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Abstract. In this paper, taking into account the P-property in the best proximity point theory,
we present a new and interesting construction method that is different from the method given in
[3] for fractals. First, we introduce the concept of a generalized iterated function system (in short
GIFS) constructed by a finite family of A-contractions. Then, we present our main theorem in which
sufficient conditions are determined to obtain a fractal which is also an attractor of the mentioned
system. Finally, we support our results with some illustrative and attractive examples.

Key Words and Phrases: Fractals, best proximity point, P-property, iterated function systems.
2020 Mathematics Subject Classification: 28A80, 54H25, 47H10.

1. INTRODUCTION AND PRELIMINARIES

Geometric modeling of many irregular patterns in nature is a difficult process
in computer graphics. A significant class of these patterns emerges from physical
phenomena such as plants, clouds, trees. Since these patterns possess infinitely non-
smooth, highly structured geometries, standard geometry is useless to model these
objects. The concept of the fractal, which has enormous potential to model these
objects, was introduced by Mandelbrot [11]. One of the famous examples of fractals
is the Cantor set. To construct a classical Cantor set, let’s start with the segment
Iy = [0,1] and remove an open interval of length % from center. Then, we have two
closed intervals [0, %] and [%, 1] .Let I = [O, %] U [%, 1} . Repeating this process nth
times, we have the set I,, as the union of 2™ closed intervals whose the length of each
37 ™. Then, the Cantor set E is the intersection of I,, for all n € N, that is, F = [ I,,.
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FIGURE 1. Towards to Cantor set

Other famous fractals examples are the Koch curve and Sierpinski triangle (see
Figure 2 and Figure 3).
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FIGURE 2. Towards to Koch curve
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F1GURE 3. Towards to Sierpinski triangle

However, we know only a few methods to construct fractals. One of the most
common methods is the iterated function system established by Hutchinson [10]. An
iterated function system (in short IFS) consists of a metric space together with a finite
contraction mapping set. If we start with any compact subset of the metric space and
apply these mappings iteratively under certain conditions, we will come close to a
fixed compact subset called an attractor of the iterated function system or a fractal.
Further, IFS is an effective method for the construction of a wide variety of geometric
objects. Hence, there are many studies on this topic in the literature [1, 9, 12, 17, 18].
In this context, Hutchinson [10] obtained a fundamental theorem for an attractor of
an IFS based on the Banach fixed point result [5], and so the system became more
popular. Now, we remind some basic concepts related to iterated function systems:

We denote the family of all nonempty compact subsets of a metric space (A, p) by
C(A). Then, the mapping h : C(A) x C(A) — [0,00) defined by

h(P,Q) = max {6(P,Q),5(Q, P)}
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for all P,@Q € C(A) is the Pompeiu-Hausdorf{f metric induced by p where
o(P,Q) = sup{p(x,Q):x€ P}
= sup{inf{p(sr,n) :n € Q}: € P}.
It is well known that (C(A), k) is complete whenever (A, p) is complete.

Definition 1.1 Let (A, p) be a metric space and f; : A — A be mappings for all
i=1,2,---,N. The system {A; f;,i =1,2,--- , N} is said to be an iterated function
system if the mappings f; are \;-contractions, that is, there exists \; in [0,1) such
that for all »¢,n € A

p(fiz, fin) < Xip(>,n)
foralli=1,2,--- ,N.

Now, we present Hutchinson’s famous result related to constructing a fractal via
an IFS.

Theorem 1.2 Let {A; f;,i =1,2,--- , N} be an IFS on a complete metric space (A, p).
Then, the mapping T : C(A) — C(A) defined by

N
TE =J fi(E)

for all E € C(A) is a A-contraction mapping on complete metric space C(A\) where
A =max{\;:i=1,2,---, N}. Further, for arbitrary set Q € C(A), it satisfies
lim T"Q = P,

n—oo

where P is the attractor of the IFS.

