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Abstract. F -contraction has been a widely investigated problem in the Fixed Point Theory dur-

ing the last decade. There are different results regarding generalizations and modifications of F -
contraction in various settings, along with the results concerning application of those concepts,

mostly in the area of differential and difference equations, fractional calculus, etc. In this paper, it

will be shown that there are abundant requests regarding the definition of F -contraction. In this
way, the wider class of F contraction is formed and, for this new type of contraction, called sim-

ple F -contraction or sF -contraction, we prove the existence and uniqueness of the fixed point on a

complete metric space. Similar results are derived for the modified concept of F -Suzuki contraction.
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1. Introduction

Wardowski in [21] presented a new type of contractive mapping named F -
contraction and gave the proof of existence and uniqueness of a fixed point for
the class of F -contractions on a complete metric space. Additionally, it was also
emphasized that Banach contraction is a special type of a F -contraction for a
specifically chosen function F (x) = lnx, x ∈ (0,∞). In that way the results of
[21] extend the famous Banach fixed point theorem. Even though this result is of
a newer date, originated in 2012., the scientific community has shown a specific
interest in this topic. Several authors modified and generalized the concept of
F -contraction by changing the prerequisites for the mapping F , introducing different
contractive conditions depending on several different distances, observing the new
setting (b-matric space, cone metric space, partial metric space, fuzzy metric
space, etc.), discussing the case of multivalued mappings or combining all of the
above. Compellingly, most of the published articles regarding this topic were
substantiated with applications of theoretical results as in the area od differential,
difference equations, fractals theory, fractal calculus, functional equations, homotopy
theory, etc. We address the reader to just a few chosen references on this topic
([1, 2, 3, 4, 7, 8, 6, 5, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]), among
many others.
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Definition 1.1. [21] Let F : (0,∞)→ R be a function fulfilling the following condi-
tions:

(F1) F is strictly increasing, i.e., 0 < x < y =⇒ F (x) < F (y);
(F2) For each sequence (xn) ⊆ (0,∞),

lim
n→∞

xn = 0 ⇔ lim
n→∞

F (xn) = −∞;

(F3) There exists k ∈ (0, 1), such that lim
x→0+

xkF (x) = 0.

We denote by F the set of all functions F : (0,∞)→ R satisfying (F1)− (F3).
Taking into the account a class F , F -contraction is defined as follows:

Definition 1.2. Let (X, d) be a metric space and T : X → X a mapping. If there
exist F ∈ F and τ > 0 such that, for all x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

then a mapping T is called a F -contraction.

Theorem 1.3. Let (X, d) be a complete metric space and T : X 7→ X a F -contraction.
Then T has a unique fixed point x∗ ∈ X and, for every x ∈ X, a sequence (Tnx) is
convergent to x∗.

As mentioned, this result was modified in several different manners. We will dis-
cuss only on the characterization of the family F and we will prove that it is possible
to omit some conditions in the definition of class F without losing any of the already
obtained results regarding existence and uniqueness of a fixed point.
We will also give a modification of F -Suzuki contraction and analysis of results con-
cerning different types of F -contraction.
In [16], the authors gave existence and uniqueness theorem for the F -Suzuki type
contraction but for a different class of functions F∗.

Definition 1.4. Let F : (0,∞)→ R be a function fulfilling the following conditions:

(F1) F is strictly increasing, i.e., 0 < x < y =⇒ F (x) < F (y);
(F ∗2 ) infx∈(0,∞) F (x) = −∞;
(F ∗3 ) F is a continuous function.

We denote by F∗ the set of all functions F : (0,∞) → R satisfying (F1), (F ∗2 )
and (F ∗3 ). This notation differs form [16] since, there, the authors held on the same
notation F .

Definition 1.5. Let (X, d) be a metric space and T : X → X a mapping. If there
exist F ∈ F∗ and τ > 0 such that, for all x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

then a mapping T is called a F ∗-contraction.

