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Abstract. Let X be an arbitrary topological space and g : X ×X → R be a real valued continuous

function defined on X × X. In this article, we introduce two notions like topologically Berinde

weak proximal contraction and topologically proximal weakly contractive mapping with respect to
g. We explore sufficient conditions for the existence and uniqueness of best proximity points for
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1. Introduction

Let (M,ρ) be a metric space and C be a non-empty subset of M. Let f : C → C
be a mapping. The mapping f is said to be a contraction if there exists α ∈ (0, 1)
such that ρ(f(x), f(y)) ≤ αρ(x, y) for all x, y ∈ C. In the year 1922, Banach proved
that if M is complete then the contraction map f has a unique fixed point in C. It is
one of the pioneer results in metric fixed point theory as it gives sufficient conditions
which will ensure the existence of solutions of the equation f(x) = x in C. It also
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has a lot of applications in the areas of differential equations, integral equations, non-
linear matrix equations and many more. In case of a self mapping f : C → C, it
is obvious that f(C) ∩ C 6= ∅. On the other hand, if f : A → B is a mapping such
that A,B are non-empty subsets of the metric space M,A 6= B and f(A) ∩ A = ∅
then the mapping f has no fixed points. So, in case of a non-self map, one seek for
an element in the domain space whose distance from its image is minimum i.e., in
this case, one interesting problem is to minimize ρ(x, f(x)) such that x ∈ A. Since
ρ(x, f(x)) ≥ D(A,B) = inf {ρ(x, y) : x ∈ A, y ∈ B}, so, one can search for an element
x ∈ A such that ρ(x, f(x)) = D(A,B). Best proximity point problems deal with this
situation. For a self mapping, best proximity points coincide with fixed points. In
the year 2011, Basha [1] introduced the notion of proximal contraction which is a
generalization of contraction in case of self mapping. For more details about the best
proximity points, one can refer to [2, 5, 9] and the references therein. The main thing
is that, all these results are formulated in the framework of metric spaces or Banach
spaces where the standard metric or norm plays an important role.

Recently in the year 2020, it is exciting that Raj and Piramatchi [7] presented a
way in which we can extend the best proximity point results from standard metric
spaces to topological spaces. In this paper, instead of taking metric space or normed
space, we take an arbitrary topological space X and a real valued continuous function
g defined on X × X. We present our work in two sections. In the first section we
introduce the notion of topologically Berinde weak proximal contraction and discuss
the existence of best proximity points for this class of mappings. By an example,
we have shown the necessity of defining the concept of topologically Berinde weak
proximal contraction with respect to g. We show that though a mapping f : A→ B,
where A,B( 6= ∅) ⊂ X, is a topologically Berinde weak proximal contraction with
respect to a continuous function g, may not be a topologically Berinde weak proximal
contraction with respect to another continuous function h. We also show that, there
exists a topological space X with a continuous real valued function g, two non-empty
disjoint subsets A,B of X and a mapping f : A → B such that f is topologically
Berinde weak proximal contraction with respect to g, but if the topological space is
metrizable with respect to a metric d then f is not Berinde weak proximal contraction
with respect to the metric d. Moreover, to build the best proximity point results for
topologically Berinde weak proximal contraction, we have introduced the notion of
approximatively g-compactness of a non-empty subset A in X with respect to another
non-empty subset B and show by an example that the notion of approximatively g-
compactness for topological spaces is more general than the notion of approximatively
compactness for metric spaces [1].

In the second section, we introduce the notion of topologically weakly contractive
mapping with respect to g and topologically proximal weakly contractive mapping
with respect to g. We also set up two different concepts for the existence and unique-
ness of best proximity point for topologically proximal weakly contractive mapping
with respect to g. In the first concept, we prove the existence and uniqueness of
best proximity point for this class of mappings using g-completeness property. In the
second concept, we introduce a new notion of g-isometry which is more general than
the notion of isometry in metric spaces.
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2. Main results

Before going further we first recall the following definitions from [7].

Definition 2.1. [7] Let A, B be non-empty subsets of a topological space X and
g : X ×X → R be a continuous function. Define

Dg(A,B) = inf{|g(x, y)| : x ∈ A, y ∈ B}.

Definition 2.2. [7] Let A, B be non-empty subsets of a topological space X and
g : X×X → R be a continuous function. A point x ∈ A∪B of the mapping f : A∪B →
A∪B is called a best proximity point of f with respect to g if |g(x, f(x))| = Dg(A,B).

For further developments, we take the definitions and concepts of g-convergence,
g-Cauchy, g-completeness and g-closedness from [10].

We present an example to show that there exists a non-empty subset A of X such
that A is not closed with respect to the usual topology, but is g-closed for some real
valued continuous function g defined on X ×X.

Example 2.3. Consider R with the usual topology and let g : R×R→ R be defined
by g(x, y) = x−y+1. Let A = ( 1

2 ,∞). Then A is not closed with respect to the usual
topology in R. Let {xn} be a sequence in A which is g-convergent to x ∈ R. Then

|g(xn, x)| → 0 as n→∞,
=⇒ |xn − x+ 1| → 0 as n→∞,
=⇒ xn → (x− 1) as n→∞.

But, since {xn} is a sequence in ( 1
2 ,∞) so, we have x− 1 ≥ 1

2 . This shows that x ≥ 3
2

and A is g-closed.

2.1. Best proximity point theorem for topologically Berinde weak proximal
contraction.
Now we would like to introduce the notion of topologically Berinde weak proximal

contraction as follows:

Definition 2.4. Let X be a topological space and g : X ×X → R be a continuous
function. Let (A,B) be a pair of non-empty g-closed subsets of X. A non-self mapping
f : A→ B is said to be topologically Berinde weak proximal contraction with respect
to g if there exists λ ∈ [0, 1) and µ ∈ [0,∞) such that for all x, y, u, v ∈ A with
|g(u, f(x))| = Dg(A,B) and |g(v, f(y))| = Dg(A,B) we have

1

1 + λ+ µ
|g∗ (x, f(x)) | ≤ |g(x, y)|=⇒ |g(u, v)| ≤ λ|g(x, y)|+ µ|g∗ (f(x), y) |,

where we define
∣∣∣g∗(x, y)

∣∣∣ =
∣∣∣g(x, y)

∣∣∣−Dg(A,B) ∀ (x, y) ∈ A×B.

Note 2.5. If the topological space X is metrizable with respect to a metric d,
then by taking g = d in Definition 2.4, we get the notion of Berinde weak proximal
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contraction for standard metric spaces introduced by Gabeleh in [4].

Now we provide an example of a non-self mapping f defined on a non-empty
subset of a topological space X such that f is a topologically Berinde weak proximal
contraction with respect to a continuous function g but f is not topologically Berinde
weak proximal contraction with respect to another continuous function h defined on
X ×X.

Example 2.6. Let X = R2 with the usual topology and g : X ×X → R be defined
by g ((x, y), (u, v)) = y − v. Then g is a continuous function. Suppose

A =
{

(0, 0), (0, 1), (0, 2)
}

and B = {(1,−1), (1, 3), (1, 5)} .

