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RAFAEL ESPÍNOLA GARCÍA∗ AND WILLIAM A. KIRK∗∗

∗Department of Mathematical Analysis, University of Sevilla

Seville, Spain
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1. Introduction

This paper contains some observations about the connection between mappings
taken at random and the probability of the existence of fixed points and approximate
fixed points in certain metric spaces.

The concept of approximate fixed point is straightforward. Let f be a mapping
of a metric space (X, d) into itself. Then, if ε > 0, a point x ∈ X is said to be an
ε-approximate fixed point of f if d (x, f (x)) ≤ ε. The mapping f is said to have an
approximate fixed point if f has an ε-approximate fixed point for every ε > 0. This of
course is equivalent to saying:

inf {d (x, f (x)) : x ∈ X} = 0.

A fixed point of f is a point x ∈ X for which f (x) = x; thus x is an ε-approximate fixed
point of f for every ε > 0. For throughout expositions on metric fixed point theory the
interested reader may check any of the two monographs [2, 4] and references therein.

The concept of a random mapping or mapping taken at random in this context
is more subtle and may be thought of in two ways. If S and X are sets, the usual
and most obvious way to define a random mapping is to simply say that a mapping
f : S → X is random if it is arbitrarily chosen from the familyXS of all mappings from
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S into X. In studying the existence of approximate fixed points, another approach
is also useful. Assume (X, d, µ) is a metric measure space, where µ is a probability
measure on X (i.e., a finite positive measure for which µ (X) = 1). In this context,
one might say that f : S → X is random (or taken at random) if given any x ∈ X
and any measurable subset M of X, the only information we know about f(x) is that
the probability that f (x) lies in M is simply µ (M) .

We begin with a simple example involving only concepts of finite probability theory.
Here a finite set is a collection of n events each having probability 1/n of occurring.
No distance is needed but we can assume the discrete distance is considered. The
symbol N denotes the collection of natural numbers.
Example 1.1 Let n, k ∈ N and

A = {a1, · · ·, an} and B = {a1, · · ·, an, · · ·, an+k} .

Assume also that all points are distinct, and suppose f : A→ B. Then the probability
that f has at least one fixed point is

1−
(
n+ k − 1

n+ k

)n
.

Indeed, if a given point ai ∈ A is not fixed it must be mapped into any of n+k−1
points out of n+ k possibilities. Thus the probability that it is not fixed is(

n+ k − 1

n+ k

)
.

Therefore the probability that no point of A is fixed is:(
n+ k − 1

n+ k

)n
.

It follows that probability that at least one point is left fixed is

1−
(
n+ k − 1

n+ k

)n
.

This simple example enlightens our first approach to approximate fixed points given
in the next section.

2. Approximate fixed points in an interval

We now move to a different question, beginning with the simplest case. We assume
the uniform probability over finite sets. Taking A = B in Example 1.1 yields the
following:
Theorem 2.1 Suppose f : A→ A is a mapping taken at random from AA, where A
is a set with n elements. Then the probability that f has at least one fixed point is

1−
(
n− 1

n

)n
.

This, additionally, leads to the following:
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Theorem 2.2 Suppose fi : A → A, i = 1, · · ·, k, are k mappings taken at random
from AA, where A is a set with n elements. Then the probability that at least one of
the mappings has at least one fixed point is given by

1−
(
n− 1

n

)nk
.

These ideas can be applied to obtain approximate fixed point theorems in nondis-
crete cases. We see it next. Take I = [0, 1] and suppose f is any mapping of I into

itself. Let ε > 0 and choose n to be the smallest n ∈ N such that
1

n
≤ 2ε. Let

Pn = {ai}, where ai = i/n, i = 0, 1, · · ·, (n− 1), be a partition of I into n equal

subintervals each of length
1

n
, and define h : [0, 1)→ [0, 1) by taking

h (x) = ai ⇔ x ∈ [ai, ai+1), i = 0, · · ·, n− 1.