On the other hand, Basha and Veeramani [8] introduced a nice concept of best
proximity point which extends the notion of fixed point. Let (A, p) be a metric space,
f#P,QCAandT:P — Q beamapping. If the intersection of P and Q is empty,
then the mapping T' cannot have a fixed point. Hence, it is reasonable to investigate
the existence of a point s € P such that p(sr,Ts) = p(P, Q) which is called a best
proximity point of the mapping T'. A best proximity point of the mapping 7" is both
an optimal solution for the minimization problem min,.cp p(5, T) and a fixed point
of it in case of P = @@ = A. Due to these facts, this topic has been studied by many
authors [2, 4, 7, 13, 15, 16]. We will use the following subsets in the rest of paper.

Py={s€ P:p(sxn) =p(P,Q) for some n € Q}
and
Qo ={n€Q:p(x,n) =p(P,Q) for some s € P},

where p(P, Q) = inf{p(s¢,n) : c € P and n € Q}.
The following lemma is important for our main result.

Lemma 1.3 [6] Let P,Q,E and D be arbitrary compact subsets of a metric space
(A, p). Then, we have

h(PUE,QU D) <max{h(P,Q),h(E,D)}.
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Considering the concept of proximal A-contraction, the first remarkable result show-
ing the relation between the best proximity point and fractal has been obtained in
[3]. Here, we will establish this relationship in a different approach, thanks to the
A-contractions and the following property.

Definition 1.4 [14] Let (A, p) be a metric space and ) # P,@Q C A. Then, the pair
(P, Q) is said to have the P,-Property if

plur,v1) = p(P,Q) -
P(U;U;) = p(P,Q) } = p(u1,uz) = p(v1,v2)

for all uy,us € P and vy, v2 € Q.

Our main result in this paper is based on the following best proximity point theorem
given in [14].

Theorem 1.5 [14] Let (A, p) be a complete metric space, ) # P,Q C A with Py # 0.
Assume that the pair (P,Q) has the P,-Property and P,Q are closed. If f : P — Q
is A-contraction mapping satisfying f(Po) C Qo, then f has a unique best proximity
point.

Remark 1.6 From the proof of Theorem 1.5, it can be seen that the sequence {3, }
constructed by

p(%ruf(%nfl)) = p(P7 Q)

for all n € N with the initial point s € Py converges to best proximity point of f.

2. MAIN RESULTS

We begin this section by revising some notions and definitions related to best
proximity point theory. Let (A, p) be a metric space and ) # P,@Q C A. Throughout
this paper, we will use the following subfamilies of C'(P) and C(Q), respectively

(C(P))y={FE € C(P): hE,D)=H (C(P),C(Q)) for some D € C(Q)}
and
(C@Q))y=1{DeC(Q):hE,D)=H (C(P),C(Q)) for some E € C(P)}

where
H(C(P),C(Q)) =inf{h(E,D): E€C(P)and D € C(Q)}.

Definition 2.1 Let (A, p) be a metric space and § # P,Q C A. Then, the pair
(C(P),C(Q)) is said to have the Pyp-Property if

h(Ur, V1) = H(C(P),C(Q))
h(Uz, V) = H(C(P),C(Q))

for all Uy,Us € C(P) and V1, V5 € C(Q).

} - h(Ul,UQ) = h(‘/lyvé)

The following lemmas are crucial for our main result.
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Lemma 2.2 [3] Let P,Q be nonempty subsets of a metric space (A, p) and Py # (.
Then, we get

H(C(P),C(Q) = p(P, Q).

Lemma 2.3 [3] Let (A, p) be a metric space and O # P,Q C A. If Py # 0, then we
have (C(P))o # 0.

Lemma 2.4 [3] Let (A, p) be a metric space and O # P,Q C A with Py # 0. Then,
we hate (C(P))y € C(Py).

The reverse of the inclusion given in Lemma 2.4 is not true in general as it can
be seen in Example 1 in [3]. However, we have the following lemma with the help of
P,-property.

Lemma 2.5 Let (A, p) be a metric space and O # P,Q C A with Py # 0. If the pair
(P, Q) has the P,-Property, then we have (C(P)), = C(F).