Then Dg(A,B) = 1. Let f : A→ B be a mapping defined by

f((0, 0)) = f((0, 1)) = (1, 3) and f((0, 2)) = (1, 5).

Now |g(u, f(x))| = 1 =⇒ u = (0, 2) and x ∈ {(0, 0), (0, 1)}. There are four cases:
Case 1. u = v = (0, 2), x = (0, 0), y = (0, 1). We have

1

1 + 0.5 + 1
|g∗(x, f(x))| = 2

2.5
≤ |g(x, y)|

=⇒ |g(u, v)| = 0 ≤ 3

2
=

1

2
|g(x, y)|+ |g∗(f(x), y)|.

Case 2. u = v = (0, 2), x = (0, 1), y = (0, 0). We have

1

1 + 0.5 + 1
|g∗(x, f(x))| = 1

2.5
≤ |g(x, y)|

=⇒ |g(u, v)| = 0 ≤ 5

2
=

1

2
|g(x, y)|+ |g∗(f(x), y)|.

Case 3. u = v = (0, 2), x = (0, 0) = y. We have

1

1 + 0.5 + 1
|g∗(x, f(x))| = 2

2.5
> 0 = |g(x, y)|.

Case 4. u = v = (0, 2), x = (0, 1) = y. We have

1

1 + 0.5 + 1
|g∗(x, f(x))| = 1

2.5
> 0 = |g(x, y)|.

Therefore, f is a topologically Berinde weak proximal contraction with respect to g
with λ = 1

2 and µ = 1.
Now let h : X×X → R defined by h ((x, y), (u, v)) = min {y, v}. Then Dh(A,B) = 1.
Again |h (u, f(x)) | = 1 =⇒ u = (0, 1) and x ∈ {(0, 0), (0, 1), (0, 2)}. Now by taking
u = v = (0, 1), x = (0, 1) and y = (0, 0), then |h (u, f(x)) | = 1 = |h (v, f(y)) |. But we
have

1

1 + λ+ µ
|h∗(x, f(x))| = 0 = |h(x, y)|

and
|h(u, v)| = 1 > λ|h(x, y)|+ µ|h∗(f(x), y)|

for any λ ∈ [0, 1) and µ ∈ [0,∞). Therefore, f is not a topologically Berinde weak
proximal contraction with respect to h.
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From Note 2.5, it is clear that the notion of topologically Berinde weak proximal
contraction with respect to a real valued continuous function is an extension of Berinde
weak proximal contraction from metric space to topological space. The next example
also clarifies this fact.
Example 2.7. Let X = R with the usual topology and g : X ×X → R be defined
by g(x, y) = x + y. Then g is a continuous function. Suppose A = {0, 3, 5, 7} and
B = {1, 2, 9}. Then Dg(A,B) = 1. Let f : A→ B be a mapping defined by f(0) = 2,
f(3) = 1 f(5) = 9 = f(7). Now |g(u, f(x))| = 1 =⇒ u ∈ {0} and x ∈ {3}.
u = 0, v = 0, x = 3, y = 3 and |g(0, f(3))| = Dg(A,B) and |g(0, f(3))| = Dg(A,B)

We have
1

1 + 0.5 + 1
|g∗(3, f(3)| = 3

2.5
≤ 6 = |g(3, 3)|

=⇒ |g(u, v)| = 0 ≤ 3 + 3 =
1

2
|g(3, 3)|+ |g∗(f(3), 3)|.

Therefore, f is a topologically Berinde weak proximal contraction w.r.t g with λ = 1
2

and µ = 1.
Now, we take the usual metric d on R. So D(A,B) = 1. Now d (u, f(x)) = 1 =⇒

u ∈ {0, 3} and x ∈ {0, 3}. Consider the case when u = 3, v = 0, x = 0, y = 3 and
d (3, f(0)) = D(A,B) and d (0, f(3)) = D(A,B). We have

1

1 + λ+ µ
d∗ (3, f(3)) =

1

1 + λ+ µ
≤ 3 = d(0, 3)

But,
|g(u, v)| = 3 � 3λ = λd(0, 3) + µd∗ (f(0), 3)

for any λ ∈ [0, 1) and µ ∈ [0,∞). Therefore f is not a topologically Berinde weak
proximal contraction w.r.t d.

Definition 2.8. [4] Let A,B be two non-empty subsets of a metric space (X, d).
Then A is said to be approximatively compact with respect to B if for every sequence
{xn} ⊂ A satisfying d(y, xn)→ d(y,A) as n→∞, for some y ∈ B, has a convergent
subsequence where d(y,A) = inf{d(y, x) : x ∈ A}.

Now we introduce the notion of approximatively g-compact set in a topological
space X with respect to another non-empty set as follows:

Definition 2.9. Let X be a topological space and g : X ×X → R be a continuous
function. Let (A,B) be a pair of non-empty subsets of X. Then A is said to be
approximatively g-compact with respect to B if for every sequence {xn}n∈N of A
satisfying the condition that |g(xn, y)| → Dg(A, y) as n → ∞ for some y ∈ B, has a
g-convergent subsequence {xnk

} which is g-convergent to a point in A where define
Dg(A, y) = inf {|g(t, y)| : t ∈ A} .

Note 2.10. If the topological space X is metrizable with respect to a metric d, then
by taking g = d in Definition 2.9, we get the notion of approximatively compactness
for standard metric spaces introduced by Basha in [1].
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From Definition 2.9 and Note 2.10, it is clear that the notion of approximatively
g-compactness with respect to g is more general than the notion of approximatively
compactness for metric spaces. To validate this statement, we provide an example
to show that there exist two non-empty subsets A,B of a topological space X such
that A is not approximatively compact with respect to B but A is approximatively
g-compact with respect to B for some real-valued continuous function g defined on
X ×X.

Example 2.11. Let X = R with the usual topology, A = { 1n : n ∈ N} and B =

{0, 12}. Let g : X×X → R be defined by g((x, y)) = x−y+ 1
2 . Then g is a continuous

function. Now, Dg(A, 0) = 1
2 andDg(A,

1
2 ) = 0. Here, the set A is not approximatively

compact with respect to B, because, for the sequence { 1n}, there exists 0 ∈ B such that

d(0, xn) → D(0, A) = 0 as n → ∞ but { 1n} has no convergent subsequence. On the

other hand, only sequence {xn} which satisfy the condition that
∣∣∣g(xn, y)

∣∣∣→ Dg(A, y)

for some y ∈ B, has infinite range. Now let {xn} be a sequence in A with infinite

range. Then there exists 1
2 ∈ B such that

∣∣∣g(xn,
1
2 )
∣∣∣ → Dg(A,

1
2 ) = 0 as n → ∞.

Let, on the contrary, for any subsequence (xnk
) of {xn} and for any x ∈ A, xnk

is not
g-convergent to x. So ∣∣∣g(xnk

, x)
∣∣∣9 0 as k →∞

=⇒ |xnk
− x+

1

2
|9 0 as k →∞.

