)]} and
B = max{|[f[|", |g]I" }.

Proof. For the operator D we assume, J(g,t,Z) — J(g,s, %) < J(f,t,Z) — J(f,s,T).
Therefore we have,

|H(t,8,f)‘ - *H(t, Saf) = exp{i[‘](gataf) - J(ga Saf)]}
X {1 - exp{_[‘](fatvf) - J(fvsaf) - [J(gatvf) - J(ga S,f)“}} (214)

Since > 1 — exp(—) in the range x > 0 we note that,

[H(t, s, Z)| < exp{—[J(g,1,%) — J(g,5,Z)]}
X{J<f7t7f)_J(fvsf)_[ (gvt f) ( S, )]}

< exp{~[T(9.1,7) — T(g.5, D)} x / / o ) — gl §)dgidr

<exp{// K (%) Tyj)dgde}XM(t—s)Hf—gHﬁ

< M(t—s)||f — gll" exp{(t — s)BM}. (2.15)

It J(f, ¢, %) — J(f,s,Z) < J(g,t,Z) — J(g, s, T) then inequality (2.13) can be similarly
derived. (|

Lemma 2.3. The non-linear operator C maps 2 into itself, where Q is the space

Q= {f € C(0,t] x [0,7]) : sup / Hl—i—x \F(t, 7)|d7 < 2L)

0<t<to

Proof. Considering 0 < t < to and || f||” < 2L, we obtain

/6" [T+ zict, Hlaz = /0 [0+ @) f5 exp(=T(1..2)di

Ay

+/;H<1+xi>/0 exp{—[I(f,t,7) — J(f,5, D)} E(s, 7, f)dsd.  (2.16)

i

Ay
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Now,
I
A1:[ T+ 20)ff exp(—J(f,1.2) dx</ [0+ 2085 exp((f. .2z
U

Considering,

M = max{sup{S(&); € [0,7]}, sup{ K (Z,%); (£, ¥) € [0, 7], sup{b(Z|§)};

—

(#,9) € [0,7) > [0,7]}},
we obtain
Ay < | follTexp(tM (|| ] + 1))

Now, we estimate A, as,

Ay — /0 nH(l—i—asi) /O exp{~[J(f.t.7) — J(f, 5, )} E(s, . f)dsdi
Sexp(?Mt(Hf”H—&—l))/(_j /O]:[(Hxi)E(s,f,f)dsdf

et z
<eserelf1+0) [ [ Tla+a|; [ Kaldo s s e n i

+ [ 0@y ot ) ] s

Now, changing the order of integration in the second term w.r.t. £ and ¥ we obtain

. t i T 1 . .
2§€‘XP t + 5 +I1 R . 71x@y;y t;fl?@y tvy yaxr
A ()L™l 1)) (1+i) : 5 Kn(Z©G:9)f"(t, £ 0 9)f"(t,9) djdz

+H1+nz// fn(ty)dmdy]d

Therefore,
B} Mo B}
Ao < texp(0e(l 77+ 1) |5 (L7712 + s T+ ma)|

Hence,

/an [+l o)ldz
< exp(2Mt(|| f7 + 1)) {”foﬁ” - t<]\24(||fﬁ||)2 + NS H(l . n))]

< Lexp(2Mt(L + 1)) [1 + t(A;L + NS, H(1 + n))] .
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The result follows by considering,

M
exp(2Mt(L + 1)) [1 +t(2L+NlS’1 H(l —|—nl)>] <2. O
Lemma 2.4. The non-linear operator C is a contraction on (), where ) is the space

Q:={f € C([0,t) x [0,7]) : sup / HlJr:El |f(t,Z)|dT < 2L}

0<t<to

Proof. The corresponding result follows in a similar way as of [20]. We note that

CU™)(t7) = [ exp(—J (7 1, 2))
4 / exp{—[J(f7.t,%) — J(f7, 5, )|} E(s, 7, {7)ds, (2.17)

where the notations J(f7, ¢, ) and E(t,, f) are used as following
T ) / V K@, §) (s, 9)dif + sﬁ(f)] ds (2.18)
and

