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Abstract. In this paper, taking into account the P-property in the best proximity point theory,

we present a new and interesting construction method that is different from the method given in
[3] for fractals. First, we introduce the concept of a generalized iterated function system (in short

GIFS) constructed by a finite family of λ-contractions. Then, we present our main theorem in which

sufficient conditions are determined to obtain a fractal which is also an attractor of the mentioned
system. Finally, we support our results with some illustrative and attractive examples.
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1. Introduction and preliminaries

Geometric modeling of many irregular patterns in nature is a difficult process
in computer graphics. A significant class of these patterns emerges from physical
phenomena such as plants, clouds, trees. Since these patterns possess infinitely non-
smooth, highly structured geometries, standard geometry is useless to model these
objects. The concept of the fractal, which has enormous potential to model these
objects, was introduced by Mandelbrot [11]. One of the famous examples of fractals
is the Cantor set. To construct a classical Cantor set, let’s start with the segment
I0 = [0, 1] and remove an open interval of length 1

3 from center. Then, we have two

closed intervals
[
0, 13
]

and
[
2
3 , 1
]
. Let I1 =

[
0, 13
]
∪
[
2
3 , 1
]
. Repeating this process nth

times, we have the set In as the union of 2n closed intervals whose the length of each
3−n. Then, the Cantor set E is the intersection of In for all n ∈ N, that is, E =

⋂
n
In.
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Figure 1. Towards to Cantor set

Other famous fractals examples are the Koch curve and Sierpinski triangle (see
Figure 2 and Figure 3).
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Figure 2. Towards to Koch curve
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Figure 3. Towards to Sierpinski triangle

However, we know only a few methods to construct fractals. One of the most
common methods is the iterated function system established by Hutchinson [10]. An
iterated function system (in short IFS) consists of a metric space together with a finite
contraction mapping set. If we start with any compact subset of the metric space and
apply these mappings iteratively under certain conditions, we will come close to a
fixed compact subset called an attractor of the iterated function system or a fractal.
Further, IFS is an effective method for the construction of a wide variety of geometric
objects. Hence, there are many studies on this topic in the literature [1, 9, 12, 17, 18].
In this context, Hutchinson [10] obtained a fundamental theorem for an attractor of
an IFS based on the Banach fixed point result [5], and so the system became more
popular. Now, we remind some basic concepts related to iterated function systems:

We denote the family of all nonempty compact subsets of a metric space (Λ, ρ) by
C(Λ). Then, the mapping h : C(Λ)× C(Λ)→ [0,∞) defined by

h(P,Q) = max {δ(P,Q), δ(Q,P )}
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for all P,Q ∈ C(Λ) is the Pompeiu-Hausdorff metric induced by ρ where

δ(P,Q) = sup {ρ(κ, Q) : κ ∈ P}
= sup {inf{ρ(κ, η) : η ∈ Q} : κ ∈ P} .

It is well known that (C(Λ), h) is complete whenever (Λ, ρ) is complete.

Definition 1.1 Let (Λ, ρ) be a metric space and fi : Λ → Λ be mappings for all
i = 1, 2, · · · , N . The system {Λ; fi, i = 1, 2, · · · , N} is said to be an iterated function
system if the mappings fi are λi-contractions, that is, there exists λi in [0, 1) such
that for all κ, η ∈ Λ

ρ(fiκ, fiη) ≤ λiρ(κ, η)

for all i = 1, 2, · · · , N .

Now, we present Hutchinson’s famous result related to constructing a fractal via
an IFS.

Theorem 1.2 Let {Λ; fi, i = 1, 2, · · · , N} be an IFS on a complete metric space (Λ, ρ).
Then, the mapping T : C(Λ)→ C(Λ) defined by

TE =

N⋃
i=1

fi(E)

for all E ∈ C(Λ) is a λ-contraction mapping on complete metric space C(Λ) where
λ = max{λi : i = 1, 2, · · · , N}. Further, for arbitrary set Q ∈ C(Λ), it satisfies

lim
n→∞

TnQ = P,

where P is the attractor of the IFS.