But this is a contradiction since the above convergence is true for x = 1
2 . So {xn}

has a g-convergent subsequence which is g-convergent to an element of A. So, A is
approximatively g-compact with respect to B.

In the upcoming theorem, we present a best proximity point result for topologically
Berinde weak proximal contractions and for the purpose of the Theorem, we recall
the following definitions from [10] as follows:

Ag = {x ∈ A : |g(x, y)| = Dg(A,B) for some y ∈ B}.

Bg = {y ∈ B : |g(x, y)| = Dg(A,B) for some x ∈ A}.

Theorem 2.12. Let X be a g-complete topological space where g : X × X → R
is a continuous function such that g(x, y) = 0 =⇒ x = y, |g(x, y)| = |g(y, x)| and
|g(x, z)| ≤ |g(x, y)| + |g(y, z)| for all x, y, z ∈ X. Let (A,B) be a pair of non-empty
g-closed subsets of X such that Ag is non-empty. Let f : A → B be a topologically
Berinde weak proximal contraction w.r.t g with λ ∈ [0, 1) and µ ∈ [0,∞) such that
f(Ag) ⊆ Bg. If B is approximatively g-compact w.r.t A, then

(1) there exists a best proximity point p∗ ∈ Ag of f and for any element p0 ∈ Ag,
the sequence {pn} satisfying |g(pn+1, f(pn))| = Dg(A,B) converges to p∗;

(2) moreover, if (1− λ− µ) > 0 then the best proximity point p∗ is unique.
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Proof. Let p0 ∈ Ag. Since f(Ag) ⊆ Bg, we have f(p0) ∈ Bg. So, there exists p1 ∈ Ag
such that |g(p1, f(p0))| = Dg(A,B). Similarly as f(p1) ∈ Bg, so there exists p2 ∈
Ag such that |g(p2, f(p1))| = Dg(A,B). Continuing this process, we get a sequence
{pn} ⊆ Ag such that ∣∣∣g(pn+1, f(pn))

∣∣∣ = Dg(A,B) ∀ n ≥ 0.

We claim that the sequence {pn} is a g-Cauchy sequence. Now

|g(p0, f(p0))| ≤ |g(p0, p1)|+ |g(p1, f(p0))| = |g(p0, p1)|+Dg(A,B).

We have |g(p1, f(p0))| = Dg(A,B) = |g(p2, f(p1))| and

1

1 + λ+ µ
|g∗(p0, f(p0))| ≤ |g∗(p0, f(p0))| ≤ |g(p0, p1)|.

As f is a topologically Berinde weak proximal contraction w.r.t g, so conclude that

|g(p1, p2)| ≤ λ|g(p0, p1)|+ µ|g∗(p1, f(p0))|.

In a similar manner

|g(p1, f(p1))| ≤ |g(p1, p2)|+ |g(p2, f(p1))| = |g(p1, p2)|+Dg(A,B).

|g(p2, f(p1))| = Dg(A,B) = |g(p3, f(p2))| and 1
1+λ+µ |g

∗(p1, f(p1))| ≤ |g(p1, p2)|.
Therefore,

|g(p2, p3)| ≤ λ|g(p1, p2)|+ µ|g∗(p2, f(p1))| ≤ λ|g(p1, p2)| ≤ λ2|g(p0, p1)|.

So, by induction, we get |g(pn, pn+1)| ≤ λn|g(p0, p1)|. Suppose m > 0. Now,

|g(pn, pn+m)| ≤ |g(pn, pn+1)|+ |g(pn+1, pn+2)|+ · · ·+ |g(pn+m−1, pn+m)|

=⇒ |g(pn, pn+m)| ≤
(
λn + λn+1 + · · ·+ λn+m−1

)
|g(p0, p1)|

=⇒ |g(pn, pn+m)| ≤ λn(1− λm)

(1− λ)
|g(p0, p1)| → 0 as n,m→∞.

This shows that the sequence {pn} is a g-Cauchy sequence. Since X is g-complete
and A is g-closed, so the sequence {pn} is g-convergent to a point p∗ ∈ A. Besides,
we have

Dg(p
∗, B) ≤ lim

n→∞
[|g(p∗, pn+1)|+ |g(pn+1, f(pn))|] = Dg(p

∗, B)

So,

lim
n→∞

|g(p∗, f(pn))| = Dg(p
∗, B).

Since B is approximatively g-compact with respect to A, it follows that the sequence
{f(pn)} has a subsequence {f(pnk

)} converges to some element q∗ ∈ B. Then

|g(p∗, q∗)| ≤ lim
n→∞

[|g(p∗, pnk+1
)|+ |g(pnk+1

, f(pnk
))|+ |g(f(pnk

), q∗)|] = Dg(A,B).

Therefore, |g(p∗, q∗)| = Dg(A,B) ⇒ p∗ ∈ Ag. Since f(Ag) ⊆ Bg, there exists an
element r∗ ∈ Ag such that |g(r∗, f(p∗))| = Dg(A,B). We assert that

|g∗(p∗, f(p))| ≤ λ|g(p∗, p)|+ µ|g∗(q∗, p)| ∀ p ∈ Ag
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with p 6= p∗. Let p ∈ Ag be fixed such that p 6= p∗, by the fact that f(Ag) ⊆ Bg there
exists an element s ∈ Ag such that

|g(s, f(p))| = Dg(A,B).

Since pn → p∗ there exists N ∈ N such that |g(pn, p
∗)| ≤ 1

3 |g(p, p∗)| ∀ n ≥ N. Hence

1

1 + λ+ µ
|g∗(pn, f(pn))| ≤ |g(pn, pn+1)|+ |g∗(pn+1, f(pn))|

≤ |g(pn, p
∗)|+ |g(p∗, pn+1)|

≤ 2

3
|g(p, p∗)|

= |g(p, p∗)| − 1

3
|g(p, p∗)|

≤ |g(p, p∗)| − |g(pn, p
∗)|

≤ |g(p, pn)|.

Now we have, |g(pn+1, f(pn))| = Dg(A,B) = |g(s, f(p))| and

1

1 + λ+ µ
|g∗(pn, f(pn))| ≤ |g(pn, p)|.