/ Ka(Z 0 7 9) (7 0 §) (L §)di + / ba(E19)Sa(7) f(t. §)df.
’ (2.19)

Here we recall that

H(tﬂS?f) = eXp{*[‘](fv t, f) - J(f,S,f)}} - eXp{*[J(g,t,f) - J(gas7f)]}a

therefore we obtain,
H(t7 07 f) = eXp[i‘](fa t7 f)] - exp[i‘](ga ta f)]
Hence from the definition of the operator C in (2.17), we get

t z 7
+ [ Piesa) l; | Ka@eansi.aon s e ndis | @ Ss@ i i

+/0 exp{—[J(g,t, %) — J(g,s,%)|}[B(s, 7, f) — B(s,Z,g)]ds, (2.20)

where the expression of B(s, ¥, f) is the following
B = 1f—»—»—»ﬁ—»—»ﬁ—»—'ﬁ—'—»—» -
B(s,w,f)=§ﬁ Ki(@ogy) f(t, 709 f (t,y)der/ bii (Z19) S5 (Y) fa (t, §)dy.
0 T
(2.21)

Now, to check the contraction of the operator C' on €2, we note that

/(: [+ > (C(f7) = C(g™)(t, &)di < By + Bz + Bs, (2.22)
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where the expressions of By, B, and B3 are given below

B = /0 [1+ ) fF (@ H(,0,8)dE < Mtexp(tM (B + )G g7, (2.23)

and

By :/:H(Hxi)/otF(t,s,f)

[ Y PRy N
5 [ Eal@e R g o n a7
0
+ / b (E17)Sa () fa(t, )7 | dsdF,  (2.24)

at the end

os]]
—
@
Tj
CU\
D
&
s
=
&
QU
8

Ba= [ TI0+2) [ expl-l(o.t.) ~ g, 2]}

From Lemma 2.2, we note that
|H(t,5,2)| < M(t - s)|f — gllZ expl(t — 5)BM]. (2.26)

Therefore, after simplification, we can obtain the following conclusion:

By < ME||f" — g"|| exp[tM (B + 1)]

M - _
5 (LFI7)? + NS [ £7] [[a+n)|. 227
From the expression of (2.21), we obtain

[B(s, %, f) — B(s, 7, g)]

/ Kx(Z0 79 (70 DI (L) - ¢ (t. 76 P (t, 7)]d7

+ﬁ by (2]9)S7(7) [ f7 (L, §) —gﬁ(taﬂ)]dﬁl : (2.28)
We can simplify the fist part of (2.28) in the following way

/ [I0+2) [ exp(-10.t.) ~ J(a.5.7)])

I o AT PRy = o~ A PRy Tfy =~ A Ty NI 1=
3 || Ka@O gDl (.50 DI 6.5 - 67070 g ¢, P dgdsdz
0

< 2Btexp(tM(B + 1))||f™ — ¢"||. (2.29)
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And for the last part of (2.28), we get
i ¢
| T+ [ expl-1(0,.3) - Jig..)
0 0

[ b @S @ 9) — 9a(t, s

< tSiNiexp(Mt(B +1))|[ /7 — g7 | [T (1 + ). (2.30)
Now we are in the final step to show the contraction property. We note that

/6n H(]. + l‘i)ai (C(fﬁ) - C(gﬁ))(t7f)df < By + By + B3

< |7 = gl [ BMtexp(Mt(B + 1))

3

+Mt* exp(Mt(B + 1)) (1\2432 + N/S1B H(l + nl)>

+ 18 Niexp(Mt(B + 1)) [J(1 4+ )] < hollf — ol

K2

where 0 <t <ty and
2 M,

ko = | BMtexp(Mt(B + 1)) + Mt exp(Mt(B + 1)) (23 + NS1B H(l + nz)>

+ tS1 Ny exp(Mt(B + 1)) [ (1 + ni)

BMt + Mt* (]\2432 + SB[+ ni)>

= exp(Mt(B + 1))

