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1. Introduction and preliminaries

Among celebrated fixed point results that allows us to prove the existence of solu-
tions to functional equations, we can highlight two.

On the one hand, we have the Banach fixed point result which can be stated as
follows ([11]):

Theorem 1.1. Let (X, d) be a complete metric spaces. Let f : X → X be a mapping
satisfying

d(f(x), f(y)) ≤ kd(x, y) (1.1)

for all x, y ∈ X and some k ∈ [0, 1[, then there exists a unique x∗ ∈ X such that
Fix(f) = {x ∈ X : f(x) = x} = x∗.
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We assume that the reader is familiar with basics of metric fixed point theory.
According to [12], the preceding result was obtained mainly in order to provide

the existence of solution to differential equations by means of the so-called successive
approximations scheme, i.e., the solution to the aforesaid kind of equations is obtained
as the limit, with respect to the topology induced by the metric τ(d), of the sequence
(fn(x0))n∈N where x0 is any point in X. Many applications of Theorem 1.1 to other
type of functional equations have been given in the literature (see, for instance, [11,
12]).

On the other hand, we have the so-called Kleene’s fixed point theorem. This result
allows us to develop a fixed point induction principle in partially ordered sets. In
order to state it, let us recall a few pertinent notions.

Following [9], a partially ordered set is a pair (Y,�) such that Y is a nonempty set
and � is a reflexive, antisymmetric and transitive binary relation on Y .

If (Y,�) is a partially ordered set and X ⊆ Y , then an upper bound for X in (Y,�)
is an element y ∈ Y such that x � y for all x ∈ X. An element z ∈ X is least in (X,�)
provided that z � x for all x ∈ X. Thus, the least upper bound for X in (Y,�), if
exists, is an element z ∈ Y which is an upper bound for X and, in addition, it is least
in the set (UB(X),�), where UB(X) = {u ∈ X : u is an upper bound for X}.

According to [5], a partially ordered set (X,�) is called chain-complete provided
that every increasing sequence has a least upper bound. Of course, a sequence (xn)n∈N
is called increasing whenever xn � xn+1 for all n ∈ N, where N stands for the set of
positive integer numbers. In addition, a mapping from a partially ordered set (X,�)
into itself is called �-continuous if the least upper bound of the sequence (f(xn))n∈N
is f(x) for every increasing sequence (xn)n∈N whose least upper bound exists and is x.

Now Kleene fixed point [5] can be restated as:

Theorem 1.2. Let (X,�) be a chain-complete partially ordered set. Let f be a
�-continuous mapping from (X,�) into itself. If there exists x0 ∈ X such that
x0 � f(x0), then f has a fixed point x∗ which is least in (Fix(f)∩ ↑� x0,�), where
↑� x0 = {x ∈ X : x0 � x}.

The preceding result was introduced mainly in order to develop a mathematical
technique that provides the meaning of recursive specifications in denotational se-
mantics for programming languages as the fixed point of a functional equation which
is obtained as the least upper bound, with respect to the partial order � on X, of
the iterative sequence (fn(x0))n∈N where x0 is any point in X with x0 � f(x0). We
refer the reader to [21] for a detailed treatment of the topic.

Taking into account the importance of the exposed celebrated results, Nieto and
Rodŕıguez-López posed the question whether it is possible to capture the spirit of
both results in one fixed point result. They provided a positive answer to such a
question.

Theorem 1.3 ([14]). Let (X, d,�) be a partially ordered complete metric spaces. If
f : X → X is a continuous and monotone function such that there exist k ∈ [0, 1[ and
x0 ∈ X with x0 � f(x0) and

d(f(x), f(y)) ≤ kd(x, y) (1.2)
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for all x, y ∈ X such that y � x, then f has a fixed point.

Observe that a partially ordered complete metric space (X, d,�) is a complete
metric space (X, d) endowed with a partial order � on X.

Although partially ordered metric spaces has been shown to be a useful tool in
the aforesaid realms, the symmetry of metrics limits their utility in many other ap-
plied fields. Concretely, in [19] Schellekens asked the question about the possibility of
developing a mathematical fixed point technique in order to analyze the asymptotic
behavior of the complexity of algorithms which was different from Kleene’s technique,
i.e., in such a way that the technique was based on a quantitative approach able to
provide information of the improvement in complexity when an algorithm is replaced
by another one. The answer to the posed question is affirmative and the aforemen-
tioned technique is based on the notion of quasi-metric (see Section 5 for a fuller
treatment of the topic).

A quasi-metric [13] (see also [10]), on a (nonempty) set X is a function d : X×X →
R+ such that for all x, y, z ∈ X :

(i) d(x, y) = d(y, x) = 0⇔ x = y,
(ii) d(x, z) ≤ d(x, y) + d(y, z).

Notice that a metric d on X is exactly a quasi-metric satisfying d(x, y) = d(y, x)
for all x, y ∈ X.

Every quasi-metric d on a set X induces a T0 topology τ(d) onX which has as a
base the family of all open d-balls {Bd(x, r) : x ∈ X, r > 0}. Here Bd(x, r) = {y ∈
X : d(x, y) < r} for all x ∈ X and r > 0. According to [10, 13], a quasi-metric space
(X, d) is said to be T1 provided that d(x, y) = 0⇔ x = y.

A (T1) quasi-metric space is a pair (X, d) such that X is a (nonempty) set and d
is a (T1) quasi-metric on X.

If d is a quasi-metric on a set X, then the functions d−1 and ds defined on X ×X
by d−1(x, y) = d(y, x) and ds(x, y) = max{d(x, y), d(y, x)} is a quasi-metric and a
metric on X, respectively. It must be pointed out that the quasi-metric d−1 is known
as the conjugated quasi-metric of d.

According to [10, 13], a quasi-metric space (X, d) is bicomplete provided that the
metric space (X, ds) is complete.

Every quasi-metric space (X, d) becomes a partially ordered set endowed with the
so-called specialization partial order �d, which is defined by x �d y ⇔ d(x, y) = 0
(see [10, 13]). Notice that when the quasi-metric d is T1 (or a metric), then the
specialization partial order �d is exactly the flat one, i.e., x �d y ⇔ x = y.

The Schellekens fixed point technique was based on the following quasi-metric
extension of the Banach fixed point theorem that also tries to capture the essence of
Kleene’s fixed point theorem.

Theorem 1.4 ([19]). Let (X, d) be a bicomplete complete quasi-metric space and let
f be a mapping from X into itself such that there exists k ∈ [0, 1[ with

d(f(x), f(y)) ≤ kd(x, y) (1.3)
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for all x, y ∈ X. Then there exists a unique x∗ ∈ X such that Fix(f) = x∗. Moreover,
if there exists x0 ∈ X such that x0 �d f(x0) then x∗ is the least upper bound of
(fn(x0))n∈N in (X,�d) and, thus, x∗ ∈↑�d

x0.