On the other hand, Basha and Veeramani [8] introduced a nice concept of best
proximity point which extends the notion of fixed point. Let (Λ, ρ) be a metric space,
∅ 6= P,Q ⊆ Λ and T : P → Q be a mapping. If the intersection of P and Q is empty,
then the mapping T cannot have a fixed point. Hence, it is reasonable to investigate
the existence of a point κ ∈ P such that ρ(κ, Tκ) = ρ(P,Q) which is called a best
proximity point of the mapping T . A best proximity point of the mapping T is both
an optimal solution for the minimization problem minκ∈P ρ(κ, Tκ) and a fixed point
of it in case of P = Q = Λ. Due to these facts, this topic has been studied by many
authors [2, 4, 7, 13, 15, 16]. We will use the following subsets in the rest of paper.

P0 = {κ ∈ P : ρ(κ, η) = ρ(P,Q) for some η ∈ Q}
and

Q0 = {η ∈ Q : ρ(κ, η) = ρ(P,Q) for some κ ∈ P},
where ρ(P,Q) = inf{ρ(κ, η) : κ ∈ P and η ∈ Q}.

The following lemma is important for our main result.

Lemma 1.3 [6] Let P,Q,E and D be arbitrary compact subsets of a metric space
(Λ, ρ). Then, we have

h(P ∪ E,Q ∪D) ≤ max{h(P,Q), h(E,D)}.
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Considering the concept of proximal λ-contraction, the first remarkable result show-
ing the relation between the best proximity point and fractal has been obtained in
[3]. Here, we will establish this relationship in a different approach, thanks to the
λ-contractions and the following property.

Definition 1.4 [14] Let (Λ, ρ) be a metric space and ∅ 6= P,Q ⊆ Λ. Then, the pair
(P,Q) is said to have the Pρ-Property if

ρ(u1, v1) = ρ(P,Q)
ρ(u2, v2) = ρ(P,Q)

}
=⇒ ρ(u1, u2) = ρ(v1, v2)

for all u1, u2 ∈ P and v1, v2 ∈ Q.

Our main result in this paper is based on the following best proximity point theorem
given in [14].

Theorem 1.5 [14] Let (Λ, ρ) be a complete metric space, ∅ 6= P,Q ⊆ Λ with P0 6= ∅.
Assume that the pair (P,Q) has the Pρ-Property and P,Q are closed. If f : P → Q
is λ-contraction mapping satisfying f(P0) ⊆ Q0, then f has a unique best proximity
point.

Remark 1.6 From the proof of Theorem 1.5, it can be seen that the sequence {κn}
constructed by

ρ(κn, f(κn−1)) = ρ(P,Q)

for all n ∈ N with the initial point κ0 ∈ P0 converges to best proximity point of f .

2. Main results

We begin this section by revising some notions and definitions related to best
proximity point theory. Let (Λ, ρ) be a metric space and ∅ 6= P,Q ⊆ Λ. Throughout
this paper, we will use the following subfamilies of C(P ) and C(Q), respectively

(C(P ))0 = {E ∈ C(P ) : h(E,D) = H (C(P ), C(Q)) for some D ∈ C(Q)}
and

(C(Q))0 = {D ∈ C(Q) : h(E,D) = H (C(P ), C(Q)) for some E ∈ C(P )}
where

H (C(P ), C(Q)) = inf {h(E,D) : E ∈ C(P ) and D ∈ C(Q)} .

Definition 2.1 Let (Λ, ρ) be a metric space and ∅ 6= P,Q ⊆ Λ. Then, the pair
(C(P ), C(Q)) is said to have the Ph-Property if

h(U1, V1) = H(C(P ), C(Q))
h(U2, V2) = H(C(P ), C(Q))

}
=⇒ h(U1, U2) = h(V1, V2)

for all U1, U2 ∈ C(P ) and V1, V2 ∈ C(Q).

The following lemmas are crucial for our main result.
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Lemma 2.2 [3] Let P,Q be nonempty subsets of a metric space (Λ, ρ) and P0 6= ∅.
Then, we get

H (C(P ), C(Q)) = ρ(P,Q).

Lemma 2.3 [3] Let (Λ, ρ) be a metric space and ∅ 6= P,Q ⊆ Λ. If P0 6= ∅, then we
have (C(P ))0 6= ∅.

Lemma 2.4 [3] Let (Λ, ρ) be a metric space and ∅ 6= P,Q ⊆ Λ with P0 6= ∅. Then,
we have (C(P ))0 ⊆ C(P0).