It is important to compare those two definitions of F -contractions, their differences
and similarities. In [19], the author presents an equivalent of (F2) and offers a new
type of prerequisite, already noted as (F ∗2 ), based on the following lemma:
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Lemma 1.6. [19] If F : (0,∞) 7→ R is an increasing mapping and (tn) a sequence of
positive numbers, then

(a) If limn→∞ F (tn) = −∞, then limn→∞ tn = 0;
(b) If inf F = −∞ and limn→∞ tn = 0, then limn→∞ F (tn) = −∞.

Therefore, the condition (F ∗2 ) is only a more simply formulated equivalent of (F2)
(note that inf F = infx∈(0,∞) F (x)). Obviously, if (F2) holds, we have (F ∗2 ) and
the opposite follows from the Lemma 1.6 part (b). Hence, replacing (F2) by the
equivalent condition (F ∗2 ) will not in any case change the definition of the class F
or F -contraction. On the other side, the class F∗ is different than F since (F3) and
(F ∗3 ) are not related. Same as in the case of F -contraction defined by Wardowski,
this modification of F -contraction by Piri and Kumam also has an unique fixed point
on a complete metric space.

Theorem 1.7. [16] Let (X, d) be a complete metric space and T : X 7→ X a F ∗-
contraction. Then T has a unique fixed point x∗ ∈ X and, for every x ∈ X, a
sequence (Tnx) is convergent to x∗.

In the previously mentioned paper, the authors introduced the notion on F -Suzuki
type contraction and presented appropriate fixed point result.

Definition 1.8. Let (X, d) be a metric space. A mapping T : X 7→ X is said to be
an F ∗-Suzuki contraction if there exist τ > 0 and F ∈ F∗ such that for all x, y ∈ X
with Tx 6= Ty

1

2
d(x, Tx) < d(x, y) =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), x, y ∈ X. (1.1)

Theorem 1.9. [16] Let (X, d) be a complete metric space and T : X 7→ X a F ∗-
Suzuki contraction. Then T has a unique fixed point x∗ ∈ X and, for every x ∈ X, a
sequence (Tnx) is convergent to x∗.

Up to authors knowledge, there is no corresponding fixed point result for the
F -Suzuki contraction taking F ∈ F . We will obtain this result as a corollary in the
next section.

Since the discussion concerning almost F -contraction, generalized F -contraction,
Fisher or Ćirić type F -contraction and similar modifications of F -contractions would
go in a similar way as for F -contraction and F -Suzuki contraction, we will not discuss
on those topics.

2. Main results

Definition 2.1. A set F \ is the set of all strictly increasing functions F : (0,∞)→ R.

Therefore, F \ the set of all functions F : (0,∞) → R satisfying (F1) and
F ,F∗ ⊆ F \. In accordance with newly defined class of functions, we define a simple
F -contraction or sF -contraction.
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Definition 2.2. Let (X, d) be a metric space and T : X → X a mapping. If there
exist F ∈ F \ and τ > 0 such that, for all x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), (2.1)

then a mapping T is called a simple F -contraction (sF -contraction).

The main result is dedicated to the existence and uniqueness of a fixed point for a
simple F-contraction.

Theorem 2.3. Let (X, d) be a complete metric space and T : X 7→ X a simple
F -contraction. Then T has a unique fixed point x∗ ∈ X and, for every x ∈ X, a
sequence (Tnx) converges to x∗.