Since Schellekens proved the preceding result, the fixed point theory on bicomplete
quasi-metric spaces has aroused interest. The reader can find recent works in this
direction in [1, 2, 4, 6, 15, 16, 18, 17]. Motivated, on the one hand, by the applicability
of bicomplete quasi-metric spaces to Computer Science and, on the other hand, by the
fact that Theorem 1.4 only provides a partial extension of Theorem 1.3 to the context
of quasi-metric spaces, our main objective in this paper is to analyze the possibility
of extending the aforesaid result in such a way that Theorems 1.4 and 1.3 can be
retrieved as particular cases and, in addition, the spirit of Banach’s and Kleene’s
fixed point results are preserved. Hence the remainder of the paper is organized as
follows:

In Section 2 we present new general extensions of the aforementioned results and we
show that the the assumptions in the statements of our results cannot be weakened.
Moreover, we reveal that our results cannot be deduced from the celebrated Kleene’s
fixed point theorem. In addition, conditions that guarantee the uniqueness of fixed
point are provided. Furthermore, many examples are given in order to illustrate our
results. Section 3, deals with order boundedness of quasi metric space endowed with
the specialization partial order. In Section 4, we study the relationship of newly
obtained results with Kleene’s fixed point theorem. Section 5 is devoted to give an
application. Concretely, we introduce a new fixed point technique for getting upper
and lower asymptotic bounds for the solution to a kind of recurrence equations which
appears in a natural way in asymptotic analysis of algorithms.

2. The extension results

In this section our aim is to extend Theorem 1.3 to the context of partially ordered
quasi-metric spaces and provide a general version of Theorem 1.4. To this end, from
now on, given a quasi-metric space (X, d), we will say that a mapping f : X → X is
continuous if it is continuous from (X, τ(d)) into itself. Moreover, we will say that f
is conjugate continuous if it is continuous from (X, τ(d−1)) into itself. Furthermore,
we will say that f is s-continuous when it is continuous from (X, τ(ds)) into itself.

A natural way of extending Theorem 1.3 to the asymmetric context consists of re-
placing in its statement partially ordered complete metric spaces by partially ordered
bicomplete quasi-metric spaces. Thus one can conjecture that the next result would
be desirable.

“Let (X, d,�) be a partially ordered bicomplete quasi-metric space. If f : X → X
is a continuous and monotone function such that there exist k ∈ [0, 1[ and x0 ∈ X
with x0 � f(x0) and

d(f(x), f(y)) ≤ kd(x, y) (2.1)

for all x, y ∈ X such that y � x, then f has a fixed point.”

However, the next example shows that such a result does not hold.
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Example 2.1. Consider the set R endowed with the usual order � and with the
upper-quasi-metric du : R × R → R+ given by du(x, y) = max{y − x, 0} for all
x, y ∈ R. It is clear that (R,�, du) is a partially ordered bicomplete quasi-metric
space. Consider the function f : R→ R defined by f(x) = x+ 1 for all x ∈ R. Then
it is easily seen that f is a continuous monotone function satisfying condition (2.1)
(above) for all x ≥ y and, in addition, that 0 � f(0). Function f has no fixed point.

Notice that if a mapping f holds that

ds(f(x), f(y)) ≤ kd(x, y)

for all y � x, then it holds the contractive condition (2.1).
In the light of the above remark another natural way to extend Theorem 1.3 would

be as follows:

“Let (X, d,�) be a partially ordered bicomplete quasi-metric space. If f : X → X
is a continuous and monotone function such that there exist k ∈ [0, 1[ and x0 ∈ X
with x0 � f(x0) and

ds(f(x), f(y)) ≤ kd(x, y)

for all y � x, then f has a fixed point.”

Nevertheless, the next example shows that such a result does not hold in our
context.

Example 2.2. Consider the quasi-metric space ([1,∞[, dl), where

dl(x, y) = max{x− y, 0} for all x, y ∈ [1,∞[.

It is clear that the quasi-metric space ([1,∞[, dl) is bicomplete. Next consider, the
partial order �∗ defined on [1,∞[ as follows:

x �∗ y ⇔ there exists n ∈ N such that x, y ∈ [n, n+ 1[ and x � y.

Define the mapping f : [1,∞[→ [1,∞[ by f(x) = n+1
2 + x

2 for all x ∈ [n, n + 1[.

It is not hard to see that f is monotone with respect to �∗ and that 1 �∗ f(1) = 3
2 .

Moreover, a straightforward computation gives that f is continuous from ([1,∞[, dl)
into itself. Furthermore

x− y
2

= dsl (f(x), f(y)) ≤ 1

2
dl(x, y)

for all x, y ∈ [1,∞[ such that y �∗ x. Of course, f has no fixed point.

Inspired by the fact that the quasi-metric spaces provided by Examples 2.1 and 2.2
are only T0 we will propose an extension of Theorem 1.3 for T1 quasi-metric spaces.
To this end, the following result will play a crucial role.

Theorem 2.3. Let (X, d) be a bicomplete T1 quasi-metric space. Let f : X → X be
a function such that there exist k ∈ [0, 1[ and x0 ∈ X such that

ds(fn(x0), fn+1(x0)) ≤ kd(fn(x0), fn−1(x0)) (2.2)

for all n ∈ N. If f is continuous, then f has a fixed point.
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Proof. By condition (2.2) we immediately obtain that

ds(fn+1(x0), fn(x0)) ≤ knd(f(x0), x0)

for all n ∈ N. It follows that (fn(x0))n∈N is a Cauchy sequence in (X, ds). Indeed,
let m,n ∈ N. Of course we can assume that m ≥ n. Then

ds(fm(x0), fn(x0)) ≤ d(fm(x0), fm−1(x0)) + · · ·+ d(fn+1(x0), fn(x0))

≤
(
km−1 + km−2 · · ·+ kn

)
d(f(x0), x0)

=
kn − km

1− k
d(f(x0), x0)

≤ kn

1− k
d(f(x0), x0).

Since (X, d) is a bicomplete quasi-metric space there exists y ∈ X such that
(fn(x0))n∈N is convergent to y in (X, ds).

Next we prove that y is a fixed point of f . To this end, let ε > 0. Then, by the
continuity of f , there is n1 ∈ N such that d(f(y), f(fn(x0))) < ε

2 for all n ≥ n1. The
fact that y is the limit of the sequence in (X, ds) implies that there exists n2 ∈ N such
that ds(fn+1(x0), y) < ε

2 for all n ≥ n2. Hence we have that

d(f(y), y) ≤ d(f(y), f(fn(x0))) + d(fn+1(x0), y)

≤ d(f(y), f(fn(x0))) + ds(fn+1(x0), y)

<
ε

2
+
ε

2
= ε.

for all n ≥ max{n1, n2}. So d(f(y), y) = 0. Since (X, d) is a T1 quasi-metric space we
conclude that y = f(y). �

In the light of the preceding result we obtain the promised extension of Theorem
1.3.