The reverse of the inclusion given in Lemma 2.4 is not true in general as it can
be seen in Example 1 in [3]. However, we have the following lemma with the help of
Pρ-property.

Lemma 2.5 Let (Λ, ρ) be a metric space and ∅ 6= P,Q ⊆ Λ with P0 6= ∅. If the pair
(P,Q) has the Pρ-Property, then we have (C(P ))0 = C(P0).
Proof. From Lemma 2.4, we have (C(P ))0 ⊆ C(P0). Now, let E ∈ C(P0) be an
arbitrary set. Then, since E is a subset of P0, there exists ηκ ∈ Q0 such that

ρ(κ, ηκ) = ρ(P,Q)

for each κ ∈ E. Now, we show that ηκ ∈ Q0 is unique point satisfying ρ(κ, ηκ) =
ρ(P,Q) for each κ ∈ E. Suppose that there exist ηκ and η′κ ∈ Q0 with ηκ 6= η′κ for
some κ ∈ E such that

ρ(κ, ηκ) = ρ(P,Q)

ρ(κ, η′κ) = ρ(P,Q).

Since the pair (P,Q) has the Pρ-Property, we have

0 = ρ(κ,κ) = ρ(ηκ , η
′
κ).

This contradicts our assumption. Now, define the following subset of Q0:

W = {ηκ : ρ(κ, ηκ) = ρ(P,Q) for each κ ∈ E}.

We claim that W is a compact subset of Q satisfying h(E,W ) = ρ(P,Q).
To show the compactness of W , let us consider an arbitrary sequence {ηn} in W .

Then, from the definition of W , there exists {κn} in E such that

ρ(κn, ηn) = ρ(P,Q) (2.1)

for all n ≥ 1. Also, since E is a compact set, there exists a subsequence {κnk
} of

{κn} such that

κnk
→ κ∗ as k →∞ (2.2)

for some κ∗ ∈ E. Then, from the definition of W , there exists η∗ in W such that

ρ(κ∗, η∗) = ρ(P,Q). (2.3)

Now, since the pair (P,Q) has the Pρ-Property, from (2.1) and (2.3) we have

ρ(κnk
,κ∗) = ρ(ηnk

, η∗) (2.4)
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for all k ≥ 1. Taking limit k →∞ in equation (2.4), we get

ηκnk
→ η∗ as k →∞.

Hence, {ηn} has a convergent subsequence in W , and so W is compact.
Now, for the second part of the claim, we have to show that h(E,W ) = ρ(P,Q).

Considering the set W , we have

ρ(P,Q) ≤ ρ(κ,W )

= inf{ρ(κ, ζ) : ζ ∈W}
≤ ρ(κ, ηκ)

= ρ(P,Q)

for all κ ∈ E, and hence

δ(E,W ) = sup{ρ(κ,W ) : κ ∈ E}
= ρ(P,Q).

On the other hand, let ζ ∈ W be an arbitary point. Then, from the construction of
W , we say that there exists κζ ∈ E such that

ρ(κζ , ζ) = ρ(P,Q).

Therefore, we have

ρ(P,Q) ≤ ρ(ζ, E)

= inf{ρ(ζ, u) : u ∈ E}
≤ ρ(ζ,κζ)
= ρ(P,Q)

for all ζ ∈W , and hence

δ(W,E) = sup{ρ(ζ, E) : ζ ∈W}
= ρ(P,Q).

Thus, we have

h(E,W ) = max{δ(E,W ), δ(W,E)}
= ρ(P,Q).

Therefore, we get E ∈ (C(P ))0, and so (C(P ))0 = C(P0).

Lemma 2.6 Let (Λ, ρ) be a metric space and ∅ 6= P,Q ⊆ Λ with P0 6= ∅. If the pair
(P,Q) has the Pρ-Property, then the pair (C(P ), C(Q)) has the Ph-Property.
Proof. Let U1, U2 ∈ C(P ) and V1, V2 ∈ C(Q) satisfying

h(U1, V1) = H(C(P ), C(Q))

h(U2, V2) = H(C(P ), C(Q)).