Proof. From Lemma 2.4, we have (C(P)), € C(Fy). Now, let E € C(F) be an
arbitrary set. Then, since F is a subset of Py, there exists 7, € Qg such that

p(3,15) = p(P, Q)

for each » € E. Now, we show that n,, € Qg is unique point satisfying p(3,7,.) =
p(P, Q) for each » € E. Suppose that there exist 7,, and 1, € Qo with n,, # n._ for
some s € F such that

p(oen) = p(PQ)
p(m.) = p(PQ).
Since the pair (P, Q) has the P,-Property, we have
0= p(3¢,2) = (e, 1l,)-
This contradicts our assumption. Now, define the following subset of Qq:

W = {n.. : p(3¢,m,) = p(P, Q) for each » € E}.

We claim that W is a compact subset of @ satisfying h(E, W) = p(P, Q).
To show the compactness of W, let us consider an arbitrary sequence {n,} in W.
Then, from the definition of W, there exists {sz,} in E such that

P(%nﬂ?n) :p(PvQ) (21)

for all n > 1. Also, since E is a compact set, there exists a subsequence {sz,, } of
{32, } such that

Ay, — % as k — 00 (2.2)
for some »* € E. Then, from the definition of W, there exists n* in W such that
p(",n") = p(P, Q). (2.3)

Now, since the pair (P, Q) has the P,-Property, from (2.1) and (2.3) we have
p(tns 7)) = p(inis ") (2.4)



464 MUSTAFA ASLANTAS, HAKAN SAHIN AND ISHAK ALTUN

for all k£ > 1. Taking limit & — oo in equation (2.4), we get
Moen, —> 1 @Sk — 00,
Hence, {n,} has a convergent subsequence in W, and so W is compact.
Now, for the second part of the claim, we have to show that h(E, W) = p(P, Q).

Considering the set W, we have

p(P,Q) < p(xW)
inf{p(s,¢) : ¢ € W}
p(5¢, 1)
p(P,Q)

IAN I IA

for all »z € F/, and hence
0(E,W) = sup{p(,W):sx € E}

On the other hand, let { € W be an arbitary point. Then, from the construction of
W, we say that there exists s, € F such that

p(3¢,C) = p(P, Q).

Therefore, we have

p(P,Q)

IN

(¢, E)
= inf{p({,u):ue E}

p(Cv %C)
p(P,Q)

IN

for all ¢ € W, and hence
(W, E)

sup{p(¢, E) : ( € W}
= p(P,Q).
Thus, we have
hE,W) = max{6(E,W),8(W,E)}
= p(PQ).
Therefore, we get E € (C(P))g, and so (C(P))g = C(P).
Lemma 2.6 Let (A, p) be a metric space and O # P,Q C A with Py # 0. If the pair
(P, Q) has the P,-Property, then the pair (C(P),C(Q)) has the Py-Property.
Proof. Let Uy,Us € C(P) and Vi,V € C(Q) satisfying
U, Vi) = H(C(P),C(Q))
Uz, V2) = H(C(P),C(Q)).
Then, from Lemma 2.2 we have
(Ui, V1) = p(P,Q)
h(Uz,V2) = p(P,Q).
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Therefore, we get

(Ui, V1) = p(P,Q), (2.5)

6(Vi,Ur) = p(P,Q), (2.6)
and

6(Uz, V2) = p(P,Q), (2.7)

§(Va,Uz) = p(P, Q). (2.8)
Hence, since V; is compact, from (2.5) for all u; € Uy there exists v,, € V; such that

p(ulavul) = p(P) Q)
Similarly, from (2.8), for all vy € V3, there exists u,, € Us such that
p(v27uv2) = p(Pv Q)
Since the pair (P, Q) has P,-Property, we have
p(u17 uvz) = p(v?h ) UQ)'
Hence, we get
p(u,Uz) < p(ur, ty,)
p(vm ) U2)'

Then, we have

p(ur,Us) < inf{p(vy,,v2) : ve € Va}
= p(vu,,V2)
< 0(V,Ve),
and so from last inequality we have
0(Uy,Us) = sup{p(u1,Us):u; € Ui} (2.9)
< 0(V,Va).
On the other hand, similarly, from (2.6) and (2.7), we get
0(V1, Vo) < 6(Uy, Us). (2.10)

Therefore, from (2.9) and (2.10) we have
5(V2, Va) = (U, U).
Similarly, we can obtain
6(Va, Vi) = 6(Uz, Uh),
and so we have
h(U1,Us) = max{d6(Uy,Us),0(Us,Uy)}
= max{0(V1,Va),0(Va,V1)}
= h(V1,V2).
This shows that the pair (C(P),C(Q)) has the Py-Property.