Corollary 2.4. Let (X, d,�) be a partially ordered bicomplete T1 quasi-metric space.
Let f : X → X be a monotone function such that there exist k ∈ [0, 1[ and x0 ∈ X
with x0 � f(x0) and

ds(f(x), f(y)) ≤ kd(x, y) (2.3)

for all x, y ∈ X such that y � x. If f is continuous, then f has a fixed point.

Proof. It suffices to observe that the sequence (fn(x0))n∈N is increasing in (X,�)
and, in addition, it satisfies that

ds(fn(x0), fn+1(x0)) ≤ kd(fn(x0), fn−1(x0)) (2.4)

for all n ∈ N. Theorem 2.3 provides the conclusion. �

Observe that when the quasi-metric space in statement of Corollary 2.4 is exactly
a metric space then Theorem 1.3 is obtained as a consequence and, in addition, it
provides an extension of Theorem 1.4. It must be stressed that Theorem 2.3 and
Corollary 2.4 give less information about the fixed point than Theorem 1.4. This is
a consequence of the fact that a general partial order � is considered in the state-
ment of the aforesaid results instead of the particular specialization partial order �d.
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Example 4.3 shows that in the most general context the fixed point fails to belong
to Fix(f)∩ ↑� x0 and it is not least in (Fix(f)∩ ↑� x0,�) in general, respectively
(see Section 4). Moreover, Example 2.12 shows that, contrary to Theorem 1.4, the
uniqueness is not guaranteed by our new theorem (see Section 2).

Notice that if a mapping f holds that

ds(f(x), f(y)) ≤ kd(x, y)

for all y � x, then it holds also the inequality

ds(f(x), f(y)) ≤ kds(x, y) (2.5)

for all y � x. Hence it seems natural to wonder whether Theorem 1.4 could be
retrieved as a particular case of a metric version of Theorem 2.3 or Corollary 2.4 in
the spirit of Theorem 1.3. However, the answer to the posed question is negative
because there exist continuous functions that are not s-continuous functions such as
the next example shows.

Example 2.5. Let X = [0,∞) endowed with the usual partial order � and let d be
a quasi-metric on X which is defined by the following

d(x, y) =

{
y − x if x � y
x otherwise

for all x, y ∈ X. Define the mapping f : X → X by f(x) = x+1. The sequence ( 1
n )n∈N

converges to 0 according to τ(ds), but the sequence (f(
1

n
))n∈N does not converge to

1 according to τ(d−1). Indeed, d(1 +
1

n
, 1) = 1 +

1

n
and the limit of (1 +

1

n
)n∈N with

respect to τ(d−1) is 1. So f is not continuous according to τ(ds).

Notice that Example 2.2 shows that the T1 condition of the quasi-metric space
cannot be relaxed in order to guarantee the existence of fixed point.

In the following example we show that we cannot delete the bicompleteness in
Theorem 2.3.

Example 2.6. Consider the T1 quasi-metric space (]0, 1], du), where we have denoted
by du the restriction of the upper-quasi-metric introduced in Example 2.1 to the set
]0, 1]. It is not hard to check that it is not bicomplete. Consider, in addition, the
specilization partial order �du on [0, 1]. Define the mapping f :]0, 1] →]0, 1] by
f(x) = x

2 for all x ∈]0, 1]. Clearly, the sequence (fn(1))n ∈ N satisfies that

dsu(fn(1), fn+1(1)) ≤ 1

2
du(fn(1), fn−1(1))

for all n ∈ N. Of course, f is continuous. However, f has no fixed point.

In the next example we show that the contractive condition (2.2) cannot be relaxed
in the statement of Theorem 2.3.
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Example 2.7. Consider the T1 bicomplete quasi-metric space ([0, 1], dS), where dS
is defined on [0, 1] by

dS(x, y) =

{
y − x if y � x
1 if y ≺ x

Moreover, consider the partial order �= given on [0, 1] by x �= y ⇔ x = y.

Define the mapping f : [0, 1]→ [0, 1] by f(x) =
x+ 1

2
It is routine to check that f is continuous. Furthermore, there do not exist x ∈ [0, 1]

and k ∈ [0, 1[ such that the sequence (fn(x))n ∈ N satisfies that

dsS(fn(x), fn+1(x)) ≤ 1

2
dS(fn(x), fn−1(x))

for all n ∈ N. Clearly, f has no fixed point.

The continuity of the mapping in the statement of Theorem 2.3 can be replaced
by the conjugate continuity as the following result proves.

Theorem 2.8. Let (X, d) bicomplete T1 quasi-metric space. Let f : X → X be a
function and there exist k ∈ [0, 1[, x0 ∈ X such that the sequence (fn(x0))n∈N satisfies
that

ds(fn(x0), fn+1(x0)) ≤ kd(fn(x0), fn−1(x0)) (2.6)

for all n ∈ N. If f is conjugate continuous, then f has a fixed point.

Proof. The same arguments provided in the proof of Theorem 2.3 remain valid in order
to prove that the sequence (fn(x0))n∈N is Cauchy in (X, ds) and, thus it converges to
y ∈ X with respect to τ(ds).

It remains to prove that y is a fixed point of f . To this end, let ε > 0. Then, by
the continuity of f , there is n1 ∈ N such that d(f(fn(x0)), f(y)) < ε

2 for all n ≥ n1.
The fact that y is the limit of the sequence in (X, ds) implies that there exists n2 ∈ N
such that ds(fn+1(x0), y) < ε

2 for all n ≥ n2. Hence we have that

d(y, f(y)) ≤ d(y, (fn+1(x0))) + d(f(fn(x0)), f(y))

≤ ds(y, fn+1(x0)) + d(f(fn(x0)), f(y))

<
ε

2
+
ε

2
= ε.

for all n ≥ max{n1, n2}. So d(y, f(y)) = 0. Since (X, d) is a T1 quasi-metric space we
conclude that y = f(y). �

The following example shows that one of the both continuities is necessary in
Theorems 2.3 and 2.8.