Now let A = {a1, · · ·, an} and define f̃ : A → A by taking f̃ (ai) = h ◦ f (ai) , for

i = 1, · · ·, n. Since f̃ is a mapping of Pn into Pn (which can be considered to have

been taken at random), by the above theorem, the probability that f̃ has at least one
fixed point is given by

1−
(
n− 1

n

)n
.

However, f̃ (ai) = ai implies that |ai − f (ai)| ≤ ε. Thus a fixed point of f̃ yields an
ε-approximate fixed point of the original mapping f.

This implies that, for ε > 0, given a mapping f of I into I there is always a finite
subset of I such that f restricted to this set has probability at least 1 −

(
n−1
n

)n
to

have an ε-approximate fixed point (actually, the same finite subset works for any such
f in this case). Then we have the following definition.
Definition 2.3 Let X be a metric space. Let F be a nonempty finite subset of X.
We denote by αε(F ) the supremum of the numbers α such that, given a mapping f of
X into X at random, it is the case that f restricted to F has at least probability α to
have an ε-approximate fixed point. Then we say that the ε-approximate fixed point
probability constant of X, denoted as αε(X), is the supremum of all αε(F ) when F
is a nonempty finite subset of X.

After the previous reasoning for I and the above definition, we have the following
result.
Theorem 2.4 If I is the real unit interval and ε > 0, then

αε(I) ≥ 1−
(
n− 1

n

)n
.

We can still push farther this scenery, since limn→∞

(
n− 1

n

)n
= e−1 in a decreas-

ing way, we have that αε(I) ≥ 1− e−1 for any ε > 0. This brings the next definition
up.
Definition 2.5 Let X be a metric space. Then the approximate fixed point proba-
bility constant of X, denoted as α(X), is the infimum of all αε(X) when ε > 0.
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Therefore, from above we deduce the next theorem.
Theorem 2.6 Let I be the unit real interval with its usual metric, then

α(I) ≥ 1− e−1.

Remark 2.7 The heuristic idea behind this result is that given f : [0, 1] → [0, 1] at
random, the probability that it has an approximate fixed points is at least 1 − e−1

which is larger than 0.63.
Notice that it takes no changes in the proof of Theorem 2.6 to deduce the next

corollary (see also Theorem 2.11 below).
Corollary 2.8 Let I be any bounded nontrivial real interval with its usual metric,
then

α(I) ≥ 1− e−1.

Suppose now that [a, b] is a subinterval of [0, 1] and suppose that f is any mapping
of [0, 1] into [0, 1]. We can define in a similar way as Definition 2.5 the probability
that f has an approximate fixed point in [a, b] by calculating the above probability
constants for mappings restricted to [a, b], that is, looking for the ε-approximate fixed
point in [a, b]. The corresponding approximate fixed point probability constant will be
denoted as α([a, b], I) in this case. We wonder about a lower estimate of this constant
next.

Given ε > 0 we can follow a reasoning as the one given in the proof of Theorem
2.6 to fix n and a partition A = {a1, · · · , an} of [0, 1] as above. Let l = b − a, then
there are roughly (asymptotically as n→∞) n · l points of A in [a, b]. By considering

Example 1.1, we can deduce that the probability that f̃ has an ε-approximate fixed
point is at least

1−
(
n− 1

n

)ln
.

As consequence, we can deduce the next theorem.
Theorem 2.9 Let I be the unit closed real interval and a and b real numbers such
that 0 ≤ a < b ≤ 1. Take l = b− a, then

α([a, b], I) ≥ 1− e−l.

Remark 2.10 Notice that the lower bound given in the above theorem is larger to
l(1 − e−1), which is the one we find if we think of the problem in pure probabilistic
terms: probability that the ε-approximate fixed point falls in [a, b] given that we
know the probability that there is an ε-approximate fixed point in [0, 1]. Of course,
the nature of the problem we are dealing with is far more complicated than that.

