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1. Introduction

In 2019 Burton gives the first result on existence and uniqueness for the solution
of an integral equation in the context of progressive contraction. One year later, I.A.
Rus formalized this notion (see [23]), with ”step by step” instead of ”progressive”,
and gave a variant of the step by step contraction principle. Since then, many other
generalizations of these results were proved for problems involving functional differen-
tial equations with maxima, Volterra integral equations, Fredholm-Volterra integral
equations in two variables (see [9, 10, 11], [16]).

Motivated by the above-mentioned papers, in this paper we discuss the existence
of solutions of the following functional integral equation with maxima

x(t) =

∫ t

a

K(t, s, x(s), max
a≤ξ≤s

x(ξ))ds+ f(t, x(t)), t ∈ [a, b], (1.1)
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where K ∈ C([a, b] × [a, b] × R2,R) and f ∈ C([a, b] × R,R). To prove our results,
we shall use step by step contraction principle and a new variant of fibre contraction
principle given in [23] and [17].

The paper is organized as follows: in Section 2 we present the notations and the
preliminary results to be used in the sequel and in Section 3 we provide our main
results. Using the weakly Picard operator theory, in the last sections we give Gronwall
lemma type results and comparison theorems.

2. Preliminaries

2.1. Weakly Picard operators. In the sequel, the following results are useful for
some of the proofs in the paper (see [18, 19]).

Let (X,→) be an L-space, where X is a nonempty space and → is a conver-
gence structure in the sense of Fréchet, defined on X. An operator A : X → X is
called weakly Picard operator (WPO) if the sequence of successive approximations,
(An(x))n∈N, converges in (X,→) for all x ∈ X and its limit (which generally depend
on x) is a fixed point of A. If an operator A is WPO with a unique fixed point, that
is, FA = {x∗}, then, by definition, A is called a Picard operator (PO).

If A : X → X is a WPO, we can define the operator A∞ : X → X, by A∞(x) :=
lim
n→∞

An(x).

In our next considerations, we consider the case of an ordered L-space, i.e., an
L-space endowed with a partial ordering ”≤”.

Abstract Gronwall lemma. Let (X,→,≤) be an ordered L-space and A : X → X
be an operator. We suppose that:

(i) A is a WPO with respect to →;
(ii) A is increasing with respect to ≤.

Then:

(a) x ≤ A (x) =⇒ x ≤ A∞(x);
(b) x ≥ A (x) =⇒ x ≥ A∞(x).

Abstract comparison lemma. Let (X,→,≤) be an ordered L-space and A,B,C :
X → X three operators having the following properties:

(i) A ≤ B ≤ C;
(ii) The operators A, B and C are WPO with respect to →;

(iii) the operator B is increasing with respect to ≤.

Then:

x ≤ y ≤ z ⇒ A∞(x) ≤ B∞(y) ≤ C∞(z).

For other details and results concerning the abstract Gronwall lemma and the
abstract comparison principle see [18, 19], [21, 22] and [12, 15, 13, 14, 16].

2.2. Step by step contraction. Let (X,→) be an L-space and G ⊂ X × X be a
nonempty set. An operator A : X → X is a G-contraction if there exists l ∈ (0, 1)
such that,

d(A(x), A(y)) ≤ ld(x, y), ∀(x, y) ∈ G.
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For other applications of G-contraction, see [23] and [20].
Let (B, |·|) be a (real or complex) Banach space and C([a, b],B) be the Banach space

of continuous mapping with max-norm, ‖·‖. In what follows, in all spaces of functions
we consider max-norm. For m ∈ N, m ≥ 2, let t0 := a, tk := t0 + k b−am , k = 1,m.

Let V : C([a, b],B)→ C([a, b],B) be an operator. The operator V has the Volterra
property (see [23]), i.e.,

t ∈ (a, b), x, y ∈ C[a, b], x|[a,t] = y|[a,t] ⇒ V (x)|[a,t] = V (y)|[a,t] .