Example 2.9. Consider the quasi-metric space ([1,∞[, d2), where

d2(x, y) =

{
y − x if y � x
2(x− y) if y ≺ x

It is clear that

|y − x| ≤ d2(x, y) ≤ 2|y − x|
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for all x, y ∈ [1,∞[. So the quasi-metric space ([1,∞[, d2) is bicomplete. Next con-
sider, the partial order �∗ on [1,∞[ also introduced in Example 2.2. Let f be the
mapping introduced also in Example 2.2. Then f is monotone with respect to �∗
and, besides, 1 �∗ f(1) = 3

2 . Moreover, the sequence (fn(1))n∈N satisfies that

ds2(fn(1), fn+1(1)) ≤ 1

2
d2(fn(1), fn−1(1),

since

ds2(f(x), f(y)) ≤ 1

2
d2(x, y)

for all x, y ∈ [1,∞[ such that y �∗ x. Furthermore, f is neither continuous nor
conjugate continuous. Indeed, let (xn)n∈N be the sequence in [1,∞[ given by xn =
2 − 1

n for all n ∈ N. A straightforward computation shows that (xn)n∈N converges

to 2 with respect to τ(ds2) and, thus, with respect to τ(d2) and τ(d−1
2 ). Nonetheless,

f(xn)n∈N does not converge to f(2) neither with respect to τ(d2) nor with respect to
τ(d−1

2 ). Indeed,

d2(f(2), f(xn)) = 1 +
1

n
and

d2(f(xn), f(2))) =
1

2
+

1

2n
for all n ∈ N. It is easy to check that f has no fixed point.

As a consequence of Theorem 2.8 we obtain;

Corollary 2.10. Let (X, d,�) be a partially ordered bicomplete T1 quasi-metric space.
Let f : X → X be a monotone mapping such that there exist k ∈ [0, 1[ and x0 ∈ X
with x0 � f(x0) and

ds(f(x), f(y)) ≤ kd(x, y)

for all x, y ∈ X such that y � x. If f is conjugate continuous, then f has a fixed
point.

It is worth to mention that versions of our results, Theorems 2.3 and 2.8, can be
obtained simply adapting appropriately the contractive condition (2.2) by this one

ds(fn(x), fn+1(x0)) ≤ kd(fn−1(x0), fn(x0))

for all n ∈ N or interchanging the condition “x0 � f(x0)” by “f(x0) � x0”in the
statements of Corollaries 2.4 and 2.10.

In the metric case the contractive condition

d(f(x), f(y)) ≤ kd(x, y)

for all y � x, is equivalent to

d(f(x), f(y)) ≤ kd(x, y)

for all x, y ∈ X such that either x � y or y � x. Of course the equivalence between
the both contractive conditions is due to the symmetry of the distance function.
The preceding fact inspires the natural question whether in the quasi-metric case the
inequality

ds(f(x), f(y)) ≤ kd(x, y)
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for all y � x, is equivalent to the following one

ds(f(x), f(y)) ≤ kd(x, y)

for all x, y ∈ X such that either x � y or y � x. Clearly the second contractive
condition implies the first one. However, the next example shows that they are not
equivalent.

Example 2.11. Consider the partially ordered quasi-metric space (R+, d2,�), where
d2 is defined as the quasi-metric introduced in Example 2.9. Define the mapping
f : R+ → R+ by f(x) = x

2 for all x ∈ R+. Then it is clear that

ds2(f(x), f(y)) ≤ 1

2
d2(x, y)

for all y � x. But does not exist k ∈ [0, 1[ such that the mapping f holds for all x � y
the inequality below

ds2(f(x), f(y)) ≤ kd2(x, y).

Indeed, if x � y, then

y − x = ds2(f(x), f(y))) ≤ kd2(x, y) = k(y − x).

So 1 � k.

Uniqueness

In spite of the fact that Theorem 1.4 yields uniqueness of the fixed point, our next
example shows that Theorem 2.3 and Corollary 2.4 do not assure such a uniqueness
as it happens with Theorems 1.2 and 1.3.

Example 2.12. Consider the T1 bicomplete quasi-metric space (dS , [0, 1]) introduced
in Example 2.7. It is clear that the mapping f : [0, 1] → [0, 1] defined by f(x) = x
for all x ∈ [0, 1] is monotone with respect to �= and, in addition, x �= f(x) for all
x ∈ [0, 1]. Thus (fn(x))n∈N is increasing in ([0, 1],�=) for all x ∈ [0, 1]. Besides, f is
continuous with respect to τ(dS). Furthermore,

0 = dsS(fn(x0), fn+1(x0)) ≤ kdS(fn(x0), fn−1(x0)) = 0

for all n ∈ [0, 1[ and for all x0 ∈ [0, 1] and, in addition,

0 = dsS(f(x), f(y)) ≤ kdS(x, y) = 0

for all x, y ∈ [0, 1] such that y �= x. Finally, it is obvious that [0, 1] matches up with
the set of fixed points of f .

In the light of the preceding example we provide sufficient conditions that guarantee
the uniqueness of fixed point. To this end, let us recall that a partially ordered set
(X,�) is called upward (downward) directed set provided that for each x, y ∈ X there
exists z ∈ X such that x � z (z � x) and y � z (z � y)(see, for instance, [8]).

Proposition 2.13. Let (X, d,�) be a partially ordered quasi-metric space such that
partially ordered set (X,�) is directed (upward or downward). Let f : X → X be a
monotone mapping such that there exist k ∈ [0, 1[ and

ds(f(x), f(y)) ≤ kd(x, y)
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for all x, y ∈ X such that y � x. Assume that f has a fixed point x∗ ∈ X. Then the
following assertions hold:

1) f has a unique fixed point.
2) If x∗ is the limit of the sequence (fn(x0))n∈N with respect to τ(ds), then x∗

is the limit of (fn(x))n∈N with respect to τ(ds) for all x ∈ X.

Proof. 1). We show the uniqueness. Assume with this aim that the partially ordered
set (X,≤) is upward directed. Suppose that y∗ ∈ Fix(f) with x∗ 6= y∗. Since (X,≤)
is upward directed there exists z ∈ X such that x∗ ≤ z and y∗ ≤ z. Since f is
monotone we have that fn(x∗) ≤ fn(z) and fn(y∗) ≤ fn(z). It follows, by the
contractive condition, that

ds(x∗, y∗) = ds(fn(x∗), fn(y∗)) ≤ ds(fn(z), fn(x∗)) + ds(fn(z), fn(y∗))

≤ kn [d(z, y∗) + d(z, x∗)]

for all n ∈ N. Whence we have that ds(x∗, y∗) = 0. Thus we conclude that x∗ = y∗.

2). We prove that (fn(x))n∈N converges to x∗ with respect to τ(ds) for all x ∈ X.
To this end, assume that (X,≤) is upward directed and let x ∈ X. Then there exists
z ∈ X such that x∗ ≤ z and x ≤ z. Then fn(x∗) ≤ fn(z) and fn(x) ≤ fn(z) for all
n ∈ N. Hence we get that

ds(fn(x), x∗) ≤ ds(fn(z), fn(x)) + ds(fn(z), fn(x∗)) ≤ kn [d(z, x∗) + d(z, x)] .

Whence we deduce that (fn(x))n∈N converges to x∗ with respect to τ(ds).