Then, from Lemma 2.2 we have

h(U1, V1) = ρ(P,Q)

h(U2, V2) = ρ(P,Q).
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Therefore, we get
δ(U1, V1) = ρ(P,Q), (2.5)

δ(V1, U1) = ρ(P,Q), (2.6)

and
δ(U2, V2) = ρ(P,Q), (2.7)

δ(V2, U2) = ρ(P,Q). (2.8)

Hence, since V1 is compact, from (2.5) for all u1 ∈ U1 there exists vu1
∈ V1 such that

ρ(u1, vu1
) = ρ(P,Q).

Similarly, from (2.8), for all v2 ∈ V2, there exists uv2 ∈ U2 such that

ρ(v2, uv2) = ρ(P,Q).

Since the pair (P,Q) has Pρ-Property, we have

ρ(u1, uv2) = ρ(vu1
, v2).

Hence, we get

ρ(u1, U2) ≤ ρ(u1, uv2)

= ρ(vu1 , v2).

Then, we have

ρ(u1, U2) ≤ inf {ρ(vu1 , v2) : v2 ∈ V2}
= ρ(vu1 , V2)

≤ δ(V1, V2),

and so from last inequality we have

δ(U1, U2) = sup {ρ(u1, U2) : u1 ∈ U1} (2.9)

≤ δ(V1, V2).

On the other hand, similarly, from (2.6) and (2.7), we get

δ(V1, V2) ≤ δ(U1, U2). (2.10)

Therefore, from (2.9) and (2.10) we have

δ(V1, V2) = δ(U1, U2).

Similarly, we can obtain
δ(V2, V1) = δ(U2, U1),

and so we have

h(U1, U2) = max{δ(U1, U2), δ(U2, U1)}
= max{δ(V1, V2), δ(V2, V1)}
= h(V1, V2).

This shows that the pair (C(P ), C(Q)) has the Ph-Property.

Lemma 2.7 Let (Λ, ρ) be a metric space and ∅ 6= P,Q ⊆ Λ with P0 6= ∅. Assume that
the pair (P,Q) has the Pρ-Property and fi : P → Q are continuous mappings satisfying
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fi(P0) ⊆ Q0 for all i = 1, 2, · · · , N . Then, for the mapping T : C(P )→ C(Q) defined
as

TU =

N⋃
i=1

fi(U) (2.11)

we have T (C(P0)) ⊆ C(Q0).
Proof. Let E ∈ C(P0) be an arbitrary set. Then E is a compact subset of P0. Since
fi(P0) ⊆ Q0 for all i = 1, 2, · · · , N , we have

fi(E) ⊆ fi(P0) ⊆ Q0.

Also, since fi are continuous mappings and E is compact, we have fi(E) are compact
for all i = 1, 2, · · · , N . Therefore

TE =

N⋃
i=1

fi(E)

is a compact subset of Q0, and so TE ∈ C(Q0). Hence, the proof is done.

Remark 2.8 Under the assumptions of Lemma 2.7, we also have

T ((C(P ))0) ⊆ (C(Q))0

by using Lemma 2.5.

Definition 2.9 Let (Λ, ρ) be a metric space, ∅ 6= P,Q ⊆ Λ and fi : P → Q be
mappings for all i = 1, 2, · · · , N . The system {P,Q; fi, i = 1, 2, · · · , N} is said to
be a generalized iterated function system (in short GIFS) if for all i = 1, 2, · · · , N,
fi : P → Q are λi-contraction mappings.

Theorem 2.10 Let (Λ, ρ) be a complete metric space and {P,Q; fi : i = 1, 2, · · · , N}
be a GIFS, where P and Q are closed subsets of Λ. Assume that P0 6= ∅ and fi(P0) ⊆
Q0 for all i = 1, 2, · · · , N . If the pair (P,Q) has the Pρ-property, then the mapping
T : C(P ) → C(Q) given by (2.11) has a best proximity point E in C(P ). Moreover,
the sequence {En} constructed by

h(En, TEn−1) = H(C(P ), C(Q))

for all n ∈ N with the initial point E0 ∈ C(P0) converges to E with respect to h.