From now on, we will focus on the case where the initial and final sets of mappings
under consideration coincide. There are only two crucial assumptions in the proofs of
the above results. The first is that f is a mapping chosen at random from the set of all
mappings of [0, 1] into [0, 1] . The second is that [0, 1] is viewed as a probability measure
space using Lebesgue measure, and so the probability that a randomly chosen point
in [0, 1] lies in a given measurable subset S of [0, 1] is simply the Lebesgue measure
of S. In view of this, it is clear that the result should have wider meaning. We begin
by replacing the unit interval [0, 1] with a path in Rn. A path in Rn is the image of
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a continuous mapping γ : [a, b] → X where [a, b], a ≤ b, is a real line interval. The
length ` (γ) is the infimum of the lengths

µ∑
i=1

d (γ (xi) , γ (xj)) .

When this infimum is finite the path is said to be rectifiable. An argument essentially
identical to the above yields the following result.
Theorem 2.11Let P be a rectifiable path in Rn with ` (P ) = λ, and let f : P → P
be an arbitrary mapping. Consider the Hausdorff measure of dimension 1 on P , then

α(P ) ≥ 1− e−1.

Proof. Replace ε with ε/λ and follow the proof of Theorem 2.6 along with the new
measure.

We now turn to more intricate sets. In the following statement we assume that a
set P in a metric space can be decomposed into a finite number of rectifiable paths Pi,

i = 1, · · ·, N, having respective lengths ` (Pi) , where
N∑
i−1

` (Pi) < ∞. We also assume

that each two paths intersect in at least 1 and in at most 2 points. It is now possible
to think of P as the union of a finite number of connected metric spaces with the
distance between each two points x and y which lie in a common component taken to
be the length of the shortest path joining x and y.

Theorem 2.12 Let (X, d) be a metric space and let P = {Pi}Ni=1 , N ≥ 1, be a
(possibly disconnected) subset of X consisting of a collection of N rectifiable paths,
each having finite length. Suppose each two of paths Pi and Pj of P either have empty
intersection, or they intersect as follows. If Pi and Pj lie in a common component
of P and i 6= j, then Pi ∪ Pj either forms a simple closed curve having two common
endpoints, or a single path with one endpoint of Pi coinciding with one endpoint of
Pj . Then

α(P ) ≥ 1− e−1.

Proof. Let pj = ` (Pj) /
N∑
i=1

` (Pi) , j = 1, · · ·, N. Now normalize the total length

of the structure P so that its total length is 1; thus if pi = ` (Pi) then
N∑
i=1

pi = 1.

Then given x ∈ Pi, the probability that f (x) ∈ Pi is precisely pi. By assumption, the
probability that a given x ∈ Pi is an ε-approximate fixed point for f is now equal to the
probability that x is an ε-approximate fixed point for f given that f (x) lies in Pi times
the probability that f (x) lies in Pi. This probability is at least

(
1− e−1

)
pi. Since

the sets Pi are disjoint (except possibly for common endpoints) the total probability
that an arbitrary point x ∈ P is an ε-approximate fixed point for f is at least

N∑
i=1

(
1− e−1

)
pi = 1− e−1.

(This is precisely the line of reasoning in the proof of Theorem 2.6 except that a finite
number of points are ignored. Given that the underlying set is uncountable, this has
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no impact since the probability that any given point x ∈ P is an ε-approximate fixed
point for f is zero.)

3. Metric measure spaces

Up to this point we have been mainly dealing with finite sets under the uniformly
distributed probability and direct consequences out of them. On the other hand,
certain probability measures have been shown to be related to the idea of how to
choose a mapping at random in a natural way. A primary example, as we have seen,
may be given by the Lebesgue measure on real line intervals (or 1-Hausdorff measure
on a rectifiable path). In this section we take up the more general case by considering
arbitrary maps defined on a metric measure space consisting of a triplet (X, d, µ) ,
where X is a set, d is a metric on X and µ is a finite positive measure on X. We
assume further that µ is a probability measure and so µ (X) = 1. For a metric measure
space, we assume that balls are always measurable sets. The question considered here
is again to obtain a lower bound for α(X).

We set next the precise idea of mapping taken at random in this context.
Definition 3.1 Let (X, d, µ) be a metric measure space and suppose µ is a probability
measure. A mapping f of an arbitrary set into X is said to be a random mapping
or a mapping taken at random if given x ∈ S and a measurable subset H of X, the
information we know about f is that the probability that f (x) ∈ H is µ (H) .