Since f is a topologically Berinde weak proximal contraction mapping w.r.t g, we
deduce that

|g(pn+1, s)| ≤ λ|g(pn, p)|+ µ|g∗(p, f(pn))| ∀ n ≥ N.
Therefore

|g(p∗, f(p))| = lim
k→∞

|g(pnk+1
, f(p))|

≤ lim
k→∞

[|g(pnk+1
, s)|+ |g(s, f(p))|]

≤ lim
k→∞

[λ|g(pnk
, p)|+ µ|g∗(p, f(pnk

))|+Dg(A,B)]

= λ|g(p∗, p)|+ µ|g∗(p, q∗)|+Dg(A,B)

=⇒ |g∗(p∗, f(p))| ≤ λ|g(p∗, p)|+ µ|g∗(p, q∗)|.
We obtain

|g∗(pnk
, f(pnk

))| ≤ |g(pnk
, p∗)|+ |g∗(p∗, f(pnk

))|
≤ |g(pnk

, p∗)|+ λ|g(p∗, pnk
)|+ µ|g∗(pnk

, q∗)|
≤ (1 + λ)|g(pnk

, p∗)|+ µ[|g(pnk
, p∗)|+ |g∗(p∗, q∗)|]

≤ (1 + λ+ µ)|g(pnk
, p∗)|

|g(pnk+1
, f(pnk

))| = Dg(A,B) = |g(r∗, f(p∗))|
and

1

1 + λ+ µ
|g∗(pnk

, f(pnk
))| ≤ |g(pnk

, p∗)|
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As f is a topologically Berinde weak proximal contraction w.r.t g, we get

|g(pnk+1
, r∗)| ≤ λ|g(pnk

, p∗)|+ µ|g∗(p∗, f(pnk
))|

≤ λ|g(pnk
, p∗)|+ µ[|g(f(pnk

), q∗)|+ |g∗(p∗, q∗)|]
≤ λ|g(pnk

, p∗)|+ µ|g(f(pnk
), q∗)|.

Now by k → ∞, we get lim
k→∞

|g(pnk+1
, r∗)| = 0 i.e. r∗ = p∗. Therefore p∗ is a best

proximity point of f.
Now, suppose the mapping f has two best proximity points p∗ and p∗∗. So we have

|g(p∗, f(p∗))| = Dg(A,B)

and
|g(p∗∗, f(p∗∗))| = Dg(A,B)

and
1

1 + λ+ µ
|g∗(p∗, f(p∗))| ≤ |g(p∗, p∗∗)|.

As f is topologically Berinde weak proximal contraction, so we have,

|g(p∗, p∗∗)| ≤ λ|g(p∗, p∗∗)|+ µ|g∗(f(p∗), p∗∗)| ≤ λ|g(p∗, p∗∗)|+ µ|g(p∗, p∗∗)|
=⇒ (1− λ− µ)|g(p∗, p∗∗)| ≤ 0

=⇒ |g(p∗, p∗∗)| = 0 [since (1− λ− µ) > 0]

=⇒ p∗ = p∗∗ [since g(x, y) = 0⇒ x = y].

So the best proximity point is unique.

Now we provide an example to validate Theorem 2.12.

Example 2.13. Consider R2 with the usual topology and X = {0} × R with the
subspace topology. Let g : X ×X → R be defined by

g ((x, y), (u, v)) = y − v.
Then g is a continuous function. Suppose

A = {(0, 1), (0, 2), (0, 5)} and B = {(0, 0), (0, 3), (0, 4), (0, 6)}.
Then Dg(A,B) = 1 Ag = A and Bg = B. Let f : A → B be a mapping defined by
f((0, 1)) = f((0, 2)) = (0, 3) and f((0, 5)) = (0, 6).
Case 1. u = (0, 5), v = (0, 2), x = (0, 5), y = (0, 2). We have

1

1 + 0.5 + 2
|g∗(x, f(x))| = 1

3.5
× 0 ≤ |g(x, y)|

=⇒ |g(u, v)| = 3 ≤ 1

2
|g(x, y)|+ 2|g∗(f(x), y)|.

Case 2. u = (0, 2), v = (0, 5), x = (0, 2), y = (0, 5). We have

1

1 + 0.5 + 2
|g∗(x, f(x))| = 1

3.5
× 0 ≤ |g(x, y)|

=⇒ |g(u, v)| = 3 ≤ 1

2
|g(x, y)|+ 2|g∗(f(x), y)|.
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Case 3. u = (0, 5), v = (0, 2), x = (0, 5), y = (0, 1). We have

1

1 + 0.5 + 2
|g∗(x, f(x))| = 2

3.5
× 0 ≤ |g(x, y)|

=⇒ |g(u, v)| = 3 ≤ 1

2
|g(x, y)|+ 2|g∗(f(x), y)|.

Case 4. u = (0, 2), v = (0, 5), x = (0, 1), y = (0, 5). We have

1

1 + 0.5 + 2
|g∗(x, f(x))| = 1

3.5
× 1 ≤ |g(x, y)|

=⇒ |g(u, v)| = 3 ≤ 1

2
|g(x, y)|+ 2|g∗(f(x), y)|.

Therefore, f is a topologically Berinde weak proximal contraction with respect
to g with λ = 1

2 and µ = 2 and satisfies all conditions of the Theorem 2.12. Here
p∗ = (0, 2) and p∗∗ = (0, 5) are best proximity points of f . We observe that here
(1−λ−µ) < 0 and best proximity point of f is not unique. So this example not only
just validate Theorem 2.12, but also shows that if the condition (1 − λ − µ) > 0 is
violated, then the mapping f may have more than one best proximity point.

2.2. Best proximity point theorem for topologically proximal weakly con-
traction.
In this paper, we use the symbol Θ to denote the class of mappings ψ : [0,∞) →

[0,∞) such that ψ is continuous, non-decreasing, ψ(t) > 0 for all t ∈ (0,∞), ψ(0) = 0
and lim

s→∞
ψ(s) =∞. If we take ψ(t) = t2, t ∈ [0,∞) then ψ ∈ Θ. So Θ 6= φ.

In the year 2013, Gabeleh [2] introduced the notion of a proximal weakly contractive
mapping defined on a non-empty subset of a metric space as follows:

Definition 2.14. [2] Let (A,B) be a pair of non-empty subsets of a metric space
(X, d). A mapping T : A→ B is said to be proximal weakly contractive if there exists

ψ ∈ Θ such that d
(
u1, T (x1)

)
= D(A,B) and d

(
u2, T (x2)

)
= D(A,B)

=⇒ d(u1, u2) ≤ d(x1, x2)− ψ
(
d(x1, x2)

)
for all u1, u2, x1, x2 ∈ A.

Now we like to introduce the notion of topologically weakly contractive and topo-
logically proximal weakly contractive mapping in a topological space X as follows:

Definition 2.15. Let (A,B) be a pair of non-empty subsets of a topological space
X and g : X ×X → R be a continuous function. A mapping T : A→ B is said to be
topologically weakly contractive with respect to g if there exists ψ ∈ Θ such that

|g (T (x1), T (x2))| ≤ |g(x1, x2)| − ψ (|g(x1, x2)|)

for all x1, x2 ∈ A.

Definition 2.16. Let (A,B) be a pair of non-empty subsets of a topological space
X and g : X × X → R be a continuous function. A mapping T : A → B is said to
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be topologically proximal weakly contractive with respect to g if there exists ψ ∈ Θ
such that ∣∣∣g(u1, T (x1))

∣∣∣ = Dg(A,B) =
∣∣∣g(u2, T (x2))

∣∣∣
=⇒

∣∣∣g(u1, u2)
∣∣∣ ≤ ∣∣∣g(x1, x2)

∣∣∣− ψ(|g(x1, x2)|
)

for all u1, u2, x1, x2 ∈ A.