Similar arguments can be applied to get the thesis of the result whenever the
partially ordered set (X,≤) is downward directed. �

It must be stressed that Proposition 2.13 provides the information about the fixed
point, uniqueness and “global attraction”, that is also provided by the classical Banach
fixed point theorem (Theorem 1.3) and Schellekens fixed point theorem (Theorem 2.3).
Moreover, Proposition 2.13 is related to Theorem 3.1 provided in [3] for contractions
in the context of relational metric spaces.

Example 2.12 shows that the directedness of the partially ordered set cannot be
relaxed in order to guarantee the uniqueness of fixed point.

In the following example we show that the contractive condition in the statement of
Proposition 2.13 cannot be exchanged by the contractive condition in the statement
of Theorem 2.3 in order to obtain the uniqueness of the fixed point.

Example 2.14. Let (X, dS ,�) be the partially ordered bicomplete quasi-metric space
such that X = {0, 1}, where dS is the restriction of the quasi-metric introduced in
Example 2.7 to X and � is the usual partial order � on X. It is clear that (X, dS ,�)
is directed (upward and downward). Define the mapping f : X → X by f(0) = 0
and f(1) = 1. Of course f is monotone and it has 1 a fixed point. Moreover, it is not
hard to check that

dsS(fn(x0), fn+1(x0)) ≤ kdS(fn(x0), fn−1(x0))

for all x0 ∈ X. Of course, X matches up with the set of fixed points of f .
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Next results can be obtained from Proposition 2.13.

Corollary 2.15. Let (X, d,�) be a partially ordered bicomplete T1 quasi-metric space
such that partially ordered set (X,�) is directed upward. Let f : X → X be a
monotone function such that there exist k ∈ [0, 1[ and x0 ∈ X with x0 � f(x0) and

ds(f(x), f(y)) ≤ kd(x, y)

for all x, y ∈ X such that y � x. If f is either continuous or conjugate continuous,
then f has a unique fixed point x∗ and, in addition, the sequence (fn(x))n∈N converges
to x∗ with respect to τ(ds) for all x ∈ X.

Proof. The existence of fixed point x∗ is provided by Corollary 2.4 and Corollary
2.10. Moreover, the same results give that such a fixed point is provided as the limit
of the sequence (fn(x0))n∈N. The uniqueness and the convergence condition follow
from Proposition 2.13. �

It must be stressed that, in a similar way, a version of the preceding result can
be obtained when we have f(x0) � x0 and the partially ordered quasi-metric space
(X, d,�) is downward directed.

3. Order boundness

As pointed out in Section 1, on account of [13], every quasi-metric space (X, d)
becomes a partially ordered set endowed with the so-called specialization partial order
�d, which is defined by x �d y ⇔ d(x, y) = 0. Those quasi-metric spaces endowed
with the specialization partial order enjoy the following outstanding property, whose
proof can be found in [20, Proposition 2.1].

Proposition 3.1 ([20]). Let (X, d) be a quasi-metric space and let (xn)n∈N be an
increasing sequence in (X,�d). If (xn)n∈N converges to x ∈ X with respect to τ(d−1),
then x is an upper bound of (xn)n∈N. Moreover, if x is an upper bound of (xn)n∈N
and (xn)n∈N converges to x with respect to τ(d), then x is the least upper bound of
(xn)n∈N.

The preceding result inspires the following notion that we have named �-bounded.
Thus we will say that a sequence (xn)n∈N in a partially ordered quasi-metric space
(X, d,�) is upward �-bounded whenever it is increasing in (X,�) and the fact that it
converges to x ∈ X with respect to τ(d−1) implies that x is an upper bound of (xn)n∈N
in (X,�). Based on the new notion we give new results which allow us to relax the
T1 condition and the continuity of the mapping in the statements of Theorems 2.3
and 2.8.

Theorem 3.2. Let (X, d,�) be a partially ordered bicomplete quasi-metric space.
Let f : X → X be a function such that there exist k ∈ [0, 1[ and x0 ∈ X such that
(fn(x0))n∈N is an upward �-bounded sequence in (X,�) and

ds(f(z), fn+1(x0)) ≤ kd(z, fn(x0)) (3.1)

for all z ∈ X with fn(x0) � z for any n ∈ N. Then f has a fixed point y which is an
upper bound of (fn(x0))n∈N in (X,�) and, thus, y ∈↑� f(x0).
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Proof. Since (fn(x0))n∈N is an upward �-bounded sequence we have that it is in-
creasing and, thus, similar reasoning to that used in the proof of Theorem 2.3 allows
us to show that the sequence (fn(x0))n∈N is a Cauchy sequence in (X, ds). Since
(X, d) is a bicomplete quasi-metric space there exists y ∈ X such that (fn(x0))n∈N is
convergent to y in (X, ds). So it is convergent to y with respect to τ(d−1). The fact
that the sequence (fn(x0))k∈N is upward �-bounded yields that y is an upper bound
of (fn(x0))n∈N in (X,�) and, thus, fn(x0) � y for all n ∈ N, i.e., y ∈↑� f(x0). More-
over, by contractive condition (3.1), we get that d(f(y), f(fn(x0))) ≤ d(y, fn(x0)) for
all n ∈ N.

Next we prove that ds(f(y), y) = 0 and, thus, that f(y) = y. To this end, consider
ε > 0. Then there exists n0 ∈ N such that ds(y, fnk(x0)) < ε

2 for all nk ≥ n0.
Moreover we have that ds(f(y), f(fn(x0))) ≤ kd(y, fn(x0)) for all n ≥ n0, since y is
an upper bound of (fn(x0))n∈N. Whence we deduce, by contractive condition (3.1),
that

ds(f(y), y) ≤ ds(f(y), f(fn(x0))) + ds(fn+1(x0), y)

≤ kd(y, fn(x0)) + ds(fn+1(x0), y)

<
ε

2
+
ε

2
= ε

for all n ≥ n0. Hence ds(f(y), y) = 0 and f(y) = y. �

Notice that Example 2.9 shows that in the statement of Theorem 3.2 we cannot
omit the order-boundness for increasing sequences.

When the partial order in the statement of Theorem 3.2 is exactly the specialization
order we retrieve as a particular case the results below. Observe that such results
extend Theorem 1.4 and refine Theorem 3.2.

Corollary 3.3. Let (X, d) be a bicomplete quasi-metric space. Let f : X → X be a
function such that there exist k ∈ [0, 1[ and x0 ∈ X such that (fn(x0))n∈N is increasing
in (X,�d) and

ds(f(y), fn+1(x0)) ≤ kd(y, fn(x0)) (3.2)

for all z ∈ X with fn(x0) �d z for any n ∈ N. Then f has a fixed point y which is
the least upper bound of (fn(x0))n∈N in (X,�d) and, thus, y ∈↑�d

f(x0).