From this definition we can set that, given (cn)
N
n=1 ⊂ X, the probability that

at least one of these points is an ε-approximate fixed point of an arbitrary map
f : X → X is given by

1−
N∏
n=1

(1− µ (B (cn; ε))) .

Now, for each finite set (cn)
N
n=1 and ε > 0, consider the set

C
(

(cn)
N
n=1 , ε

)
= {f ∈ XX : ∃ n0 ∈ {1, · · ·, N} with d (cn0

, f (cn0
)) ≤ ε}.

Therefore, we can say in an heuristic way that the probability that f has a ε-

approximate fixed point is at least as large as the probability that f ∈ C
(

(cn)
N
n=1 , ε

)
.

(This is analogous to the reasoning applied in Theorem 2.6.)
We now turn to an extension of Theorem 2.6. We say that a metric measure space

(X, d, µ) (as before, assuming µ (X) = 1) has the boundary condition if µ (∂B (x; r)) =
0 for any closed ball B (x; r) . This assures the following continuity property:
Lemma 3.2 Let (X, d, µ) be a metric measure space with the boundary condition.
Then α (r) = µ (B (x; r) ∩ C) is continuous for any x ∈ X and C ⊆ X. Consequently
α (r) = µ ((B (x; r) \B (x; r0)) ∩ C) is also continuous.

Now we extend Theorem 2.6 to metric measure spaces.
Theorem 3.3 Suppose (X, d, µ) is a compact metric measure space with the boundary
condition. Let δ > 0. Then for every ε > 0 there exists a finite collection of points

(cn)
N
n=1 in X such that the probability that f ∈ C

(
(cn)

N
n=1 , ε

)
, for random f : X →
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X, is at least equal to 1− e−1 + δ. In particular,

α(X) ≥ 1− e−1.

Proof. Let ε > 0 and let {B (xn; ε/2)}Nn=1 be an ε/2 covering of X. Now let

B1 = B (x1; ε/2) ,

B2 = B (x2; ε/2) \B1,

...

Bi = B (xi; ε/2) \ ∪i−1
j=1 Bj ,

...

BN = B (xN ; ε/2) \ ∪N−1
j=1 Bj .

We assume without loss of generality that µ (Bi) > 0 for each i and choose M > 0 so
that

M−1 < min {µ (Bi) : i = 1, · · ·, N} .
Now, from Lemma 3.2, for each i = 1 take c11 = x1 we can choose r1

1 so that

µ
(
B
(
c11; r1

1

))
=

1

M
.

Let

C1
1 = B

(
x1; r1

1

)
.

If

µ
(
B1\C1

1

)
≥ 1

M

then choose r2
1 so that

µ
(
B
(
x1; r2

1

)
\C1

1

)
=

1

M
,

i.e., so that

µ
(
B
(
x1; r2

1

)
\B
(
x1; r1

1

))
=

1

M
.

Continue in this way until we arrive at step J (1) at which

µ
(
B1\ ∪J(1)

j=1 C
j
1

)
<

1

M
.

Now set A1 = B1\ ∪J(1)−1
j=1 Cj1 and choose a1 ∈ A1. (Simply disregard A1 if A1 = ∅.)

Now proceed in the same fashion with x2 and B2, with the difference that each of
the sets Cj2 , j = 1,···, J (2) , are intersected with B2. Proceed in this way until reaching

xN and corresponding sets
{
CjN

}J(N)

j=1
. In this way the original set is partitioned into∑N

i=1 J (i) disjoint sets, each having diameter less than ε and measure equal to
1

M

along with N sets each having measure strictly less than
1

M
. The process results in

the following:
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• A collection of disjoint sets
(
Cji

)
with 1 ≤ i ≤ N and 1 ≤ j ≤ J (i) such that

µ
(
Cji

)
= 1/M for each i, j.

• A collection of points cji ∈ C
j
i for each i, j with Cji ⊆ B

(
cji ; ε

)
. (In particular

the sets Cji each have diameter ≤ ε.)
• N sets Ai, 1 ≤ i ≤ N, with µ (Ai) < 1/M for each i, and points ai such that
Ai ⊆ B (ai; ε) .