Note 2.17. If the topological space X is metrizable with respect to a metric d then
in Definition 2.16, by taking g = d and ψ(t) = (1− α)t, for t ∈ [0,∞) and α ∈ (0, 1),
we will get the notion of proximal contraction for standard metric spaces introduced
by Basha in [1] and if we take g = d, we will get the notion of proximal weakly
contractive mapping for standard metric spaces introduced by Gabeleh in [2].

In Definition 2.16, we mention that the mapping f is topologically proximal weakly
contractive with respect to the continuous mapping g and it is important. In our
upcoming example, we show that there exist two subsets A and B of a topological
space X and a mapping T : A → B such that T is topologically proximal weakly
contractive with respect to a continuous function g but is not topologically proximal
weakly contractive with respect to another continuous function h.

Example 2.18. Consider R2 with the usual topology. Let A = {1} × [0, 1] and
B = [0, 1]×{1} and T : A→ B be defined by T (1, y) = (y, 1). Let g : R2×R2 → R be

defined by g
(

(x, y), (u, v)
)

= yv. Then g is a continuous function. Now, we show that

T is topologically proximal weakly contractive with respect to g. Let us define ψ :
[0,∞)→ [0,∞) by ψ(t) = t2, t ∈ [0,∞). Then ψ ∈ Θ. It is clear that Dg(A,B) = 0.

Now let x1 = (1, p1), x2 = (1, p2), u1 = (1, y1), u2 = (1, y2) ∈ A and
∣∣∣g(x1, T (u1))

∣∣∣ = 0

and
∣∣∣g(x2, T (u2))

∣∣∣ = 0. So
∣∣∣g((1, p1), (y1, 1))

∣∣∣ = 0 which follows that p1 = 0. Similarly,

from the second equation, we get p2 = 0. Now,
∣∣∣g(x1, x2)

∣∣∣ = p1p2 = 0. On the other

hand ∣∣∣g(u1, u2)
∣∣∣− ψ(|g(u1, u2)|

)
= y1y2 − (y1y2)2 ≥ 0.

This shows that T is topologically proximal weakly contractive with respect to g.

On the other hand, let h : R2×R2 → R be defined by h
(

(x, y), (u, v)
)

= xu. It can

be seen that Dh(A,B) = 0. Let x1 = (1, 12 ), x2 = (1, 14 ), u1 = (1, 0), u2 = (1, 0) ∈ A
and

∣∣∣h(x1, T (u1))
∣∣∣ = 0 and

∣∣∣h(x2, T (u2))
∣∣∣ = 0. But,

1 =
∣∣∣h(x1, x2)

∣∣∣ > ∣∣∣h(u1, u2)
∣∣∣− ψ(|h(u1, u2)|

)
= 0.

This shows that T is not topologically proximal weakly contractive with respect to h.

In our next example, we show that the notion of topologically proximal weakly con-
tractive with respect to a continuous function is indeed more general than the notion
of proximal weakly contractive introduced by Gabeleh in [2]. We show that, there
exists a topological space X with a real-valued continuous function g, two non-empty
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disjoint subsets A,B of X and a function Q : A → B such that Q is topologically
proximal weakly contractive w.r.t g, but if the topological space is metrizable with
respect to a metric d, then Q is not proximal weakly contractive w.r.t the metric d.

Example 2.19. Consider R with the usual topology. Let g : R× R→ R be defined
by

g(x, y) = x2 − y2, x, y ∈ R.
Then g is a continuous function. Let A = {0, 1, 2, 3, 5} and B = {−1,−2,−3, 4} and
Q : A→ B be defined by Q(0) = Q(2) = 4, Q(1) = Q(3) = −1, Q(5) = −2. Then, it
can be seen that Dg(A,B) = 0. Let ψ : [0,∞)→ [0,∞) be defined by

ψ(t) =
t

2
, t ∈ [0,∞).

Then ψ ∈ Θ. Now ∣∣∣g(1, Q(3)
)∣∣∣ = Dg(A,B)

and ∣∣∣g(2, Q(5)
)∣∣∣ = Dg(A,B).

Then, ∣∣∣g(1, 2
)∣∣∣ ≤ ∣∣∣g(3, 5

)∣∣∣− ψ(∣∣∣g(3, 5
)∣∣∣).

Also, ∣∣∣g(1, Q(1)
)∣∣∣ = Dg(A,B)

and ∣∣∣g(2, Q(5)
)∣∣∣ = Dg(A,B).

Then, ∣∣∣g(1, 2
)∣∣∣ ≤ ∣∣∣g(1, 5

)∣∣∣− ψ(∣∣∣g(1, 5
)∣∣∣).

This shows that Q is topologically proximal weakly contractive w.r.t g. Now let d
denotes the usual metric on R. Then D(A,B) = inf{d(x, y) : x ∈ A, y ∈ B} = 1. Now

d
(

0, Q(1)
)

= D(A,B)

and

d
(

3, Q(0)
)

= D(A,B).

But

d(0, 3) > d(1, 0)− ψ
(
d(1, 0)

)
.

So, Q is not proximal weakly contractive with respect to the usual metric on R.

As in Note 2.17, we mentioned that if the topological space X is metrizable with
respect to a metric d then by taking g = d and ψ(t) = (1−α)t, for t ∈ [0,∞) and α ∈
(0, 1), we will get the notion of proximal contraction for standard metric spaces. So,
the notion of topologically proximal weakly contractive is more general than proximal
contractions. But in next example we show that the class of all topologically proximal
weakly contractive mappings are different from the class of all proximal contractions.
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Example 2.20. Consider R2 with the usual topology and

A = {1} × [−1, 0], B = {1} × [0, 1].

Define T : A→ B by

T (1, x) = (1,−x
2

), (1, x) ∈ A.

Let ψ : [0,∞)→ [0,∞) be defined by

ψ(t) =
t

2
; t ∈ [0,∞).

Then ψ ∈ Θ. Now, it can be seen that, T is a proximal contraction with respect to
the standard metric d on R2.

Let g : R2 × R2 → R be defined by

g ((x, y), (u, v)) = yv, (x, y), (u, v) ∈ R2.

Then g is a continuous function on R2×R2 and Dg(A,B) = 0. Let x1 = (1,− 1
4 ), x2 =

(1,− 1
2 ), u1 = (1, 0), u2 = (1, 0). So we have |g (x1, T (u1))| = 0 and |g (x2, T (u2))| = 0.

But
1

8
= |g(x1, x2)| > |g(u1, u2)| − ψ (|g(u1, u2)|) = 0.

This shows that T is not topologically proximal weakly contractive with respect to g.

Now we recall the notion of P-property and topological P-property from [2, 7] as
follows:

Definition 2.21. [2] Let (A,B) be a pair of non-empty subsets of a metric space
(M,d). The pair (A,B) is said to have the P-property if d(u1, x1) = D(A,B) and
d(u2, x2) = D(A,B) =⇒ d(u1, u2) = d(x1, x2) for all u1, u2 ∈ A0 and x1, x2 ∈ B0

where,
A0 = {x ∈ A : d(x, y) = D(A,B) for some y ∈ B},
B0 = {y ∈ B : d(x, y) = D(A,B) for some x ∈ A}.