Lemma 2.7 Let (A, p) be a metric space and () # P,Q C A with Py # 0. Assume that
the pair (P, Q) has the P,-Property and f; : P — Q are continuous mappings satisfying
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fi(Po) € Qo foralli=1,2,--- ,N. Then, for the mapping T : C(P) — C(Q) defined
as

N
TU = | J £:(U) (2.11)
i=1
we have T'(C(Py)) C C(Qo).
Proof. Let E € C(P,) be an arbitrary set. Then E is a compact subset of Py. Since
fi(Py) CQq for all i =1,2,--- | N, we have

fi(E) C fi(Po) € Qo

Also, since f; are continuous mappings and E is compact, we have f;(E) are compact
foralli=1,2,--- , N. Therefore

N
TE = fi(E)

i=1

is a compact subset of g, and so TE € C(Qp). Hence, the proof is done.

Remark 2.8 Under the assumptions of Lemma 2.7, we also have

T((C(P))o) < (C(Q))o
by using Lemma 2.5.

Definition 2.9 Let (A,p) be a metric space, § # P,Q C A and f; : P — Q be
mappings for all ¢ = 1,2,--- | N. The system {P,Q; fi,i=1,2,--- ,N} is said to
be a generalized iterated function system (in short GIFS) if for all ¢ = 1,2,--- | N,
fi : P — @ are \;-contraction mappings.

Theorem 2.10 Let (A, p) be a complete metric space and {P,Q; f; :i=1,2,--- N}
be a GIFS, where P and Q are closed subsets of A. Assume that Py # 0 and f;(Py) C
Qo for alli=1,2,--- | N. If the pair (P,Q) has the P,-property, then the mapping
T:C(P)— C(Q) given by (2.11) has a best proximity point E in C(P). Moreover,
the sequence {E,} constructed by

WEn, TEn—1) = H(C(P),C(Q))

for all n € N with the initial point Eg € C(Py) converges to E with respect to h.

Remark 2.11 The subset E in Theorem 2.10 is called best attractor of the GIFS.
Proof of Theorem 2.10. Since P and @ are closed subsets of A, C(P) and C(Q) are

closed subsets of the complete metric space (C'(A), h). From Lemma 2.3, Lemma 2.5
and Remark 2.8 we have (C(P))g # 0 and T((C(P))o) C (C(Q))o. Further, from

Lemma 2.6 the pair (C'(P),C(Q)) has the P,-Property. Now, we want to show that
T is A-contraction, that is,

WTUy, TUs) < (U, Us)
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for all Uy,Us € C(P) holds where A = max{\i, Ao, -+ ,An}. Let Uy,Us € C(P) be
arbitrary sets. Since f; are A\;-contraction mappings for all : = 1,2, ..., N, we have

6(fi(Un), fi(U2)) max{min{p(fi>, fin) : n € Uz} : 3¢ € U1}
max{min{\;p(s¢,n) : n € Uz} : x € Uy}
= M max{min{p(¢,n) :n € Us} : 3 € Uy}
Xi0(Uy,Us)
A (Uy, Us) (2.12)
for all i = 1,2, ..., N. Similarly, we get

6(fi(U2), fi(Ur)) < A8(Uz, Uh) (2.13)

for all i =1,2,..., N. From (2.12) and (2.13) we have

h(fi(Uh), fi(U2)) max{5(f;(U1), fi(U2)),6(fi(Uz2), f;(U1))}
max{\6(Uy, Us), \o(Us, U1) }
= Amax{d(U1,Us),6(Us,U1)}
= Ah(U1,Us)

for all i = 1,2,..., N. Hence, from Lemma 1.3 we get

IN

IN

IN

N N
h(TU,,TU;) = h <U fi(Uy), U fi(UZ))

max {h(fi(U1), fi(U2)) :i € {1,2,--- ,N}}
A (U1, Us).
Therefore, T is A-contraction mapping. Hence, all assumptions of Theorem 1.5 are
satisfied, and so T has a unique best proximity point in C(P). Therefore, the GIFS
{P,Q; f; : i = 1,2,--- ,N} has a unique best attractor £ in C(P). Further, from
Remark 1.6 the sequence {E,} constructed by

h(EnaTEn—l) = H(O(P), C(Q))

for all n € N with the initial point Ey € C(P,) converges to E with respect to h.