• The family{
C1

1 , C
2
1 , · · ·, C

J(1)
1 , C1

2 , · · ·, C
J(2)
2 , C1

N , · · ·, C
J(N)
N , A1, · · ·, AN

}
form a disjoint covering of the set X.

We now give a lower bound for the number
∑N
i=1 J (i) :

1 = µ (X) = µ
(
∪J(i)
j=1

(
∪Ni=1C

j
i

)⋃(
∪Ni=1Ai

))
=

∑
1≤i≤N ;1≤j≤J(i)

µ
(
Cji

)
+

N∑
1=1

µ (Ai)

=

N∑
i=1

J (i)

M
+

N∑
1=1

µ (Ai)

≤

 ∑
1≤j≤N

J (i)

 1

M
+
N

M
.

This implies
N∑
i=1

J (i) ≥M −N. (3.1)

Let f be a mapping taken at random of X into X. For each 1 ≤ i ≤ N and
1 ≤ j ≤ J(i), the probability that f(cji ) /∈ Cji equals 1 − 1/M , and for each i the
probability that f(ai) /∈ Ai lies in the interval [0, 1/M). Therefore, we can set the

probability that none of the points (cji ) and (ai) are not in the corresponding sets CJi
and Ai as

p =
∏

1≤i≤N ;:1≤j≤J(i)

P (f(cji ) /∈ C
j
i )×

N∏
i=1

P (ai /∈ Ai)

=

(
1− 1

M

)∑N
i=1 J(i)

×
N∏
i=1

P (ai /∈ Ai)

From (3.1) and the fact that probabilities are no larger than 1,

p ≤
(

1− 1

M

)M−N
≤
(

1− 1

M

)M− N
M

,
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where N is fixed and M can move to infinite. This gives a sequence converging to
e−1 as M goes to infinity.

Therefore, given δ > 0 it is possible to fix M large enough so that p ∈ (1− e−1 −
δ, 1− e−1 + δ). This yields a finite collection of points (cn) (these are points (cji ) and
(ai) in the proof) such that

P (((cn), ε)) ≥ 1− e−1 + δ.

Remark 3.4 An upper bound can be found for
∑N
i=1 J(i) as follows, but it does not

seem to be of much help since it leads to an upper bound for the probability we are
looking for.

1 = µ(X) ≥ µ(∪1≤i≤N ; 1≤j≤J(i)C
j
i ) =

1

M

N∑
i=1

J(i).

Therefore
N∑
i=1

J(i) ≤M. (3.2)

Then

p ≥
(

1− 1

M

)∑N
i=1 J(i)

×
(

1− 1

M

)N
≥
(

1− 1

M

)M
×
(

1− 1

M

)N
.

This gives an increasing sequence that converges to e−1 as M goes to infinity.
Remark 3.5 Notice that in all cases under consideration, except for Theorem 2.9,
we have obtained a same lower bound for α(X), which in fact is larger than 0.63.
This is not surprising if we realize that,results from Section 2 are particular cases of
Theorem 3.3. It is plausible that higher bounds could be found for these spaces.

4. Comments on invariant sets and graphs

We show in this section some applications of the preceding. We begin with the
following simple example. Suppose Σ = {S1, S2} where S1 and S2 are nonempty
bounded closed convex subsets of R2, and suppose f : S1∪S2 → S1∪S2 is continuous.
Suppose also that:

Given i ∈ {1, 2} there exists j ∈ {1, 2} such that f (Si) ⊆ Sj . (4.1)

What additional conditions assure that f has a fixed point? The condition S1∩S2 6= ∅
provides an obvious answer. This is because S1∩S2 6= ∅, in conjunction with condition
(4.1) and continuity of f , implies that either f : Si → Si for some i ∈ {1, 2} , or
f : S1 ∩ S2 → S1 ∩ S2. On the other hand, if S1 ∩ S2 = ∅ then the probability that a
mapping taken at random of Si into Sj has a fixed point is 3/4.