Remark 2.11 The subset E in Theorem 2.10 is called best attractor of the GIFS.
Proof of Theorem 2.10. Since P and Q are closed subsets of Λ, C(P ) and C(Q) are
closed subsets of the complete metric space (C(Λ), h). From Lemma 2.3, Lemma 2.5
and Remark 2.8 we have (C(P ))0 6= ∅ and T ((C(P ))0) ⊆ (C(Q))0. Further, from
Lemma 2.6 the pair (C(P ), C(Q)) has the Ph-Property. Now, we want to show that
T is λ-contraction, that is,

h(TU1, TU2) ≤ λh(U1, U2)
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for all U1, U2 ∈ C(P ) holds where λ = max{λ1, λ2, · · · , λN}. Let U1, U2 ∈ C(P ) be
arbitrary sets. Since fi are λi-contraction mappings for all i = 1, 2, ..., N , we have

δ(fi(U1), fi(U2)) = max{min{ρ(fiκ, fiη) : η ∈ U2} : κ ∈ U1}
≤ max{min{λiρ(κ, η) : η ∈ U2} : κ ∈ U1}
= λi max{min{ρ(κ, η) : η ∈ U2} : κ ∈ U1}
= λiδ(U1, U2)

≤ λδ(U1, U2) (2.12)

for all i = 1, 2, ..., N . Similarly, we get

δ(fi(U2), fi(U1)) ≤ λδ(U2, U1) (2.13)

for all i = 1, 2, ..., N . From (2.12) and (2.13) we have

h (fi(U1), fi(U2)) = max{δ(fi(U1), fi(U2)), δ(fi(U2), fi(U1))}
≤ max{λδ(U1, U2), λδ(U2, U1)}
= λmax{δ(U1, U2), δ(U2, U1)}
= λh(U1, U2)

for all i = 1, 2, ..., N . Hence, from Lemma 1.3 we get

h(TU1, TU2) = h

(
N⋃
i=1

fi(U1),

N⋃
i=1

fi(U2)

)
≤ max {h(fi(U1), fi(U2)) : i ∈ {1, 2, · · · , N}}
≤ λh(U1, U2).

Therefore, T is λ-contraction mapping. Hence, all assumptions of Theorem 1.5 are
satisfied, and so T has a unique best proximity point in C(P ). Therefore, the GIFS
{P,Q; fi : i = 1, 2, · · · , N} has a unique best attractor E in C(P ). Further, from
Remark 1.6 the sequence {En} constructed by

h(En, TEn−1) = H(C(P ), C(Q))

for all n ∈ N with the initial point E0 ∈ C(P0) converges to E with respect to h.

Now, we present some examples to illustrate and support our main result.

Example 2.12 Let Λ = R2 be endowed with the Euclidean metric ρ. Consider the
following closed subsets of Λ,

P = {(κ, η) : η = κ and 0 ≤ κ ≤ 1}

and

Q =
{

(κ, η) : η = κ −
√

2 and 0 ≤ κ ≤ 2
}
.

Then, we have ρ(P,Q) = 1, P0 = P and

Q0 =

{
(κ, η) : η = κ −

√
2 and

√
2

2
≤ κ ≤ 2 +

√
2

2

}
.
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Also, the pair (P,Q) has the Pρ-property. To see this, let u1, u2 ∈ P and v1, v2 ∈ Q
be arbitrary points satisfying

ρ(u1, v1) = ρ(P,Q) = 1
ρ(u2, v2) = ρ(P,Q) = 1.

(2.14)

Then, from (2.14) we have u1 = (κ1,κ1) and u2 = (κ2,κ2), v1 =
(

2κ1+
√
2

2 , 2κ1−
√
2

2

)
and v2 =

(
2κ2+

√
2

2 , 2κ2−
√
2

2

)
. In this case, we have

ρ(u1, u2) = ρ(v1, v2).

Now, define the mappings f1, f2 : P → Q as follows:

f1(κ, η) =

(
κ
3

+

√
2

2
,
η

3
−
√

2

2

)
and

f2(κ, η) =

(
κ
3

+
4 + 3

√
2

6
,
η

3
+

4− 3
√

2

6

)
.

Then, it is clear that fi(P0) ⊆ Q0 for i = 1, 2. Further, these mappings are 1
3 -

contractions. Hence, the system {P,Q; f1, f2} is a GIFS. Then, all assumptions of
Theorem 2.10 hold, and so T : C(P )→ C(Q) defined as

TE =

2⋃
i=1

fi(E)

has a unique best proximity point in C(P ). Therefore, the GIFS {P,Q; f1, f2} has a
unique best attractor and the sequence {En} constructed by

h(En, TEn−1) = H(C(P ), C(Q))

for all n ∈ N with the initial set E0 ∈ C(P0) converges to this best attractor with
respect to h.