Definition 2.22. [7] Let (A,B) be a pair of non-empty subsets of a topological
space X and g : X × X → R be a continuous function. The pair (A,B) is said to
have topological P-property with respect to g if∣∣∣g((u1, x1))

∣∣∣ = Dg(A,B) =
∣∣∣g((u2, x2))

∣∣∣
=⇒

∣∣∣g((u1, u2))
∣∣∣ =

∣∣∣g((x1, x2))
∣∣∣

for all u1, u2 ∈ Ag and x1, x2 ∈ Bg.

In upcoming example, we show that the notion of topological P-property with
respect to a continuous function is more general than the notion of P-property for
metric spaces.

Example 2.23. Consider R with the usual topology. Let g : R× R→ R be defined
by

g(x, y) = x2 − y2, x, y ∈ R.
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Then g is a continuous function. Let A = {0, 1, 2, 3, 5} and B = {−1,−2, 4}. Then

D(A,B) = inf{d(x, y) : x ∈ A, y ∈ B} = 1

and

Dg(A,B) = inf
{
|g(x, y)| : x ∈ A, y ∈ B

}
= 0.

Now, we show that the pair (A,B) does not have the P-property with respect to the
standard metric d on R but the pair (A,B) have topological P-property with respect
to g. Now

d(0,−1) = D(A,B)

and
d(3, 4) = D(A,B).

But d(0, 3) 6= d(−1, 4). On the other hand, the relation∣∣∣g(u1, x1)
∣∣∣ = Dg(A,B)

and ∣∣∣g(u2, x2)
∣∣∣ = Dg(A,B)

hold only if u1 = 1, x1 = −1 and u2 = 2, x2 = −2.

In this case,
∣∣∣g(u1, u2)

∣∣∣ =
∣∣∣g(x1, x2)

∣∣∣.
Now we present a best proximity point theorem for topologically proximal weakly

contractive mappings as follows.

Theorem 2.24. Let X be a g-complete topological space where g : X × X → R
is a continuous function such that g(x, y) = 0 =⇒ x = y, |g(x, y)| = |g(y, x)| and
|g(x, z)| ≤ |g(x, y)| + |g(y, z)| for all x, y, z ∈ X. Let (A,B) be a pair of non-empty
g-closed subsets of X such that the pair (A,B) have topological P-property and Ag is
non-empty. Let T : A→ B be topologically proximal weakly contractive mapping w.r.t
g such that T (Ag) ⊆ Bg. Then there exists a unique best proximity point p∗ ∈ Ag of
T.

Proof. Let p0 ∈ Ag. Since T (Ag) ⊆ Bg =⇒ T (p0) ∈ Bg. So there exists p1 ∈ Ag such

that
∣∣∣g(p1, T (p0))

∣∣∣ = Dg(A,B). Now T (p1) ∈ Bg so, there exists p2 ∈ Ag such that∣∣∣g(p2, T (p1))
∣∣∣ = Dg(A,B). Continuing in this way we get a sequence {pn} ⊂ Ag such

that
∣∣∣g(pn+1, T (pn))

∣∣∣ = Dg(A,B), for all n ≥ 0. Now∣∣∣g(pn+1, T (pn))
∣∣∣ = Dg(A,B)

and ∣∣∣g(pn, T (pn−1))
∣∣∣ = Dg(A,B).

As T is topologically proximal weakly contractive with respect to g,so there exists
ψ ∈ Θ such that ∣∣∣g(pn+1, pn)| ≤

∣∣∣g(pn, pn−1)
∣∣∣− ψ(|g(pn, pn−1)|

)
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=⇒
∣∣∣g(pn+1, pn)| ≤

∣∣∣g(pn, pn−1)
∣∣∣.

So, the sequence
{
|g(pn+1, pn)|

}
is a decreasing sequence and let |g(pn+1, pn)| →

q as n → ∞. By the continuity of ψ and g we can show that q = 0. Since∣∣∣g(xn+1, xn)
∣∣∣ → 0 as n → ∞ so for a preassigned ε > 0 there exists n0 ∈ N such

that ∣∣∣g(xm+1, xm)
∣∣∣ < min

{ε
2
, ψ(

ε

2
)
}

for all m ≥ n0.

Now, from the selection of the sequence {pn} we have,∣∣∣g(pm+1, T (pm))
∣∣∣ = Dg(A,B), (2.1)∣∣∣g(pm, T (pm−1))
∣∣∣ = Dg(A,B).

Since the pair (A,B) have the topological P-property, so from equation 2.1, we have∣∣∣g(pm+1, pm)
∣∣∣ =

∣∣∣g(T (pm), T (pm−1))
∣∣∣.

Also, ∣∣∣g(pm+2, T (pm+1))
∣∣∣ = Dg(A,B), (2.2)∣∣∣g(pm+1, T (pm))
∣∣∣ = Dg(A,B).

As, T is topologically proximal weakly contractive with respect to g, so, we have from
equation 2.2 that∣∣∣g(pm+2, pm+1)

∣∣∣ ≤ ∣∣∣g(pm+1, pm)
∣∣∣− ψ(|g(pm+1, pm)|

)
≤

∣∣∣g(pm+1, pm)
∣∣∣. (2.3)

Now from equation 2.3 we have∣∣∣g(T (pm+1), T (pm−1))
∣∣∣ ≤ ∣∣∣g(T (pm+1), T (pm))

∣∣∣+
∣∣∣g(T (pm), T (pm−1))

∣∣∣,
=

∣∣∣g(pm+2, pm+1)
∣∣∣+
∣∣∣g(pm+1, pm)

∣∣∣,
≤ 2

∣∣∣g(pm+1, pm)
∣∣∣,

< ε. (2.4)

This is true for all m ≥ n0. Now by using the topological P-property we have∣∣∣g(pm+2, pm)
∣∣∣ =

∣∣∣g(T (pm+1), T (pm−1))
∣∣∣ < ε for all m ≥ n0.