The situation is slightly more complicated if Σ consists of three elements. There
are now two sufficient conditions (up to relabeling) which assure the existence of a
fixed point for f :

(I) S1 ∩ S2 ∩ S3 6= ∅; and
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(II) S1 ∩ S2 6= ∅ and S2 ∩ S3 6= ∅, and S3 ∩ S1 = ∅.
A third possibility exists. When this occurs f may or may not have a fixed point.

(III) S1 ∩ S2 6= ∅, S2 ∩ S3 6= ∅, S3 ∩ S1 6= ∅, and S1 ∩ S2 ∩ S3 = ∅.
When (I) occurs, f must have a fixed because f : S1 ∩ S2 ∩ S3 → S1 ∩ S2 ∩ S3.

Otherwise there are only two ways f can fail to have a fixed point. These are:

f : S1 → S2, f : S2 → S3, f : S3 → S1;

f : S1 → S3, f : S3 → S2, f : S2 → S1.

Assumption (II) in conjunction with condition (4.1) rules out each of these possibilities
while either of these may occur under assumption (III). (One might also notice that
there are 27 ways f can satisfy (4.1). The other 25 possibilities always assure that f
has a fixed point. This means that if the mapping f takes elements of Σ randomly
into subsets of them, then the probability that f will have a fixed point is strictly
greater that 25/27.)

Our objective in this section is to extend the above very simple observations to
infinite families {Si} of sets. To this end, let S be a set and Σ = {Sα, α ∈ I} a
(possibly infinite) family of nonempty subsets of S. Suppose f is a mapping defined
on ∪Σ (= ∪iSi) and taking values in S.
Definition 4.1 We say that the pair (Σ, f) is a fixed point structure if the following
two conditions hold.

CI: The family Σ is closed under nonempty intersections.
FP: If f : Sα → Sα for α ∈ I , then f (x) = x for some x ∈ Sα.

For intuitive purposes, one might think of Σ the very well-known cases given by:
(i) a collection of nonempty compact convex subsets of a Banach space X and f a
continuous mapping; or (ii) a collection bounded closed convex subsets of a uniformly
convex Banach space X and f a nonexpansive mapping. Of course there are many
other possibilities (check [2, 4]). This brings us to the following problem.
Problem 4.2 A Problem on Invariant Sets. Given (Σ, f) and some subfamily Σ′

of Σ such that f : ∪Σ′ → ∪Σ′, find conditions on Σ′ which assure that f has a fixed
point. (Equivalently, find conditions which assure that f : Sα → Sα for some α ∈ I.)

In the problem discussed at the outset, Σ is the family of nonempty bounded closed
convex subsets of S : = R2, Σ′ = {S1, S2} , and f : S1 ∪ S2 → S1 ∪ S2 is a continuous
mapping. The desired condition is (4.1). To extend this one needs to adjust the above
assumptions in such a way that a given mapping f : ∪Σ→ ∪Σ will always map some
member S ∈ Σ into itself. One approach to this is to apply a well-known result from
graph theory.

Recall that a graph G is an ordered pair (V,E) where V is a set and E ⊆ V × V
is a binary relation on V. Elements of E are called edges. We assume the graph is
reflexive and undirected, in the sense that (a, a) ∈ E and for each (a, b) ∈ V,

(a, b) ∈ E ⇒ (a, b) = (b, a) ∈ E.

Also, given a graph G = (V,E) , a path in G is a sequence a0,a1, · · ·, an, · · · with
(ai, ai+1) ∈ E for each i = 1, 2, · · ·. A path (a0, · · ·, an) in G is said to have length n if
a i 6= ai+1 for i = 0, · · ·, n− 1. A cycle is a finite path (a0, · · ·, an) with a0 = an. G is
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connected if there is a finite path joining any two of its vertices. Finally, a mapping
f : V → V is said to be edge-preserving if (a, b) ∈ E ⇒ (f (a) , f (b)) ∈ E.

We now turn to an application of the following classical result of graph theory.
Theorem 4.3 [5] Let G = (V,E) be a reflexive graph which is connected, contains no
cycles, and contains no infinite paths. Then every edge-preserving mapping f of V
into itself leaves some edge invariant.