We consider Vk : C([t0, tk],B) → C([t0, tk],B), k = 1,m− 1 the operator induced
by V on C([t0, tk],B). We also consider the following sets,

Gk := {(x, y)| x, y ∈ C([t0, tk+1],B), x|[t0,tk] = y|[t0,tk]}, k = 1,m− 1.

For xk ∈ C([t0, tk],B), k = 1,m− 1, we denote

Xxk
:= {y ∈ C([t0, tk+1],B), y|[t0,tk] = xk}.

The following result is given in [23].

Theorem 2.1. (Theorem of step by step contraction) We suppose that:

(1) V : C([a, b],B)→ C([a, b],B) has the Volterra property;
(2) V1 is a contraction;
(3) Vk is a Gk−1-contraction, for k = 2,m.

Then:

(i) FV = {x∗};
(ii) the following relations hold:

x∗|[t0,t1] = V∞1 (x), ∀x ∈ C([t0, t1],R),

x∗|[t0,t2] = V∞2 (x), ∀x ∈ Xx∗|[t0,t1]
,

...

x∗|[t0,tm−1]
= V∞m−1(x), ∀x ∈ Xx∗|[t0,tm−2]

.

(iii) x∗ = V∞(x), ∀x ∈ Xx∗|[t0,tm−1]
.

2.3. Fibre contraction principle. In [17] the authors obtained a new fibre contrac-
tion principle in the following settings:

Let (Xi, di) be metric spaces (i ∈ {1, ...,m}, where m ≥ 2) and U1 ⊂ X1 × X2,
U2 ⊂ U1 ×X3, . . ., Um−1 ⊂ Um−2 ×Xm, be nonempty subsets.

For x ∈ X1, we define

U1x := {x2 ∈ X2 | (x, x2) ∈ U1},
for x ∈ U1, we define

U2x := {x3 ∈ X3 | (x, x3) ∈ U2}, . . . ,
and for x ∈ Um−2, we define

Um−1x := {xm ∈ Xm | (x, xm) ∈ Um−1}.
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We suppose that U1x, U2x, . . . , Um−1x are nonempty.
If T1 : X1 → X1, T2 : U1 → X2, . . ., Tm : Um−1 → Xm, then we consider the

operator
T : Um−1 → X1 ×X2 × . . .×Xm,

defined by

T (x1, . . . , xm) := (T1(x1), T2(x1, x2), . . . , Tm(x1, x2, . . . , xm)).

The result is the following.

Theorem 2.2. ([17]) In the above notations we suppose that:
(1) (Xi, di), i ∈ {2, ...,m} are complete metric spaces and Ui, i ∈ {1, ...,m−1} are

closed subsets;
(2) (T1, T2, . . . , Ti+1)(Ui) ⊂ Ui, i ∈ {1, ...,m− 1};
(3) T1 is a WPO;
(4) there exist Li > 0 and 0 < li < 1, i ∈ {1, ...,m− 1} such that

di+1(Ti+1(x, y, ), Ti+1(x̃, ỹ)) ≤ Lid̃i(x, x̃) + lidi+1(y, ỹ),

for all (x, y), (x̃, ỹ) ∈ Ui, i ∈ {1, ...,m− 1}, where d̃i is a metric induced by d1, . . . , di
on X1 × · · · ×Xi, defined by d̃i := max{d1, . . . , di}.

Then T is WPO. If T1 is PO, then T is a PO too.

For other results concerning the fibre contraction theorem, its generalization and
applications, see also [8, 9, 10, 11, 15, 12, 13, 14], [18, 19, 20, 21, 22, 23].

3. Main result

In this section, we establish some new results on the existence and uniqueness of
the solution of the integral equation with maxima (1.1).