+SN [ +n)| < L. (2.31)

i

This is the end of the proof of the Lemma 2.4. O

Now we predict the expression of L, to do this we have obtained the following:

/ [T +077. 07 = / 10+ 0.0
[ [0} [ k@ogaresonrena

) _f (t’x)/(_j
+ / b (2137) S0 () (1, ) 45 — S, (&) 7 (2, 7) | dids

(=18

31

ox
K (Z;9) f"n(t, §) dF
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. t n n .
< 15+ / / [T+ / b (&) ()7 (1, §) djidids
0 0 . T

<||fo||+NlH1+m// [/y dy]dacds

i [ y*fﬁ(o,yvdy*} ds

i 0

< 51+ NTIfF I T + nons = L. (2.32)

It follows from Lemmas 2.3, 2.4 and the contraction mapping theorem that a unique
solution f"(t,¥) exists for 0 <t < ¢. O

2.3. Global existence of a solution in finite time.

Theorem 2.5. Under the kernel conditions (A1)-(A5) and the initial condition sat-
isfies fo(T) € FT(0). Then the problem (1.1), (1.2) possesses at least one solution in
FHT).
Denote the 7™ order truncated central moment of fﬁ(t7 Z) as
’,_i d . ~
N (1) = / [0 fx(t.7) 47, ji € R, n> 1. (2.33)
i=1

We consider f7, the non-negative unique solution obtained from the last theorem.
Let us consider the zero extension of the solution in full domain as

s ) = {fﬁ(t,f), 0 <z <ny tel0,T],

(4, F) = 2.34
f ( v 0, z; > n,. ( )

Lemma 2.6. The moments { Ny 5(t)}55—; are bounded uniformly, with respect to t
and i, for 0 <t <T and 0 <p; <2, i.e.,

Ny (t) < Nﬁ = constant independent of 7, t; n; > 1, 0<t<T and 0 < p; < 2.
(2.35)

Case 1: First cross-moment or hyper-volume conservation. For t € [0,T],
Integrating equation (2.4) multiplied by H?Zl x;, we obtain

7 d z d

d T B IO
G [ Hereaa=; [ [ [[ak@onnsesons e dus
0 i
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All the integrals are finite as the corresponding kernels are finite in the compact
domain of integration. We consider the first integral. Using Fubini’s theorem and the
symmetry of the coagulation kernel we obtain

7oz d

1 n x ~ o it . ot . .

Qﬁ [ HxiKn(x@y;y)f (t, 2oy f"(t,y)dydx
0 0

i Aoy _d . .

A | R
0

= second integral of R.H.S.

In a similar manner and using volume conservation properties of breakage kernels we
can show that

third integral of R.H.S. = fourth integral of R.H.S.

Hence, we obtain

d [

&/0 il;[lmif"(t,x)dx =0,
which indicates

N

s

[}

s d
(t) = A [ #:fo(@)d = Ky, say < oo, (2.37)

=1

Case 2: Second cross-moment or energy conservation. In this case, proceed-
ing earlier fashion we obtain,

7 d
d ("7 260 2
@/, il;[lxif (t, 7)dx

n noy d
< / / [T o n (@ 9) 171 2) 178, ) A 47
0 JO =

A Aoy d B -
<k / [Tz (1 + )+ 9) £, 2) £ (1, ) A 4
0 J0 =
< K[NZ 3(8) + 2N 50Ny £(t) + N2 5(0)]-
Integrating the above relation from 0 to ¢, we have

Nﬁj(t) < NQ‘ < oQ. (2.38)
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Case 3: Following in the same way the above results holds for N ]v(t) for
j=3,4,5,... independent of 7 and ¢.

Case /4: Zeroth moment or total number of particles. For zeroth or-
der moment, the result reduces to

d da [ -

/ / 9) fa(t. ) dydm—/oﬁsn(f)f"(t,f)df

/ / 9 falt, 7) djdz

SNZ . SlHyzfn t y
0

L

8

M

< NiSiN; I( ) < N;S;N;.
Case 5: Moment of arbitrary order. Similarly we can show that

Ni 5(t) < Ny = constant independent of 7, ¢; n; > 1, t € [0,7] and 0 < p; < 2.
(2.39)

Combining all the case results the lemma follows consequently.