Now we want to construct a few steps of the mentioned sequence {En} with the
initial set E0 = P ∈ C(P0). In this case, we have

E1 =

{
(κ, η) : η = κ and κ ∈

[
0,

1

3

]⋃ [
2

3
, 1

]}
,

E2 =

{
(κ, η) : η = κ and κ ∈

[
0,

1

32

]⋃ [
2

32
,

1

3

]⋃[
6

32
,

7

32

]⋃ [
8

32
, 1

]}
,

E3 =

{
(κ, η) : η = κ and κ ∈

[
0,

1

33

]⋃ [
2

33
,

1

32

]⋃
· · ·
⋃ [

26

33
, 1

]}
,

...

En =

{
(κ, η) : η = κ and κ ∈

[
0,

1

3n

]⋃ [
2

3n
,

1

3n−1

]⋃
· · ·
⋃ [

(3n − 1)

3n
, 1

]}
.

Deduce that limn→∞En which is the best attractor of GIFS {P,Q; f1, f2} is the
Cantor set. Further, Figure 4 shows a few steps of the sequence {En}:
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E0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Stage 1

E1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Stage 2

E2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Stage 3

E3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Stage 4

Figure 4. A few steps of the sequence {En}

Example 2.13 Let Λ = R3 be endowed with the taxicab metric ρ. Consider the
following closed subsets of Λ

P = {(κ, η, 0) : κ, η ∈ [0, 1]}

and

Q = {(κ, η, 1) : κ, η ∈ [0, 1]} .
Then, we have ρ(P,Q) = 1, P0 = P and Q0 = Q. Also, it is easy to see that the pair
(P,Q) has the Pρ-property. Define the mappings f1, f2 : P → Q as follows:

f1((κ, η, 0)) =
(κ

2
,
η

2
, 1
)

and

f2((κ, η, 0)) =

(
κ
2

+
1

2
,
η

2
+

1

2
, 1

)
.

Then, it is clear that fi(P0) ⊆ Q0 for i = 1, 2. Further, these mappings are 1
2 -

contractions. Hence, the system {P,Q; f1, f2} is a GIFS, and so all hypotheses of
Theorem 2.10 are satisfied. Therefore, T : C(P )→ C(Q) defined as

TE =

2⋃
i=1

fi(E)
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has a unique best proximity point in C(P ). So, the GIFS {P,Q; f1, f2} has a unique
best attractor and the sequence {En} constructed by

h(En, TEn−1) = H(C(P ), C(Q))

for all n ∈ N with the initial set E0 ∈ C(P0) converges to this best attractor with
respect to h.

Now we want to construct a few steps of the mentioned sequence {En} with the
initial set E0 = P ∈ C(P0). In this case, we have

E1 =
{(κ

2
,
η

2
, 0
)

: κ, η ∈ [0, 1]
}⋃{(

κ + 1

2
,
η + 1

2
, 0

)
: κ, η ∈ [0, 1]

}
=

1⋃
i=0

{(
κ + i

2
,
η + i

2
, 0

)
: κ, η ∈ [0, 1]

}
,

E2 =

22−1⋃
i=0

{(
κ + i

22
,
η + i

22
, 0

)
: κ, η ∈ [0, 1]

}

E3 =

23−1⋃
i=0

{(
κ + i

23
,
η + i

23
, 0

)
: κ, η ∈ [0, 1]

}

E4 =

24−1⋃
i=0

{(
κ + i

24
,
η + i

24
, 0

)
: κ, η ∈ [0, 1]

}

...

En =

2n−1⋃
i=0

{(
κ + i

2n
,
η + i

2n
, 0

)
: κ, η ∈ [0, 1]

}
.

Deduce that

lim
n→∞

En = {(ζ, ζ, 0) : ζ ∈ [0, 1]}

is the best attractor of GIFS {P,Q; f1, f2}. Further, Figure 5 shows a few steps of
the sequence {En}.
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Figure 5. A few steps of the sequence {En}

Taking P = Q = Λ in Theorem 2.10, we can deduce Theorem 1.2 which is the well
known result of constructing a fractal via IFS.
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