Proof. Let F ∈ F \ and τ > 0 such that (2.1) is fulfilled. We will separate the further
discussion depending on the value of inf F .
(i) Assume that (F2) holds, thus inf F = −∞. As F is strictly increasing, there
exists the inverse function F−1 : (−∞, supF ) \ A 7→ (0,∞) which is also increasing.
The lower boundary of the domain of F−1 (or range of F ) is determined based on
the infimum assumption and the common fact that the increasing function defined on
(0,∞) (or any set unbounded from the above as a domain) does not have a maximum,
meaning that its supremum must be out of its range and A is (countable) set of
discontinuities of function F . We will use a transformed condition (2.1)

F (d(Tx, Ty)) ≤ F (d(x, y))− τ, x, y ∈ X. (2.2)

Choose x0 ∈ X arbitrary and form a sequence (xn) ⊆ X such that for any natural n
xn = Txn−1 = Tnx0. If xn = xn+1, then xn is a fixed point of T and existence part
is done. Otherwise, by using the principle of mathematical induction, we have

F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ. (2.3)

Indeed, (2.3) holds for n = 1 thanks to (2.2).
Assume that (2.3) holds for some n > 1, and consider F (d(xn+1, xn+2)).

F (d(xn+1, xn+2)) = F (d(Txn, Txn+1))

≤ F (d(xn, xn+1))− τ
≤ (F (d(x0, x1))− nτ)− τ
= F (d(x0, x1))− (n+ 1)τ.

Therefore, by the principle of mathematical induction, the inequality (2.3) holds for
any natural number n.
As limn→∞ F (d(x0, x1)) − nτ = −∞ holds knowing that F is strictly increasing
function and that inf F = −∞, it follows limn→∞ d(xn, xn+1) = 0. Assume that it is
not a Cauchy sequence and that there exists ε > 0 and strictly increasing sequences
(nk), (mk) ⊆ N such that nk < mk, k ∈ N,

d(xnk
, xmk

) ≥ ε and d(xnk
, xmk−1) < ε,

where nk is minimal such that those subsequences exist. Meaning,

nk = min{n ≥ k | d(xn, xm) > ε ∧ m > n},
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and

mk = min{m > nk | d(xnk
, xm) > ε}.

Since A, the set of discontinuities of a mapping F , is countable, we may claim that
ε ∈ (0,∞) \ A. In order to justify this assertation, we may observe arbitrary close
ε′ < ε such that ε′ ∈ (0,∞) \ A due to the fact that discontinuities of F are jump
discontinuities and A = iso(A) is a set of isolated points with respect to the usual
(metric) topology on the real line and its relative topology of positives. Easily we can
obtain

lim
k→∞

d(xnk
, xmk

) = lim
k→∞

d(xnk−1, xmk−1) = lim
k→∞

d(xnk+1, xmk+1) = ε.

First of all,

ε ≤ d(xnk
, xmk

)

≤ d(xnk
, xnk−1) + d(xnk−1, xmk−1) + d(xmk−1, xmk

),

and when we let k →∞, we get limk→∞ d(xnk
, xmk

) = ε. Further on,

d(xnk−1, xmk−1) ≥ d(xnk
, xmk

)− d(xnk−1, xnk
)− d(xmk

, xmk−1)

d(xnk−1, xmk−1) ≤ d(xnk−1, xnk
) + d(xnk

, xmk
) + d(xmk

, xmk−1),

so limk→∞ d(xnk−1, xmk−1) = ε. As k →∞, we get

F (ε) ≤ F (d(xnk
, xmk

))

≤ F
(
d(xnk−1

, xmk−1
)
)
− τ

≤ F (ε)− τ,

which is not possible.
Accordingly, for inf F = −∞, (xn) ⊆ X is a Cauchy sequence in a complete metric
space and for this reason convergent. Denote with x∗ ∈ X the limit of the sequence
(xn). In addition,

F (d(xn+1, Tx
∗)) = F (d(Txn, Tx

∗))

≤ F (d(xn, x
∗))− τ.

Recall that limn→∞ d(xn, x
∗) = 0, then limn→∞ F (d(xn, x

∗)) − τ = −∞ and
limn→∞ d(xn+1, Tx

∗) = 0. As x∗ is already the limit of the sequence (xn), we get
Tx∗ = x∗.