To obtain the main result, we state the following lemma:
Lemma 2.7. The sequence {fﬁ};‘f’:l is compact (relative) in the uniform-convergence
topology of continuous functions on each rectangle P (T, )_(')

Proof. We prove the Lemma 2.7 through three successive steps.

Step 1: In the first step, we show that {fﬁ}ﬁz:l is uniformly bounded on P(T, X).
From (2.4) we have

a’m“c - /K FO 7917t E0 7t 5) A7
) / " Ko@) (e, 7) 47

+ [ DS Ial0.) 05— 5,07 0,7)

x

I A

1 / Ko(Z0 391t §)f(t,7) dF + / b (Z1) S0 (7) F (8, ) A7

1/ kH1+X V2t 2o q) f (t,7) df + Sib /nﬁfﬁ(t,ﬁ)dy

€T

\ A

= §k1:[(1+Xi)2(fﬁ*fﬁ) + 516N (2.40)
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Consider upper function g” that satisfies
_ _ tr S _
g0 =g+ [ SHII0+ X2 g+ g s as 2
0 i

where
gg = max{fgi, Sll_)Nf}.

The next, we used the Laplace transform, and obtain
_ 1
9" (t, &) = go exp {290161—[)(%»(1 + X;)%(exp(t) — 1) + t] .

Now we show f7(t, %) < ¢g"(t, %) for (t,%) € P(T, X).
Using similar analysis of [22], we can prove that

= 1
0< f"(t,Z) <go [ngk‘HXi(l + X;)?(exp(T) — 1) + T} = Lq, a constant. (2.42)

Step 2: In this part, we prove the equicontinuity property of { fﬁ};’s:l for the variable
t. Using (2.4), for t € [0,T),t < t', x € [0, X;], n; > 1, we observe that

e - reals [ [ Kaeomnsiego nfien
— [i(s,7) / Ko )7 (5, 7) df
< bﬁ<f|y*>sﬁ<y*>fﬁ<s7g>dy*—sﬁ<f>fﬁ<s,f>}ds. (2.43)

It follows form (2.1), (2.2), (2.3) and (2.42) that the first and the fourth terms of
(2.43) are uniformly bounded. For the second integral of (2.43), we have

/6 " K@) (s, 5) A7 < K / h [0+ X0+ 507 5,707 (249)

<k +X)(N; + Ny),

(2

and [ ba(|7)Sa(@)17 (6, )47 < SibNy (2.45)
We finally obtain
sup |fP(t, %) — fUt,E)| < Malt —t'], 0<t<t' <T, n; >1. (2.46)
0<z;<X;

The constant My is independent of 7 and hence { fﬁ}floi:1 is equicontinuous w.r.t.
the variable ¢ on P(T, X).
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Step 3: In this step, we justify the equicontinuity property of {f” mi—y for
the variable Z. Let, & € [0, X}, Z <@ < X ; therefore for n; > 1 we note that

|f7 (2, t) — fU@ )] < | fo(@) — fo(@)]

g [ el = 50 = K@ = DI .0 )
g | Kal@ = BT - s) = 7@ - G
IS 5) — 4@ 5) : K@, )17 (5. )43

+ f7(F,5) /0 "\ ) - Knl@ DI 517 (247)

Next, we show that when ||z — Z|| = max{|z} — z;] : i = 1,2,...,d} is small enough,
then the L.H.S. of (2.49) is also small. AS the kernels Kz, S7, bz and IC fo(Z) are
continuous, therefore for € > 0, there exists d(e) such that

sup | fo(a') — fo(@)| <,

27—l <6
sup  |Ka(2',9) — Ka(Z,9)| < e
&7~ <5

sup  |Sz(z') — Si(%)| < € and

ll2"— ]| <6
sup  |bs (2!, §) — ba(Z, §)| < e. (2.50)
|o" —z|| <8

These inequalities hold uniformly w.r.t. 7 > T and iy < Z. The restrictions of z" are
given below. Let,