Now we have ∣∣∣g(pm+3, T (pm+2))
∣∣∣ = Dg(A,B), (2.5)∣∣∣g(pm+1, T (pm))
∣∣∣ = Dg(A,B).
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As T is topologically proximal weakly contractive with respect to g, so we have from
equation 2.5 that∣∣∣g(pm+3, pm+1)

∣∣∣ ≤ ∣∣∣g(pm+2, pm)
∣∣∣− ψ(|g(pm+2, pm)|

)
≤

∣∣∣g(pm+2, pm)
∣∣∣. (2.6)

Now from equation 2.6, if
∣∣∣g(pm+2, pm)

∣∣∣ < ε
2 then we have for all m ≥ n0,∣∣∣g(T (pm+2), T (pm−1))

∣∣∣ ≤ ∣∣∣g(T (pm+2), T (pm))
∣∣∣+
∣∣∣g(T (pm), T (pm−1))

∣∣∣,
=

∣∣∣g(pm+3, pm+1)
∣∣∣+
∣∣∣g(pm+1, pm)

∣∣∣,
≤

∣∣∣g(pm+2, pm)
∣∣∣+
∣∣∣g(pm+1, pm)

∣∣∣,
< ε. (2.7)

If for all m ≥ n0, ε >
∣∣∣g(pm+2, pm)

∣∣∣ ≥ ε
2 then ψ

(∣∣∣g(pm+2, pm)
∣∣∣) ≥ ψ

(
ε
2

)
as ψ ∈ Θ,

then from equation 2.6 and 2.7, we have for all m ≥ n0,∣∣∣g(T (pm+2), T (pm−1))
∣∣∣ ≤ ∣∣∣g(T (pm+2), T (pm))

∣∣∣+
∣∣∣g(T (pm), T (pm−1))

∣∣∣,
=

∣∣∣g(pm+3, pm+1)
∣∣∣+
∣∣∣g(pm+1, pm)

∣∣∣,
≤

∣∣∣g(pm+1, pm)
∣∣∣+
∣∣∣g(pm+2, pm)

∣∣∣− ψ(|g(pm+2, pm)|
)
,

< ψ
(ε

2

)
+ ε− ψ

(ε
2

)
,

= ε. (2.8)

So
∣∣∣g(pm+3, pm)

∣∣∣ =
∣∣∣g(T (pm+2), T (pm−1))

∣∣∣ < ε for all m ≥ n0. Similarly we can show

that
∣∣∣g(pm+q, pm)

∣∣∣ < ε for all m ≥ n0 and q ∈ N. This shows that the sequence {pn} is

a g-Cauchy sequence in Ag. Since X is g-complete, the pair (A,B) is g-closed and have
the topological P-property so, it can be easily seen that Ag is g-closed. Since Ag is g-
closed, so, let {pn} is g-convergent to p∗ ∈ Ag. As T (p∗) ∈ Bg so there exists p∗∗ ∈ Ag
such that

∣∣∣g(p∗∗, T (p∗))
∣∣∣ = Dg(A,B). Also we have

∣∣∣g(pn+1, T (pn))
∣∣∣ = Dg(A,B). As

T is topologically proximal weakly contractive with respect to g, so we have∣∣∣g(pn+1, p
∗∗)
∣∣∣ ≤ ∣∣∣g(pn, p

∗)
∣∣∣− ψ(|g(pn, p

∗)|
)

=⇒
∣∣∣g(pn+1, p

∗∗)
∣∣∣ ≤ ∣∣∣g(pn, p

∗)
∣∣∣

=⇒
∣∣∣g(pn+1, p

∗∗)
∣∣∣→ 0 as n→∞.

Now from lemma [10, Lemma 2.4.], since the limit is unique so, we have p∗ = p∗∗.

So,
∣∣∣g(p∗, T (p∗))

∣∣∣ = Dg(A,B). Hence p∗ is a best proximity point of T. Now suppose
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p∗, q∗ are two best proximity points of the mapping T . So,∣∣∣g(p∗, T (p∗))
∣∣∣ = Dg(A,B)

and ∣∣∣g(q∗, T (q∗))
∣∣∣ = Dg(A,B).

As T is topologically proximal weakly contractive with respect to g, so we have∣∣∣g(p∗, q∗)
∣∣∣ ≤ ∣∣∣g(p∗, q∗)

∣∣∣− ψ(∣∣∣g(p∗, q∗)
∣∣∣)

=⇒ ψ
(∣∣∣g(p∗, q∗)

∣∣∣) = 0

=⇒
∣∣∣g(p∗, q∗)

∣∣∣ = 0

=⇒ p∗ = q∗.

So T has a unique best proximity point in Ag. This completes the proof.

Example 2.25. Consider R2 with the usual topology and X = {1} × [−1, 1] with
the subspace topology. Let g : X ×X → R be defined by

g
(

(x, y), (u, v)
)

= y − v, (x, y), (u, v) ∈ X.

Then g is a continuous function on X ×X. We will show that X is g-complete. Let
{(1, xn)} be a g-Cauchy sequence in X. So∣∣∣g((1, xn), (1, xm)

)∣∣∣→ 0 as n,m→∞

=⇒ |xn − xm| → 0 as n,m→∞.
So, the sequence {xn} is a Cauchy sequence in [−1, 1]. Since [−1, 1] is complete, so
let xn → p ∈ [−1, 1] as n→∞. Now,∣∣∣g((1, xn), (1, p)

)∣∣∣ = |xn − p| → 0 as n→∞.

So, the sequence {(1, xn)} is g-convergent to (1, p) ∈ X. This implies X is g-complete.
Now let A = {1} × [−1, 0] and B = {1} × [0, 1]. Then Dg(A,B) = 0. Let (1, x) ∈ Ag.
Then there exists (1, y) ∈ B such that |g((1, x), (1, y))| = 0. So |x − y| = 0. This is
satisfied only by x = 0. This shows that Ag = {(1, 0)}. Also, Bg = {(1, 0)}. So, the
pair (A,B) is g-closed, have the topological P-property and Ag is non-empty. Now it
can be seen that the function g is satisfied all the conditions of Theorem 2.24.

Define f : A→ B by

f(1, x) = (1,−x
2

), (1, x) ∈ A.

So, f(1, 0) = (1, 0) =⇒ f(Ag) ⊆ Bg. Let ψ : [0,∞)→ [0,∞) be defined by

ψ(s) =
s

2
for all s ∈ [0,∞).

It can be easily seen that ψ ∈ Θ and the mapping f is topologically proximal weakly
contractive with respect to g. So, all the conditions of Theorem 2.24 are satisfied.
So, by the Theorem 2.24 the mapping f has unique best proximity point in Ag. Here
p∗ = (1, 0) ∈ Ag is the best proximity point of f.
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In the year 2013, M. Gabeleh [3] proved that the best proximity point theorem
for proximal weakly contractive mapping can be deduced from a fixed point theorem.
Next, we are going to introduce the notion of g-isometry in topological spaces. It is
more general than isometry in metric spaces. We also give an example supporting
this. We use g-isometry together with topological P-property, for proving the best
proximity point theorem for topologically proximal weakly contractive mapping de-
duced from some fixed point theorems on arbitrary topological spaces given by Liepins
[6].

Definition 2.26. Let X be a topological space and g : X ×X → R be a continuous
function. The mapping T : A→ B is said to be a g-isometry if

|g(Tx, Ty)| = |g(x, y)| for all x, y ∈ A.

The next example shows that g-isometry is not in general an isometry.