(ii) If inf F ∈ R, then let b = inf{F (d(x, y)) | x, y ∈ X,x 6= y} and note that this
set is nonempty whenever |X| > 1, so b ∈ R. If |X| = 1, then T has a unique fixed
point since it is a self-mapping (indeed identic). Observe sequences (xn), (yn) ⊆ X
such that F (d(xn, yn)) < b + 1

n , n ∈ N. We will differ two cases, first of them when
there exists subsequence such that Txnk

6= Tynk
, k ∈ N. In that case,

b ≤ F (d(Txnk
, T ynk

) ≤ F (d(xnk
, ynk

))− τ

< b+
1

nk
− τ.
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Hence, as k →∞, we get b ≤ b− τ , so this case is impossible.
If τ ≥ 1, then Txn = Tyn, n ∈ N, since otherwise

b ≤ F (d(Txn, T yn) ≤ F (d(xn, yn))− τ

< b+
1

n
− τ

< b,

which yields to the contradiction. If this is not the case, then there exists some n0 ∈ N
such that

1

n0
< τ <

1

n0 − 1
,

and

d(xn, yn) < b+
1

n
=⇒ Tnxn = Tnyn, n ≥ n0.

For arbitrary x ∈ X such that there exists some y ∈ X\{x} such that d(x, y) < b+ 1
n0

,

define an open ball with the center x and radius t where F (t) < b+ 1
n0

:

U = K(x, t) = {y ∈ X | d(x, y) < t}.

The mapping F is locally constant, i.e., is constant on U for each specifically chosen
x.
Let z ∈ X such that Ty = z for any y ∈ U . If there exists some n ∈ N such that
Tnz = Tn+1z, then Tnz is a fixed point of T . Alternatively, we can apply (2.1) for
any two successors in the iterative sequence (Tnz) and similarly as in (2.3), we have

b ≤ F (d(Tnz, Tn+1z)) ≤ Fd(z, Tz)− nτ, n ∈ N.

By letting n→∞, it follows that this is impossible since −nτ → −∞ as n→∞.
From (i) and (ii), follows the existence of a fixed point for the mapping T .
Assume that there is some y ∈ X a fixed point of the mapping T different than x∗.
In that case, because d(x∗, y) > 0,

F (d(x∗, y)) = F (d(Tx∗, T y)) ≤ F (d(x∗, y))− τ < F (d(x∗, y)) ,

which is impossible, so there is no fixed point of T except x∗. �

Remark 2.4. Observe that the previous result is obtainable if we assume that F is
increasing, meaning 0 < x ≤ y =⇒ F (x) ≤ F (y), instead of being strictly increasing
as in (F1).

In [16], the authors discussed on the relation between F -contraction and F ∗ con-
traction, and gave adequate examples. Par example, F (t) = 1

tn , t ∈ (0,∞), is contin-

uous but it does not fulfill (F3) for n ≥ 1. On the other hand, F (t) = −
(

1
t+[t]

)m
,

t ∈ (0,∞), assuming that m ∈ (0, 1
a ) for some a > 1, is not continuous, but (F3) holds

for any k ∈ ( 1
a , 1). And of course, there are functions like F (t) = ln(t), t ∈ (0,∞),

being both in F and F∗.
When we talk about the relation between simple F -contraction on one side and F -
contraction, respectively F ∗-contraction, on the other, evident conclusion is presented
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in next two lemmas. proofs are omitted since they are direct consequence of definitions
of F -contraction, F ∗-contraction and simple F -contraction.

Lemma 2.5. Any F -contraction is a sF -contraction.

Lemma 2.6. Any F ∗-contraction is a sF -contraction.

Example 2.7. By introducing the simple F -contraction, we have constructed a su-
perset of F and F∗. There are also functions in F \ \ (F ∪ F∗), like

F (t) =

{
− 1

t , if t ∈ (0, 1),

− 1
2t , if t ∈ [1,∞).

.

For any k ∈ (0, 1),

tkF (t) =

{
− 1

t1−k , if t ∈ (0, 1),

− 1
2t1−k , if t ∈ [1,∞).