8]

w,(t) = sup |f(,t) — fR(Z ), 0<Z<X. (2.51)

|lo" —Z|| <8
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From (2.47), we get

[ Ka(@, ) — Ka(@, )| (7, 5)di
0

|
- / Ka(@, §) — Ka(Z,§)| 77, 5)dg + / K, ) — K2, 9)| 75, 5)di

IN

Xy [T+ 2 (020l

— 1+X n dir
EN(-)*—FkH 1+ 2, / H1+yz f )

_ N2+2N~+N2
§6N6+kH(1+Xi)H( 0 1—&—12'» 2),

<e(No+E [+ X)), (2.52)

IN

(N24+2N3+N3)

choose z; such that [, T2

< e. From (2.48), we get

[ (10 @l 5 7 g

/ b (2| §) — bs (217 )ISﬁ(ﬁ)fﬁ(ﬁ,ﬁ)dszr[ b (a1 ) — s (Z137)] S5 (9) 7 (¢, ) df
<e / [Iswrme.adz+ 250 [ [Jus™ .57
_ 1 [ Al o e
<esiNp+2so[] - [ T[oreag
< e[S Ny + 25,0, (2.53)
choose 7 such a way that [], Z%_Ni < e. From (2.49), we get
1S5(2) — Sx(Z)|f7 (a7, s)ds < €L, T, by using (2.42). (2.54)
From (2.49), we have
t t
/ Sﬁ(f)|fﬁ(f’,s)ffﬁ(f,s)\ds<51HX¢/ Wy (s)ds. (2.55)
0 i 0

Finally, using (2.42), all inequality in (2.50) (2.52), (2.53), (2.54), (2.55) and (2.49),
we get:

t
wg(t) < M3€—|—M4/ wp(s)ds, 0 <t <T,
0



586 D. GHOSH, J. PAUL, J. KUMAR AND J.-C. YAO

where the constants M3 and M4 do not depend on 7 and €. With the help of Gronwall’s
inequality, we note that

wg(t) < Mzeexp(MyT) = Mse (say). (2.56)
We conclude from (2.46) and (2.56) that
sup |fA(@ 1) — £ (2, t)] < (My + Ms)e. (2.57)

|7 —Z||<6,0<t<t'<T

Hence the Lemma 2.7 is proved. (]

Proof of theorem 2.5

Using the diagonal method we choose a subsequence { fﬁ}go:I from { fﬁ}?:I which
converges uniformly to a continuous non-negative function f on each compact set in
P. In the next, we focus on the following integral

z
[ 2 f(Z,t)dE, where 0 < k < 2.
d

We note that

zZ

7* £(Z,1)d7 < / FIT(E 0dE < N +e (2.58)

zZ

i

Ve>0§!f’2fsuchthat/ﬁ
0

S,

Here, for ¥ = (21, 22,3, ..., x4) and k= (k1,k, ..., kq), we define ik = Hle xf Then

/ T f(7,0)d7 < Ny,
0

because in (2.58) both Z and e are arbitrary. Similar to [22] we can show that the
function f(&,t) is a solution to (1.1), (1.2).

3. CONCLUDING REMARKS

In this article, we establish the existence of solutions for the higher-dimensional
coagulation-fragmentation equation. The regulations pertaining to the kernels are ap-
plicable to a wide class of practically relevant kernels. We demonstrate the existence
of a continuous solution that conserves volume by considering the continuity of the
initial condition, the boundedness of the zeroth and first initial moments, and addi-
tional restrictions on regularity of the kernels. To prove the result, we have defined
a new norm and examined the equicontinuity with respect to time and the property
characteristics vector. By the boundedness of the moments and contraction mapping
theorem, we obtained the required result. The form of the coagulation kernel is the
following:

d
K@ §) <k[J(0+z)f (1 +p)8
=1

where «; = 1. In the future, we shall focus on the mentioned coagulation kernel for
a; > 1.
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