The equation (1.1), x ∈ C([a, b],R) is equivalent with the fixed point equation

x(t) = V (x)(t) (3.1)

where the operator V : C([a, b],R)→ C([a, b],R) is defined by

V (x)(t) :=

∫ t

a

K(t, s, x(s), max
a≤ξ≤s

x(ξ))ds+ f(t, x(t)), t ∈ [a, b] (3.2)

We remark that the operator V has the Volterra property, i.e.,

t ∈ (a, b), x, y ∈ C[a, b], x|[a,t] = y|[a,t] ⇒ V (x)|[a,t] = V (y)|[a,t] .

This implies that the operator V induced, for each c with a < c < b and, the operator
Vc : C[a, c] → C[a, c], defined by, Vc(x)(t) := V (x̃), where x̃ ∈ C[a, b] is such that,
x̃|[a,c] = x.

In what follows we consider the notations from Section 2.3 with m suitable chosen.

Theorem 3.1. Assume that the following hypotheses are satisfied:

(C1) There exists L > 0, such that

|K(t, s, u1, u2)−K(t, s, v1, v2)| ≤ Lmax(|u1 − v1| , |u2 − v2|),
for all t, s ∈ [a, b], ui, vi ∈ R, i = 1, 2.
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(C2) There exists 0 < l < 1, such that

|f(t, u)− f(t, v)| ≤ l |u− v| ,

for all t ∈ [a, b], u ∈ R.
Then, choosing m ∈ N∗ such that

l +
L(b− a)

m
< 1, (3.3)

we have

(i) FV = {x∗}, i.e., the equation (3.1) has a unique solution.

(ii) the following relations hold:

x∗|[t0,t1] = V∞1 (x), ∀x ∈ C[t0, t1],

x∗|[t0,t2] = V∞2 (x), ∀x ∈ Xx∗

...

x∗|[t0,tm−1]
= V∞m−1(x), ∀x ∈ Xx∗ |[t0,tm−1]

.

(iii) x∗ = V∞(x), ∀x ∈ Xx∗ |[t0,tm−1]
.

Proof. We shall prove that in the conditions (C1) and (C2), we are in the conditions
of Theorem of step by step contractions, with B : = R.

First we prove that V1 is a contraction.
We have:

|V1(x)(t)− V1(y)(t)| ≤
∣∣∣∣∫ t

a

K(t, s, x(s), max
a≤ξ≤s

x(ξ))ds−
∫ t

a

K(t, s, y(s), max
a≤ξ≤s

y(ξ))ds

∣∣∣∣+
+ |f(t, x(t))− f(t, y(t))|

≤ L
∫ t

a

max

(
|x(s)− y(s)| ,

∣∣∣∣ max
a≤ξ≤s

x(ξ)− max
a≤ξ≤s

y(ξ)

∣∣∣∣) ds+
+ l |x(s)− y(s)|

≤
(
l +

L(b− a)

m

)
max

t0≤t≤t1
|x(t)− y(t)| .

From

max
t0≤t≤t1

|V1(x)(t)− V1(y)(t)| ≤
(
l +

L(b− a)

m

)
max

t0≤t≤t1
|x(t)− y(t)| .

and condition (3.3), it follows that V1 is a contraction.
Let us prove now that V2 is a G1-contraction. First we remark that, for t ∈ [t0, t1]

V2(x)(t) = V2(y)(t), ∀x, y ∈ G1.
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|V2(x)(t)− V2(y)(t)| =
∣∣∣∣∫ t1

a

[
K(t, s, x(s), max

a≤ξ≤s
x(ξ))ds−K(t, s, y(s), max

a≤ξ≤s
y(ξ))

]
ds

+

∫ t

t1

[
K(t, s, x(s), max

a≤ξ≤s
x(ξ))−K(t, s, y(s), max

a≤ξ≤s
y(ξ))

]
ds

∣∣∣∣+
+ |f(t, x(t))− f(t, y(t))|

=

∣∣∣∣∫ t

t1

[
K(t, s, x(s), max

a≤ξ≤s
x(ξ))ds−K(t, s, y(s), max

a≤ξ≤s
y(ξ))

]
ds

∣∣∣∣+
+ |f(t, x(t))− f(t, y(t))|

≤
(
l +

L(b− a)

m

)
max

t0≤t≤t2
|x(t)− y(t)| .