Proof. The existence of y ∈ X which is a fixed point of f and, in addition, y is an
upper bound of (fn(x0))n∈N in (X,�d) is guaranteed by Theorem 3.2 and Proposition
3.1. Notice that the proof of Theorem 3.2 gives that (fn(x0))n∈N is convergent to y
in (X, ds). Hence (fn(x0))n∈N is convergent to y with respect to τ(d). Next we prove
that y is the least upper bound of (fn(x0))n∈N. Indeed, assume that there exists
z ∈ X which is an upper bound of (fn(x0))n∈N and z �d y. Then d(fn(x0), z) for all
n ∈ N and d(z, y) = 0. Moreover, for all n ∈ N, we have that

d(y, z) ≤ d(y, fn(x0)) + d(fn(x0), z) = d(y, fn(x0)).

It follows that d(y, z) = 0, since (fn(x0))n∈N is convergent to y with respect to τ(d).
We conclude that y is the least upper bound of (fn(x0))n∈N in (X,�d). �
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In the light of the preceding corollary we obtain the following results whose proof
we omit.

Corollary 3.4. Let (X, d) be a bicomplete quasi-metric space. Let f : X → X be a
monotone function such that there exist k ∈ [0, 1[ and x0 ∈ X such that (fn(x0))n∈N
is increasing in (X,�d) and

d(f(y), fn+1(x0)) ≤ kd(y, fn(x0)) (3.3)

for all z ∈ X with fn(x0) �d z for any n ∈ N. Then f has a fixed point y which is
the least upper bound of (fn(x0))n∈N in (X,�d) and, thus, y ∈↑�d

f(x0).

Corollary 3.5. Let (X, d) be a bicomplete quasi-metric space. Let f : X → X be a
monotone function with respect to �d such that there exist k ∈ [0, 1[ and x0 ∈ X with
x0 �d f(x0) and

d(f(x), f(y)) ≤ kd(x, y) (3.4)

for all x, y ∈ X such that y �d x. Then f has a fixed point y which is the least upper
bound of (fn(x0))n∈N in (X,�d) and, thus, y ∈↑�d

x0.

In the following, a partially ordered quasi-metric space (X, d,�) will be called
upward �-bounded provided that every increasing sequence is upward �-bounded.

Of course, by Proposition 3.1, every bicomplete quasi-metric space (X, d) is an
instance of upward �d-bounded quasi-metric space. However, every partially ordered
bicomplete quasi-metric space (X, d,�) is not always upward �-bounded such as the
next example shows.

Example 3.6. Consider the bicomplete quasi-metric space (R, dl), where dl is the
quasi-metric defined by dl(x, y) = max{x − y, 0} for all x, y ∈ R. Endow R with the
partial order � defined by x � y ⇔ y ≤ x. Clearly d−1

l = du. Take the sequence
(xn)n ∈ N with xn = −n for all n ∈ N. Then it is clear that such a sequence is
increasing in (R,�) and convergent to 0 with respect to τ(du). However, 0 is not an
upper bound of (xn)n ∈ N in (R,�).

The next results are obtained as a particular case of Theorem 3.2 when the partially
ordered quasi-metric space (X, d,�) is upward �-bounded.

Corollary 3.7. Let (X, d,�) be an upward �-bounded bicomplete quasi-metric space.
Let f : X → X be a function such that there exist k ∈ [0, 1[ and x0 ∈ X such that
(fn(x0))n∈N is increasing and

ds(f(y), fn+1(x0)) ≤ kd(y, fn(x0)) (3.5)

for all z ∈ X with fn(x0) � z for any n ∈ N.Then f has a fixed point y which is an
upper bound of (fn(x0))n∈N in (X,�) and, thus, y ∈↑� f(x0).

Corollary 3.8. Let (X, d,�) be an upward �-bounded bicomplete quasi-metric space.
Let f : X → X be a monotone function such that there exist k ∈ [0, 1[ and x0 ∈ X
such that x0 � f(x0) and

ds(f(y), fn+1(x0)) ≤ kd(y, fn(x0)) (3.6)

for all z ∈ X with fn(x0) � z for any n ∈ N.Then f has a fixed point y which is an
upper bound of (fn(x0))n∈N in (X,�) and, thus, y ∈↑� x0.
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It is worth to mention that versions of the exposed results adapting appropriately
the notion of upward �-boundedness to the case of decreasing sequences (downward
�-boundness), interchanging the contractive condition (3.1) for this one

d(f(y), fn+1(x0)) ≤ kd(fn(x0), y) (3.7)

for all y ∈ X with y �d fn(x0) and for any n ∈ N, and considering the condition
“f(x0) � x0”.

4. Kleene’s fixed point theorem: The relationship

It seems natural to wonder if our main results (Theorems 2.3, 2.8 and 3.2) can be
derived from the celebrated fixed point theorem of Kleene (Theorem 1.2).

However, this question has a negative answer, even when the specialization order
is under consideration, such as Example 4.1 and 4.2 show.

Example 4.1. Let ([0, 1[, dS) be the bicomplete quasi-metric space where the quasi-
metric dS has been introduced in Example 2.7. Consider the usual partial order �
on [0, 1[. Moreover, consider the sequence (xn)n∈N in [0, 1[ given by xn = 1− 1

2n for
all n ∈ N. It is clear that sequence (xn)n∈N is increasing in ([0, 1[,�). However, it
is obvious that it has not least upper bound in ([0, 1[,�). Therefore ([0, 1[,�) is not
chain-complete.

Example 4.2. Consider the bicomplete quasi-metric space ([0,∞[, dl), where the
quasi-metric dl is defined on [0,∞[ by dl(x, y) = max{x − y, 0}. Then it is clear
that x �dl y ⇔ x � y, where � denotes the usual partial order on [0,∞[. Consider
the sequence (xn)n∈N in [0,∞[ given by xn = n for all n ∈ N. Obviously (xn)n∈N is
increasing in ([0,∞[,�dl) but it has not least upper bound. Consequently, ([0,∞[,�dl
) is not chain-complete.

A natural question, that Theorems 2.3, 2.8 and 3.2 do not answer, is whether the
fixed point guaranteed by the aforementioned results is least in (Fix(f)∩ ↑� x0,�).
In fact we show that the aforementioned results do not assure that the fixed point
belongs to ↑� x0 even if the partial order � is exactly �d.