See Esṕınola and Kirk [1] for a simple ‘metric’ proof of this result; also see Kirk
[3] for further discussion. Notice in particular that the conclusion that f leaves some
edge of G invariant means that either f (a) = a for some vertex a ∈ V or that
(f (a) , f (b)) = (a, b) for some edge (a, b) ∈ E with a 6= b. Also if f does not leave
some vertex fixed then it is easy to see that the invariant edge (a, b) is unique, with
f (a) = b and f (b) = a.

Now assume Σ is a family of subsets of a given set S.
Definition 4.4 A chain joining A,B in Σ is a family {A1, A2, · · ·, An} of distinct
elements of Σ such that A1 = A, An = B, and Ai ∩ Ai+1 6= ∅ if i = 1, · · ·, n − 1.
Such a chain is said to have length n. An infinite chain in Σ is a family {A1, A2, · · ·}
of distinct elements of Σ for which Ai ∩ Ai+1 6= ∅, i = 1, 2, · · ·. A cycle is a chain
{A1, A2, · · ·, An} of length at least three for which A1 = An. A subfamily Σ′ of Σ
is said to be irreducible if A ⊆ B ⇒ A = B whenever A,B ∈ Σ′. (In particular, if
A,B ∈ Σ′ with A 6= B, and if A ∩B 6= ∅, then A ∩B /∈ Σ′.) The subfamily Σ′ is said
to be connected if each two elements A,B ∈ Σ′ are joined by a chain in Σ′.

The following is now a consequence of Theorem 4.3.
Theorem 4.5 Let S be a set and let (Σ, f) be a fixed point structure in S. Let Σ′ be
a connected irreducible subfamily of Σ and suppose Σ′ contains no cycles or infinite
chains. Suppose also that if A ∈ Σ′ then there exists B ∈ Σ′ such that f (A) ⊆ B.
Then f has a fixed point.
Proof. Define a graph G = (V,E) as follows. Take V to be the collection of elements
of Σ′ and E to be the pairs (A,B) ∈ Σ′ × Σ′ such that

(A,B) ∈ E ⇔ A ∩B 6= ∅.

Then G is reflexive. By assumption, for each A ∈ Σ′ there exists at least one B ∈ Σ′

such that f (A) ⊆ B. Introduce a new mapping f̃ : V → V by setting f̃ (A) = B
where B is any (fixed) member of Σ′ containing f (A) . Now suppose (A1, A2) ∈ E.
Then, by assumption, A1 ∩ A2 6= ∅, and there exist B1 and B2 in Σ′ such that
f (Ai) ⊆ Bi, i = 1, 2. Since f (A1 ∩A2) ⊆ B1 ∩ B2 it follows that B1 ∩ B2 6= ∅ and

hence (B1, B2) =
(
f̃ (A1) , f̃ (A2)

)
∈ E. Therefore f̃ is edge preserving. Also by

assumption G contains no cycles or infinite paths. Thus, by Theorem 4.3, f̃ leaves

some edge (A,B) of G invariant. This means that (A,B) =
(
f̃ (A) , f̃ (B)

)
. There

are two cases. Either f̃ (A) = A or f̃ (B) = B, i.e., f (A) ⊆ A or f (B) ⊆ B, in which
case clearly f has a fixed point. Otherwise it must be the case that f (A) ⊆ B and
f (B) ⊆ A and thus f (A ∩B) ⊆ A ∩ B. But since A ∩ B ∈ Σ it follows in this case
that f (x) = x for some x ∈ A ∩B.

The assumption that Σ′ contains neither cycles nor infinite paths is essential for the
conclusion in Theorem 4.5. For example, suppose there exist distinct sets A1, A2, A3 ∈
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Σ′ such that A1 ∩ A2 6= ∅, A2 ∩ A3 6= ∅ and A3 ∩ A1 6= ∅. Then, taking A4 = A1,
one obtains a fixed point free map by simply taking f (a) to be a point in Ai+1\Ai
for each a ∈ Ai, i = 1, 2, 3. For an infinite chain containing no cycles simply take Ai,
i = 1, 2, · · ·, to all be distinct with Ai ∩Ai+1 6= ∅ and define f the same way.