Analogously, we prove that V3, . . . , Vm are G2, . . . , Gm−1 contractions. The con-
clusion will follow by applying Theorem of step by step contraction. �

Now we establish a new iterative algorithm for (1.1). We apply the new variant of
fibre contraction principle, Theorem 2.2, with Xk := C[a, tk].

We consider the spaces of continuous functions with the max-norms. We need the
following subsets:

Ui = {(x1, . . . , xi) ∈
i∏

k=1

Xk| xk(tk) = xk+1(tk), k = 1,m− 1}, i = 1,m.

For x ∈ X1, U1x := {x2 ∈ X2| (x, x2) ∈ U1}, for x ∈ Xi−2, Ui−1x := {xi ∈
Xi| (x, xi) ∈ Ui−1}, i = 2,m.

We remark that, Ui, Uix, i = 1,m− 1 are nonempty closed subsets.
We also need the following operators:

Ri : C[a, ti]→
i∏

k=1

Xk, Ri(x) =
(
x|[t0,t1] , . . . , x|[ti−1,ti]

)
, i = 1,m− 1.

It is clear that, Ri (C[a, ti]) = Ui and Ri : C[a, ti] → Ui is an increasing homeomor-
phism.

Since the operator, V : C[a, b] → C[a, b] defined by equation (3.2), is a forward
Volterra operator on [a, b], it induces the following operators:

T1 : U1 → X1,

T1(x1)(t) := V (x1)(t), t ∈ [a, t1],

T2 : U2 → X2,

T2(x1, x2)(t) :=

∫ t

a

K(t, s, x1(s), max
a≤ξ≤s

x1(ξ))ds+

+

∫ t

t1

K(t, s, (x1, x2)(s), max
a≤ξ≤s

R−11 (x1, x2)(ξ)))ds+ f(t, (x1, x2)(t)), t ∈ [t1, t2],
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T3 : U3 → X3,

T3(x1, x2, x3)(t) :=

∫ t

a

K(t, s, x1(s), max
a≤ξ≤s

x1(ξ))ds+

+

∫ t

t1

K(t, s, (x1, x2)(s), max
a≤ξ≤s

R−11 (x1, x2)(ξ)))ds+

+

∫ t

t2

K(t, s, (x1, x2, x3)(s), max
a≤ξ≤s

R−12 (x1, x2, x3)(ξ)))ds+

+ f(t, (x1, x2, x3)(t)), t ∈ [t1, t2],

· · ·
Tm : Um → Xm,

Tm(x1, . . . , xm)(t) :=

∫ t

a

K(t, s, x0(s), max
a≤ξ≤s

x0(ξ))ds+ . . .+

+

∫ t

tm−1

K(t, s, (x1, . . . , xm)(s), max
a≤ξ≤s

R−1m−1(x1, . . . , xm)(ξ)))ds+

+ f(t, (x1, . . . , xm)(t)), t ∈ [tm−1, b],

Let

T := (T1, . . . , Tm),

T (x1, . . . , xm) := (T1(x1), . . . , Tm(x1, . . . , xm)).

If on the cartesian product we consider max-norms, the operators Ri, i =
1,m− 1 are isometries. From the above definitions, we remark that T1(U1) ⊂
U1, (T1, . . . , Tm)(Um) ⊂ Um.

In the conditions (C1)− (C2) we have that: T1 is l + L(b−a)
m -Lipschitz.

For a suitable choice of m we are in the conditions of Theorem 2.2 with L̃ =
l + L(b−a)

m .
From this theorem we have that T is PO.
Since V = R−1m−1TRm−1 and V n = R−1m−1T

nRm−1, it follows that V is PO.
Now we present the existence, uniqueness and approximation result for the equation

(1.1).