,

and limt→0+ t
kF (t) = −∞. It is also discontinuous, so F /∈ F ∪ F∗, but it is strictly

increasing, hence F ∈ F \. Also, inf F = −∞.

Example 2.8. We will give another example, when inf F 6= −∞. Let

F (t) =

{
−3 + t, if t ∈ (0, 1),

− 1
t , if t ∈ [1,∞).

.

It has a discontinuity at t = 1 and

tkF (t) =

{
−3tk + tk+1, if t ∈ (0, 1),

− 1
t1−k , if t ∈ [1,∞).

,

Observe that if we choose for F to be bounded below, then (F3) holds for any k ∈
(0, 1). But this function still is not in F since it does not fulfill (F2). However, F is
strictly increasing function, so an element of F \.

Remark 2.9. Mapping T : X 7→ X on a metric space (X, d) is called contractive
mapping if

d(Tx, Ty) < d(x, y).

If T is a sF -contraction, then

F (d(Tx, Ty)) ≤ F (d(x, y))− τ < F (d(x, y))

along with the fact that F is strictly increasing leads to the conclusion that T is a
contractive mapping.
Same remark holds for F -contraction and F ∗-contraction having in mind previous
corollaries.

The same principle can be applied in the case of F -Suzuki contraction. We will
define F -Suzuki contraction and simple F -Suzuki contraction.
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Definition 2.10. Let (X, d) be a metric space. A mapping T : X 7→ X is said to
be a simple F -Suzuki contraction (sF -Suzuki contraction) if there exists τ > 0 and
F ∈ F \ such that for all x, y ∈ X with Tx 6= Ty

1

2
d(x, Tx) < d(x, y) =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), x, y ∈ X. (2.4)

Obviously, any F -Suzuki contraction, and also F ∗-Suzuki contraction is a simple
F -Suzuki contraction.

Lemma 2.11. F -Suzuki contraction is a simple F -Suzuki contraction.

Lemma 2.12. F ∗-Suzuki contraction is a simple F -Suzuki contraction.

The question that naturally raises is can we obtain analogous existence and unique-
ness result for F -Suzuki contraction and simple F -Suzuki contraction as was already
done for F ∗-Suzuki contraction.

Theorem 2.13. Let (X, d) be a complete metric space and T : X 7→ X a simple
F -Suzuki contraction. Then T has a unique fixed point x∗ ∈ X and, for every x ∈ X,
a sequence (Tnx) is convergent to x∗.

Proof. Choose arbitrary x0 ∈ X and observe the iterative sequence xn = Txn−1,
n ∈ N. If xn = Txn, then the existence part is done, otherwise, for any n ∈ N,

1

2
d(xn, Txn) < d(xn, xn+1),

so

F (d(xn+1, xn+2)) ≤ F (d(xn, xn+1))− τ, (2.5)

As in the proof of Theorem 2.3, by the principle of mathematical induction, we can
prove that

F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ.

Further discussion will depend on the existence of a lower boundary of the range of
F .
(i) If we suppose that (F2) holds, then

lim
n→∞

d(xn, xn+1) = 0.

In order to prove that (xn) ⊆ X is a Cauchy sequence, thus convergent, assume
contrary that there exists ε > 0 and strictly increasing sequences (nk), (mk) ⊆ N such
that nk < mk, k ∈ N,

d(xnk
, xmk

) ≥ ε and d(xnk
, xmk−1) < ε,

defined same as in the proof of Theorem 2.3. Let k0 such that d(xnk
, xnk+1) < ε for

k ≥ k0, then, starting from k0, we have

d(xnk
, xmk

) ≥ ε > 1

2
d(xnk

, xnk+1),
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and therefore,

F (ε) = lim
k→∞

F (d(xnk+1, xmk+1))