Example 4.3. Let (X, dS ,�=) be the partially ordered T1 bicomplete quasi-metric
space such that X = {0, 1}, dS is the quasi-metric introduced in Example 2.14 and
�= the partial order given by x �= y ⇔ x = y. Define the mapping f : X → X
by f(1) = 1 and f(0) = 1. Of course, f is continuous and conjugate continuous.
Moreover, (fn(0))n∈N is increasing in (X,�=) and

dsS(fn(0), fn+1(0)) ≤ kdS(fn(0), fn−1(0))

holds for all n ∈ N with n ∈ N. Clearly 1 is the fixed point provided by Theorems 2.3
and 2.8. Observe, in addition, that (X, dS ,�=) is upward �=-bounded and that

ds(f(1), fn+1(0)) ≤ kd(1, fn(0))

for all n ∈ N. Theorem 3.2 gives 1 as fixed point of f . However 1 /∈↑�= 0.



488 ISMAT BEG, IREM EROĞLU AND OSCAR VALERO

In the light of the preceding example we provide conditions that warranty that
the fixed point is least in (Fix(f)∩ ↑� x0,�) when the specialization partial order is
considered.

Proposition 4.4. Let (X, d) be a bicomplete quasi-metric space. Let f : X → X be a
monotone function such that there exist k ∈ [0, 1[ and x0 ∈ X such that the sequence
(fn(x0))n∈N is increasing in (X,�d) and

d(f(y), fn+1(x0)) ≤ kd(y, fn(x0)) (4.1)

for all y ∈ X with fn(x0) �d y for any n ∈ N. Then f has a fixed point which is least
in (Fix(f)∩ ↑�d

f(x0),�d). Moreover, if x0 � f(x0) then the fixed point is least in
(Fix(f)∩ ↑�d

x0,�d).

Proof. Corollary 3.4 gives that f has a fixed point y which is the least upper bound
of (fn(x0))n∈N in (X,≤d) and, thus, that y ∈↑≤d

f(x0). Moreover, the fixed point y
is the limit of the sequence (fn(x0))n∈N with respect to τ(ds). Since (fn(x0))n∈N is
an increasing sequence and it is convergent with respect to τ(d−1) we have that y is
an upper bound of (fn(x0))n∈N. Thus y ∈ (Fix(f)∩ ↑≤d

f(x0)). Now we prove that
y is least in (Fix(f)∩ ↑≤d

f(x0),≤d). Suppose that z is another fixed point such that
f(x0) ≤d z. Since f is monotone and z ∈ Fix(f) we obtain that fn(x0) ≤d z for all
n ∈ N and, thus, that d(fn(x0), z) = 0 for all n ∈ N. Now let ε > 0. Since (fn(x0))n∈N
converges to y with respect to τ(ds) there is n0 ∈ N such that d(y, fn(x0)) < ε for all
n ≥ n0. Hence we have that

d(y, z) ≤ d(y, fn(x0)) + d(fn(x0), z) < ε

for all n ≥ n0. So d(y, z) = 0. Therefore y ≤d z and y is least in (Fix(f)∩ ↑≤d

f(x0),≤d). Notice that the fact that y ∈↑≤d
x0 when y ∈↑≤d

f(x0) and x0 ≤d f(x0)
provides that a simple adaptation of the proof allows us to show that y is least in
(Fix(f)∩ ↑≤d

x0,≤d). �

As pointed out earlier, an appropriate version of the previous result can be stated
when downward �d-boundedness and contractive condition (3.7) are under consider-
ation.

5. An application to asymptotic analysis of recurrence equations

According to [7], recurrence equations appear in a natural way in complexity anal-
ysis of algorithms. Let us recall that such an analysis is based on determining the
quantity of resources needed by the algorithm in order to solve the problem for which
it has been designed. Typical resources, playing a central role in complexity analysis,
are running time of computing and the required memory space. Usually in order
to represent mathematically the resources consumed by an algorithm A a function
fA : N → (0,∞] is associated to A in such a way that f(n) matches up with the
quantity of resource (the complexity) taken by the algorithm to solve the problem
when the input data is of size n.

In general to get an exact expression of the function fA is unnecessary and it is
enough to provide asymptotic upper and lower bounds for fA. With this aim, the
following asymptotic formalism is required.
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Given g : N→ (0,∞], the statement fA ∈ O(g), means that there exist n0 ∈ N and
c ∈ R+ such that fA(n) � cg(n) for all n ∈ N with n0 � n. Hence g allows to give an
asymptotic upper bound of fA. Similarly, fA ∈ Ω(g) means that there exists n0 ∈ N
and c ∈ R+ such that cg(n) � f(n) for all n0 � n and, hence, that the function g
gives an asymptotic lower bound of f . If fA ∈ O(g) ∩ Ω(g), then fA ∈ Θ(g) and g
yields a tight asymptotic bound of fA. In all cases, note that through g we provide
an “approximate” information about fA.

In many cases, the mapping fA that gives the amount of resource taken by the
algorithm A to solve the problem can be obtained as the solution to a recurrence
equation. In 1995, Schellekens [19] developed a a fixed point technique in order to
contribute to the topological foundation of asymptotic complexity analysis of algo-
rithms based on quasi-metric spaces and the so-called complexity space. Let us recall,
that the complexity spaces is exactly the quasi-metric space (C, dC), where

C = {f : N→ R+ :

∞∑
n=1

2−nf(n) <∞} (5.1)

and dC is defined by

dC(f, g) =

∞∑
n=1

2−n max{ 1

g(n)
− 1

f(n)
, 0} (5.2)

On account of [19], the most important clases, computability point of view, of
algorithms satisfy the “convergence condition”

∑∞
n=1 2−nf(n) <∞.

Clearly the set C becomes a partially ordered set when we endow it with the partial
order �C given by f �C g ⇐⇒ f(n) � g(n) for all n ∈ N. Consider any functions
f, g ∈ C. Then, it is clear that there exist f(n) ∨ g(n) for all n ∈ N and, thus, we
have that f �C f ∨ g and g �C f ∨ g. Therefore, the partially ordered set (C,�C) is
directed upward.

Observe that, dC(f, g) = 0 ⇐⇒ f(n) � g(n) for all n ∈ N and thus �dC=�C .
Hence the value dC(f, g) = 0 can be interpreted as there is an improvement in com-
plexity when the algorithm whose complexity is represented by the function g is
replaced by the algorithm whose complexity is represented by the function f .

Shcellekens [19], showed that Theorem 1.4 can be applied to analyze the asymptotic
behavior of those algorithms whose resources are represented by a function which
satisfies a recurrence equation as follows:

T (n) =

{
c if n = 1
aT (n− 1) + h(n) if n ≥ 2

, (5.3)

where c > 0, a > 1 and h ∈ C such that h(n) <∞ for all n ∈ N.
Notice that the original class of algorithms analyzed by Schellekens is the Divide

and Conquer one which can satisfies a recurrence equation that can be retrieved as a
particular case from the preceding one.