IN A

Now, we present some examples to illustrate and support our main result.

Example 2.12 Let A = R? be endowed with the Euclidean metric p. Consider the
following closed subsets of A,

P={(n): n=s»and 0 < » <1}

and

Then, we have p(P, Q) =

QOZ{(%W)W}:%—\@and\fS%S2+2\/§}-
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Also, the pair (P, Q) has the P,-property. To see this, let ui,us € P and v1,v2 € Q
be arbitrary points satisfying

p(u1,v1) = p(P,Q) =1
p(uz,v2) = p(P,Q) = 1. (2.14)

Then, from (2.14) we have u; = (51, 71) and us = (302, 32), v1 = (

and vy = (2}‘227“@, 2”"’27_‘/5) In this case, we have

2){1+\/§ 27{1—\/5
2 ’ 2

p(ur,uz) = p(vi,va).

Now, define the mappings fi, fo : P — @ as follows:

e = (5 .0 )

and

x  4+3V2 n+4—3\/§
6 3 6 ‘

f2(%777) = (3 +

Then, it is clear that f;(Py) C Qo for i = 1,2. Further, these mappings are %—
contractions. Hence, the system {P,Q; f1, fo} is a GIFS. Then, all assumptions of
Theorem 2.10 hold, and so T': C'(P) — C(Q) defined as

rE = fi(B)

has a unique best proximity point in C(P). Therefore, the GIFS {P,Q; f1, f2} has a
unique best attractor and the sequence {E,} constructed by

for all n € N with the initial set Ey € C(Fy) converges to this best attractor with
respect to h.

Now we want to construct a few steps of the mentioned sequence {E,} with the
initial set Ey = P € C(F). In this case, we have

Elz{(%,n):n:%andxe[o,ﬂu Bl”
o=l U U 2JU [3)
Es—{(%yn):n—%and%é[o’;}u [323312]UU E,Sl”

1 2 1 (3" -1)
Deduce that lim,_,o F, which is the best attractor of GIFS {P,Q; f1, fo} is the
Cantor set. Further, Figure 4 shows a few steps of the sequence {E,, }:
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0.‘0 0‘2 D‘A 0.‘6 018 1.‘0 0‘0 D‘.Z 0.‘4 O‘.G 0.‘8 1‘.0
Stage 3 Stage 4

FIGURE 4. A few steps of the sequence {E,}

Example 2.13 Let A = R3 be endowed with the taxicab metric p. Consider the
following closed subsets of A

PZ{(%W;O)Z %5776[0’1]}

and

Q= {(%77% 1) sne€ [07 ”}
Then, we have p(P,Q) =1, Py = P and Qo = Q. Also, it is easy to see that the pair
(P, Q) has the P,-property. Define the mappings fi, fo : P — @ as follows:

Mmoo = (5.5-1)

and

ST

Al o) = (5 + 5.0+ 51)

Then, it is clear that f;(Py) C Qo for i = 1,2. Further, these mappings are %—
contractions. Hence, the system {P,Q; f1, fo} is a GIFS, and so all hypotheses of
Theorem 2.10 are satisfied. Therefore, T : C(P) — C(Q) defined as

TE = fi(E)



470 MUSTAFA ASLANTAS, HAKAN SAHIN AND ISHAK ALTUN

has a unique best proximity point in C'(P). So, the GIFS {P, Q; f1, fo} has a unique
best attractor and the sequence {E, } constructed by

h(Ena TEn—l) = H(O(P)’ C(Q))

for all n € N with the initial set Ey € C(Fy) converges to this best attractor with
respect to h.