≤ lim
k→∞

F (d(xnk
, xmk

))− τ

= F (ε)− τ.
Recall that limk→∞ d(xnk

, xmk
) = ε and also

d(xnk+1, xmk+1) ≤ d(xnk
, xmk

)− d(xnk+1, xnk
)− d(xmk

, xmk+1)

d(xnk+1, xmk+1) ≤ d(xnk+1, xnk
) + d(xnk

, xmk
) + d(xmk

, xmk+1),

so limk→∞ d(xnk+1, xmk+1) = ε. Hence we get the contradiction. Consequently,
(xn) ⊆ X is a Cauchy sequence in a complete metric space, thus convergent. If
limn→∞ xn = x∗ ∈ X, then

F (d(xn+1, Tx
∗)) = F (d(Txn, Tx

∗))

≤ F (d(xn, x
∗)) .

Therefore, the condition (F2) implies limn→∞ d(xn+1, Tx
∗) = 0 and jointly with

limn→∞ xn = x∗, we obtain Tx∗ = x∗.
(ii) Elsewise, assume inf F ∈ R. If there exist some x ∈ X and n ∈ N such that
Tnx = Tn+1x, then Tnx is a fixed point of the mapping T . Assume that such do not
exist and denote with b = inf{F (d(Tnx, Tn+1x)) | x ∈ X} ∈ R (the set is, due to the
assumption, well-defined and non-empty). Let n0 ∈ N such that τ > 1

n0
and observe

the sequence (xm) such that

F (d(Tnmxm, T
nm+1xm)) < b+

1

m
≤ b+

1

n0
, m ≥ n0.

Moreover,

F (d(Tnxm, T
n+1xm)) < b+

1

n0
, n ≥ nm, m ≥ n0.

On the other hand, 1
2d(Tnxm, T

n+1xm) < d(Tnxm, T
n+1xm) implied by the assump-

tion Tnxm 6= Tn+1xm, n ≥ nm, m ≥ n0, leads to

b ≤ F (d(Tnm+kxm, T
nm+k+1xm))

≤ F (d(Tnmxm, T
nm+1xm))− kτ

< b+
1

n0
− kτ.

As k →∞, the above inequalities lead to the contradiction.

Hence, in both (i) and (ii), we may conclude that there exists a fixed point of the
mapping T .
Assume that there is some y ∈ X a fixed point of the mapping T different than x∗.
In that case, because 0 = 1

2d(x∗, Tx∗) < d(x∗, y),

τ + F (d(Tx∗, T y)) ≤ F (d(x∗, y)),

yields to d(x∗, y) < d(x∗, y) which is not possible, so x∗ is the unique fixed point of
T . �
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Corollary 2.14. Let (X, d) be a complete metric space and T : X 7→ X a F -Suzuki
contraction. Then T has a unique fixed point x∗ ∈ X and, for every x ∈ X, a sequence
(Tnx) is convergent to x∗.

Proof. Recall that any F -Suzuki contraction is a simple F -Suzuki contraction. This
result follows directly from Theorem 2.13. �

Similarly, we can obtain the main result of [16].

Corollary 2.15. Let (X, d) be a complete metric space and T : X 7→ X a F ∗-Suzuki
contraction. Then T has a unique fixed point x∗ ∈ X and, for every x ∈ X, a sequence
(Tnx) is convergent to x∗.

Proof. Any F ∗-Suzuki contraction is a sF -Suzuki contraction. �

Previous results show that, in general, (F2) and (F3), analogously (F ∗2 ) and (F ∗3 ),
can be omitted and we can still obtain existence and uniqueness of a fixed point for
both F -contraction and F -Suzuki contraction. The comment regarding F being in-
creasing instead of strictly increasing must be also taken into the consideration. In this
way, the class of F is much wider without superfluous constraints and F -contraction
still has a unique fixed point on a complete metric space and the sequence of successive
approximations converges to the fixed point of F -contraction for arbitrarily chosen
starting point. As mentioned at the beginning, there are numerous results concerning
different concepts of F -contraction. Even though it was not possible to gather them
all in this article, the same idea and adapted proof techniques are applicable in the
most of them.
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