Some intriguing questions seem to arise from the above discussion. The fact that
Σ contains no infinite chains does not rule out the possibility that Σ itself is infinite.
However, suppose the fixed point structure Σ is finite in Theorem 4.5 and suppose the
restriction that Σ′ contains no cycles is removed. The question now becomes: What
is the probability that f has a fixed point? (This, of course, is equivalent to asking
what is the probability that f has a fixed edge in Theorem 4.5 under these weakened
assumptions.) In particular, if Σ′ contains n elements then the answer exceeds the
probability that a mapping taken at random of an n element set into itself leaves
some point invariant, and of course this probability, as it was explained earlier in this
paper, is

1−
(
n− 1

n

)n
.

As the proof of Theorem 4.5 suggests, this problem can be recast as a problem
in graph theory; specifically, given a reflexive connected graph that has no infinite
paths, what is the probability that an edge preserving map leave some edge invariant?
This raises a host of related questions, specifically regarding the probability that a
mapping of a finite graph into itself leaves some edge invariant, when it does have
cycles. The complexity of the problems of this type becomes apparent at the earliest
stages.
Remark 4.6 Consider a reflexive connected graph consisting of three distinct vertices
{a0, a1, a2} . What is the probability that a random mapping of these vertices into
themselves leaves some edge invariant?

Notice that this is just a rephrasing of the problem discussed at the outset. There
are 27 possible mappings. Of these 1 leaves each vertex fixed, 6 leave exactly two
vertices fixed, 12 leave exactly one vertex fixed, and 8 mappings leave no vertex fixed.
One sees immediately that the answer to the question is at least 19/27. We now must
count the ways the mapping can leave an edge invariant but leave no vertex fixed.
This can happen in 6 ways, e.g.,

a0 ←→ a1; a2 → a0

a0 ←→ a1; a2 → a1.

There are only two mappings that fail to leave a vertex fixed or an edge invariant.
They are:

a0 → a1, a1 → a2, a2 → a0

a0 → a2, a2 → a1, a1 → a0.

Therefore the answer is 25/27.
Remark 4.7 This situation gets more complicated quickly. Consider a reflexive
connected graph consisting of four distinct vertices {a0, a1, a2, a3} . What is the prob-
ability that a random mapping of these four vertices into themselves leaves some edge
invariant?
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There are exactly 12 different connected graphs having these vertices. Of these,
two consist of one cycle each having respective edges:

{(a0, a1) , (a1, a2) , (a2,a3) , (a3, a0)} ,
{(a0, a2) , (a2, a3) , (a3, a1) , (a1, a0)} .

Four have exactly one cycle each consisting of the respective three edges:

{(a1, a2) , (a2, a3) , (a3, a1)} ;

{(a0, a1) , (a1, a2) , (a2, a0)} ;

{(a0, a2) , (a2, a3) , (a3, a0)} ;

{(a0, a1) , (a1,a3) , (a3, a0)} .
The remaining six have no cycles. These have respective edges

{(a0, a1) , (a1, a2) , (a2, a3)} ;

{(a0, a1) , (a0,a3) , (a2, a3)} ;

{(a0, a1) , (a0,a2) , (a2, a3)} ;

{(a0, a3) , (a0,a1) , (a1, a2)} ;

{(a0, a2) , (a0,a3) , (a1, a2) , (a1, a3)} ;

{(a0, a1) , (a0,a2) , (a1, a3) , (a2, a3)} .
This immediately implies that the probability is at least 6/12 = 1/2 that a mapping
taken at random of a connected graph into itself consisting of four distinct vertices
will leave some edge invariant. However this fails to take account of the probability
that such a mapping will have a fixed edge even if the graph has cycles.
Remark 4.8 The preceding examples suggest that there should be a general formula,
especially one that applies to larger graphs, which provides an estimate that a random
self-mapping the vertices of a connected graph leaves some edge invariant. This
observation might deserve further study.
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