Now we want to construct a few steps of the mentioned sequence {E,} with the
initial set Ey = P € C(F). In this case, we have

1 1
Ey zx2 ’”,0): %,ne[o,l]}

2 72

I
—
—
N3

o
N—
N
3
m
=)
=
——
—
/N

Il
-

221 . .
w+1 N+
Ey = U {( 92 a2270): %aﬁe[ovﬂ}

251 ; .
x+1 N+
E3: U {( 23 72370): %775[0’1]}

241 . .
x+1 N+
E4: U {( 24 s 24 70): %,776[0,1}}

2" -1 , :
. x+1 N+ )
E.= J {( g 7o>. %,ne[m]}.
Deduce that

lim FE, = {(¢,¢,0): ¢ €[0,1]}

n—oo

is the best attractor of GIFS {P, Q; f1, fo}. Further, Figure 5 shows a few steps of
the sequence {E,}.
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FIGURE 5. A few steps of the sequence {E),}

Taking P = @ = A in Theorem 2.10, we can deduce Theorem 1.2 which is the well
known result of constructing a fractal via IFS.

Acknowledgement. The authors thank to the referee for his pertinent comments
and suggestions which help us to improve the manuscript.

(1]
2]

(10]
(11]

(12]

REFERENCES

M. Abbas, T. Nazir, Attractor of the generalized contractive iterated function system, Mathe-
matical Analysis and Applications: Selected Topics, John Wiley and Sons, Ltd, 2018, 401-428.
I. Altun, M. Aslantas, H. Sahin, Best prozximity point results for p-prozimal contractions, Acta
Math. Hungar., 162(2020), 393-402.

I. Altun, H. Sahin, M. Aslantas, A new approach to fractals via best proximity point, Chaos,
Solitons Fractals, 146(2021), 110850.

M. Aslantas, H. Sahin, I. Altun, Best proximity point theorems for cyclic p-contractions with
some consequences and applications, Nonlinear Anal. Model. Control, 26(2021), 113-129.

S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations
intégrales, Fund. Math., 3(1922), 133-181.

M.F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.

S.S. Basha, FExtensions of Banach’s contraction principle, Numer. Funct. Anal. Optim.,
31(2010), 569-576.

S.S. Basha, P. Veeramani, Best approzimations and best proximity pairs, Acta Sci. Math.
(Szeged), 63 (1977), 289-300.

C. Chifu, A. Petrusel, Multivalued fractals and generalized multivalued contractions, Chaos,
Solitons Fractals, bf 6(2008), 203-210.

J.E. Hutchinson, Fractals and self similarity, Indiana Univ Math. J., 30(1981), 713-747.

B. Mandelbrot, Fractals, Form, Chance, and Dimension, W.H. Freeman and Company, San
Francisco, 1977.

T. Nazir, S. Silvestrov, M. Abbas, Fractals of generalized F-Hutchinson operator, Waves,
Wavelets and Fractals, 2(2016), 29-40.



472 MUSTAFA ASLANTAS, HAKAN SAHIN AND ISHAK ALTUN

[13] V. Parvaneh, M.R. Haddadi, H. Aydi, On best prozimity point results for some type of mappings,
J. Function Spaces, 2020(2020), Art. ID 6298138.

[14] V.S. Raj, Best prozimity point theorems for non-self mappings, Fixed Point Theory, 14(2013),
447-454.

[15] S. Reich, Approzimate selections, best approzimations, fized points, and invariant sets, J. Math.
Anal. Appl., 62(1978), 104-113.

[16] H. Sahin, M. Aslantas, I. Altun, Feng-Liu type approach to best prozimity point results for
multivalued mappings, J. Fixed Point Theory Appl., 22(2020), 11.

[17] N.A. Secelean, S. Mathew, D. Wardowski, New fized point results in quasi-metric spaces and
applications in fractals theory, Adv. Difference Equ., 2019(2019), 1-23.

[18] N. Van Dung, A. Petrusel, On iterated function systems consisting of Kannan maps, Reich
maps, Chatterjea type maps, and related results, J. Fixed Point Theory Appl., 19(2017), 2271-
2285.

Recewed: July 2, 2022; Accepted: March 23, 2023.