In order to show the applicability of Theorem 1.4 Schellekens proved (see also
[18, 17]) that (Cc, dC) is a bicomplete quasi-metric space, where

Cc = {f ∈ C : f(1) = c},
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and introduced the monotone function Ψ : Cc → Cc defined by

ΨT (f)(n) =

 c if n = 1
af(n− 1) + h(n) if n ≥ 2 (5.4)

for all f ∈ Cc. It is clear that fT ∈ Cc is a solution to (5.3) if and only if it is a fixed
point of ΨT . Moreover, he showed that ΨT satisfies

dC(ΨT (f),ΨT (g)) ≤ 1

2a
dC(f, g) (5.5)

for all f, g ∈ Cc. Finally, he showed that fT ∈ O(g) and fT ∈ Ω(f) making use of the
conditions ΨT (g) ≤C g and f ≤C ΨT (f), respectively.

A few more clases of recurrence equations have been analyzed in [18, 17].

In the light of the exposed facts, our aim in the remainder of the section is, on the
one hand, to show that the above specific technique can be formalized by means of
our developed theory and, on the other hand, to extent such a technique in order to
discuss the asymptotic behaviour of solutions to recurrence equations not considered
before in [19, 18, 17]. To this end, we introduce the next result.

Proposition 5.1. Let (X, d) be a bicomplete quasi-metric space such that (X,�d) is
upward directed. Let f : X → X be a monotone function with respect to �d such that
there exist k ∈ [0, 1[ with

d(f(x), f(y)) ≤ kd(x, y) (5.6)

for all x, y ∈ X such that y �d x. If there exists x0, y0 ∈ X such that x0 �d f(x0)
and f(y0) �d y0, then f has a unique fixed point y with y ∈↑�d

x0∩ ↓�d
y0.

Proof. Corollary 3.5 gives that f has a fixed point y such that y ∈↑≤d
x0. Besides

the same corollary yields that (fn(x0))n∈N converges to y with respect to τ(ds). It
follows, by Proposition 2.13, that y is the unique fixed point of f and, in addition that
y is the limit of (fn(x))n∈N with respect to τ(ds) for all x ∈ X. It follows that, given
ε > 0, there exists n0 ∈ N such that d(y, fn(y0)) ≤ ds(y, fn(y0)) < ε for all n ≥ n0.
Next we show that y ∈↓≤d

y0. Indeed, the monotony of f provides that fn(y0) ≤d y0

and, hence, that d(fn(y0), y0) = 0 for all n ∈ N. Therefore

d(y, y0) ≤ d(y, fn(y0)) + d(fn(y0), y0) < ε

for all n ≥ n0. Whence we conclude that y ∈↓≤d
y0. So y ∈↑≤d

x0∩ ↓≤d
y0. �

Observe that the function ΨT satisfies contractive condition (5.5) and, thus, it
fulfills the contractive condition in the statement of the preceding proposition, i.e.,

dC(ΨT (f),ΨT (g)) ≤ 1

2a
dC(f, g)

for all g �C f . So Schellekens technique can be retrieved as a particular case of the
general technique introduced in Proposition 5.1. However, it must be pointed out that
the aforementioned proposition only requires to check the contractive condition for
those functions order related and not for all functions in Cc, which is an improvement.
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Next we consider the more general recurrence equation given by

T (n) =

 c if n = 1
a(n)T (b(n)) + h(n) if n ≥ 2 (5.7)

where c ∈ R+, h ∈ C, a : N →]0,∞[ with a(n) > 1 for all n ∈ N and b : N → N with
b(n) < n and b(n) � b(m) for all n,m ∈ N with n � m.

Define the functional Ψ : Cc → Cc by

ΨT (f)(n) =

 c if n = 1
a(n)f(b(n)) + h(n) if n ≥ 2 (5.8)

for all f ∈ Cc. It is clear that fT ∈ Cc is a solution to (5.8) if and only if it is a fixed
point of ΨT .

Obviously ΨT is monotone with respect to �dC and

dC(ΨT (f),ΨT (g)) =

∞∑
n=1

2−n max

(
1

ΨT (g)(n)
− 1

ΨT (f)(n)
, 0

)

=

∞∑
n=1

2−n

(
1

ΨT (g)(n)
− 1

ΨT (f)(n)

)

=

∞∑
n=1

2−n

(
a(n)f(b(n))− a(n)g(b(n))

(a(n)g(b(n)) + h(n))(a(n)f(b(n)) + h(n))

)

�
∞∑
n=1

2−n

(
a(n)f(b(n))− a(n)g(b(n))

a2(n)g(b(n))f(b(n))

)

=

∞∑
n=1

2−n
1

a(n)

(
1

g(b(n))
− 1

f(b(n))

)

� 1

2

∞∑
n=1

2−n

(
1

g(b(n))
− 1

f(b(n))

)

� 1

2
dC(f, g)

for all f, g ∈ C such that g �dC f . The existence and uniquness of the fixed point
fT ∈ C of ΨT follow from that a(n) > 1 for all n ∈ N and Corrolary 14 and Corrolary
40.

The next result, which can be derived immediately from Proposition 5.1, provides
the technique which is able to yield the asymptotic bounds of a solution to recurrence
equation (5.7).
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Theorem 5.2. If there exists f, g ∈ Cc such that f �dC ΨT (f) and ΨT (g) �dC g,
then the unique solution fT to recurrence equation (5.7) satisfies fT ∈ Ω(f) ∩ O(g).

Finally, we illustrate the method given by the previous theorem. To this end, let
consider the following recurrence equation

T (n) =

 c if n = 1
an2 + nT (n− 1) if n ≥ 2 . (5.9)

This recurrence equation can be recovered from (5.7) taking a(n) = n, b(n) = n−1
for all n ∈ N with n ≥ 2 and h(n) = an2 for all n ∈ N.

Now let us consider the function gr ∈ Cc given by

gr(n) =

 c if n = 1
rn! if n ≥ 2 (5.10)

and take the functional ΨT given by

ΨT (f)(n) =

 c if n = 1
an2 + nf(n− 1) if n ≥ 2 (5.11)

for all f ∈ Cc. Then, it is not hard to check that gr �dC ΨT (gr) if and only if
r � 2a+ c. Moreover, consider the function g′r ∈ Cc given by

g′r(n) =


c if n = 1

rn!− nr

2
if n ≥ 2 . (5.12)

Then, it is not hard to check that ΨT (g′r) �dC g′r if and only if r ≥ max{4a+ 2c, 6a},
Therefore, by Theorem 5.2, we deduce that recurrence equation (5.7) has a unique

solution fT ∈ Cc such that fT ∈ Ω(g2a+c) ∩ O(g′max{4a+2c,6a}). Consequently, fT ∈
Θ(n!), which agrees with what is stipulated in the literature ([7]).
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[14] J.J. Nieto, R. Rodŕıguez-López, Contractive mapping theorems in partially ordered sets and

applications to ordinary differential equations, Order 22(2005), 223-239.
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