Theorem 3.2. We consider the equation (1.1) in the conditions (C1) − (C2). We
have that:

(i) The equation (1.1) has in C[a, b] a unique solution, x∗.
(ii) The sequence, (xn)n∈N, defined by

x0 ∈ C[a, b],

xn+1(t) =

∫ t

a

K(t, s, xn(s), max
a≤ξ≤s

xn(ξ))ds+ f(t, xn(t)), t ∈ [a, b],

converges to x∗, i.e., the operator V is PO.

Remark 3.3. For other types of saturated fibre contraction principle see [24].



608 VERONICA ILEA AND DIANA OTROCOL

Remark 3.4. For other applications of the fibre contraction principle to integro-
differential equations with delays see [7], [15].

Remark 3.5. For the fixed point techniques in the integral equation theory see, for
example, the following works: [1, 2, 3, 4, 5, 6].

4. Gronwall lemma type result

Related to the equation (1.1)

x(t) =

∫ t

a

K(t, s, x(s), max
a≤ξ≤s

x(ξ))ds+ f(t, x(t)), t ∈ [a, b]

we consider the inequalities:

x(t) ≤
∫ t

a

K(t, s, x(s), max
a≤ξ≤s

x(ξ))ds+ f(t, x(t)), t ∈ [a, b] (4.1)

and

x(t) ≥
∫ t

a

K(t, s, x(s), max
a≤ξ≤s

x(ξ))ds+ f(t, x(t)), t ∈ [a, b]. (4.2)

As an application of the Abstract Gronwall lemma we have

Theorem 4.1. We consider the equation (1.1) under the hypotheses (C1)− (C2) of
the Theorem 3.2. In addition, we suppose that:

(C3) K(t, s, ·, ·) and f(t, ·) are increasing.

Then:

(a) x ≤ x∗ for any x solution of (4.1);
(b) x ≥ x∗ for any x solution of (4.2);

where x∗ is the unique solution of (1.1).

Proof. By applying Theorem 3.2 it follows that the operator V : C[a, b] → C[a, b]
defined by, V (x)(t) := second part of equation (1.1) is a PO and from (C3) we have
that V is an increasing operator. The conclusion is obtained from Abstract Gronwall
lemma. �

5. Comparison theorems

Using the results from Section 3 and the Abstract Comparison lemma we can obtain
a comparison theorem for the functional integral equations:

xi(t) =

∫ t

a

Ki(t, s, x(s), max
a≤ξ≤s

x(ξ))ds+ fi(t, x(t)), t ∈ [a, b], i = 1, 3, (5.1)

where K ∈ C([a, b] × [a, b] × R2,R) and f ∈ C([a, b] × R,R). We have the following
result:

Theorem 5.1. We suppose that:

(i) Ki, fi, i = 1, 3 satisfy the conditions (C1)− (C2);
(ii) K1 ≤ K2 ≤ K3 and f1 ≤ f2 ≤ f3;

(iii) K2(t, s, ·) and f2(t, s, ·) are increasing.
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If x1 (a) ≤ x2 (a) ≤ x3 (a) then x∗1 ≤ x∗2 ≤ x∗3 where x∗i is the unique solution of
(5.1), i = 1, 3.

Proof. From Theorem 3.2 we have that the operator Vi : C([a, b],R) → C([a, b],R)
defined by,

Vi(x)(t) :=

∫ t

a

Ki(t, s, x(s), max
a≤ξ≤s

x(ξ))ds+ fi(t, x(t)), t ∈ [a, b]

is PO, i = 1, 3. Let FVi
= {x∗i }, i = 1, 3.

If u ∈ R then we denote by ũ the constant function

ũ : [a, b]→ R, ũ (t) = u.

It is clear that

V∞i (x̃i (a)) = x∗i , i = 1, 3,

and from (ii) we get that

V1(x) ≤ V2(x) ≤ V3(x), ∀x ∈ C[a, b].

From condition (iii) we get that the operator V2 is an increasing operator. The
conclusion is obtained by applying the Abstract Comparison lemma. �

Acknowledgement. The authors would like to express their special thanks and
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