Example 2.27. Consider X = R2 with usual topology. Let g : X × X → R be
defined by |g ((x, u), (y, v))| = uv for all (x, u), (y, v) ∈ R2. Let f : A→ B be defined
by f(x, y) = (x2 , y) for all (x, y) ∈ A. Therefore

|g (f(x, u), f(y, v))| =
∣∣∣g ((x

2
, u
)
,
(y

2
, v
))∣∣∣ = uv = |g ((x, u), (y, v))|

for all (x, u), (y, v) ∈ R2. So, f is a g-isometry.
Now,

d ((x, u), (y, v)) =
√

(x− y)2 + (u− v)2.

Therefore

d (f(x, u), f(y, v)) = d
((x

2
, u
)
,
(y

2
, v
))

=

√(x
2
− y

2

)2
+ (u− v)2.

So, d (f(x, u), f(y, v)) 6= d ((x, u), (y, v)). Therefore, f is not an isometry with respect
to usual metric d.

Next, we show that the best proximity point theorem for topologically proximal
weakly contractive mapping can be deduced from fixed point theorems [6, Theorem 1]
and [8, Theorem 3.9].

Here we use the notation lp O(f, x) = ∩{cl{fm(x) : m ≥ n;n ∈ N}} ; where we use
the symbol ′cl′ to denote the closure of a set.

We recall the following theorems:

Theorem 2.28. [6] Let X be a topological space, and let f be a continuous selfmap
of X. Suppose there exists a continuous mapping g : X ×X → R satisfying x 6= y ⇒
|g(f(x), f(y))| ≤ |g(x, y)| for each x, y ∈ X. For each z ∈ X then lp O(z, f) is empty
or consists of a single point, which is the unique fixed point of f .
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Theorem 2.29. [8] Let X be a topological space, f : X → X be a continuous mapping
and for some continuous F : X ×X → R (with F (x, y) = 0 when x = y),

F (f(x), f(y)) < max{F (x, y), [max{F (x, f(x)), F (y, f(y))}
+ λmin{|F (x, f(y))|, F (f(x), y)}]}

for all x, y ∈ X, x 6= y; where λ ≥ 0. If there exists a point x0 ∈ X whose
sequence of iterates {fn(x0)} contains an convergent subsequence {fni(x0)}, then
a = limi→∞ fni(x0) ∈ X is a fixed point of f . If λ = 0, then f has a unique fixed
point.

Theorem 2.30. Let X be a topological space and g : X × X → R be a continuous
mapping such that |g(x, y)| = 0 ⇔ x = y. Let (A,B) be a pair of non-empty subsets
of X such that Ag is non-empty. Let T : A → B be topologically proximal weakly
contractive mapping w.r.t g such that T (Ag) ⊂ Bg. Then we have the following:
(1) If (A,B) has the topological P-property then there exists a bijective g-isometry
f : Ag → Bg s.t. |g (x, f(x))| = Dg(A,B).
(2) Further, if f−1T : Ag → Ag is continuous, then the existence of best proximity
point of the mapping T implies its uniqueness.
(3) Moreover, let Im(g) ⊂ R+. If there exists a point z ∈ Ag such that the sequence
of iterates {f−1T}n(z) contains a convergent subsequence {f−1T}nk(z), then T has
an unique best proximity point p = limk→∞{f−1T}nk(z).

Proof. (1) Let x ∈ Ag. Then by definition there exists y ∈ Bg such that

|g(x, y)| = Dg(A,B).

Now we define f : Ag → Bg by f(x) = y.
Let x, x′ ∈ Ag. Then |g (x, f(x))| = Dg(A,B) = |g (x′, f(x′))|. If x = x′ then by

topological P-property of (A,B), we have f(x) = f(x′). This implies that f is well
defined. If f(x) = f(x′), again by topological P-property x = x′. Therefore f is
injective.

Next, we show that f is surjective. Let y ∈ Bg then there exists x ∈ Ag s.t
|g(x, y)| = Dg(A,B). Also, by definition of f , we have |g (x, f(x))| = Dg(A,B).
Therefore, topological P-property of (A,B) gives f(x) = y. Therefore f is a bijection.
Let x1, x2 ∈ Ag. Then

|g (x1, f(x1))| = Dg(A,B) = |g (x2, f(x2))| .
By topological P-property we have that |g(x1, x2)| = |g (f(x1), f(x2))| . Therefore, f
is an bijective g-isometry.

(2) Since T is topologically proximal weakly contractive mapping w.r.t g, so, we
have,|g (u1, T (x1))| = Dg(A,B) and |g (u2, T (x2))| = Dg(A,B)

=⇒ |g(u1, u2)| ≤ |g(x1, x2)| −ψ (|g(x1, x2)|) for all u1, u2, x1, x2 ∈ A and ψ ∈ Θ.
By topological P-property, |g(u1, u2)| = |g (T (x1), T (x2))|. So,

|g (T (x1), T (x2))| ≤ |g(x1, x2)| − ψ (|g(x1, x2)|)
for all x1, x2 ∈ Ag and ψ ∈ Θ. Therefore, it is sufficient to prove the theorem for
topologically weakly contractive mapping T on Ag. Now we have f−1T : Ag → Ag is
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continuous. Since f is bijective, then,∣∣g (f−1T (x), f−1T (y)
)∣∣ = |g (T (x), T (y))| ≤ |g(x, y)| − ψ (|g(x, y)|) < |g(x, y)|

for all x, y ∈ Ag with x 6= y.
Then for each x ∈ Ag, lp O(f−1T, x) is empty or consists of a single point which is

the unique fixed point of f−1T by Theorem 1 of [6]. Let p be a fixed point of f−1T ,
then f−1T (p) = p =⇒ f(p) = T (p). Therefore,

|g (p, T (p))| = |g (p, f(p))| = Dg(A,B).

Therefore p is the unique best proximity point of T.
(3) Since, Im(g) ⊂ R+ and T is topologically weakly contractive mapping on Ag w.r.t
g then by the previous result, we get,

g (T (x1), T (x2)) ≤ g(x1, x2)− ψ (g(x1, x2)) < g(x1, x2)

for all x1, x2 ∈ Ag and ψ ∈ Θ.
Therefore we can write,

g (T (x1), T (x2)) < g(x1, x2)

≤ max{g(x1, x2), (max{g (x1, T (x1)) , g (x2, T (x2))}
+λmin{|g (x1, T (x2)) |, g (T (x1), x2)})}

for all x1, x2 ∈ Ag with λ = 0. Then by condition (3) and [8, Theorem 3.9], we get
f−1T has a unique fixed point. In a similar manner, it can be shown that T has a
unique best proximity point in Ag.

Now we present an example to validate Theorem 2.30.

Example 2.31. Consider R2 with the usual topology and X = [0, 100] with subspace
topology. Let g : X ×X → R be defined by

g ((x, y)) =
√
y −
√
x, (x, y) ∈ X.

Then g is a continuous function on X ×X. Now, let A = {0, 9, 50} and B = {1, 16}.
Then Dg(A,B) = 1 and Ag = {0, 9}. Also, Bg = {1, 16}. So, Ag is non-empty. Again,
|g(0, 1)| = 1 = |g(9, 16)| and |g(0, 9)| = 3 = |g(1, 16)|. This shows that (A, B) satisfies
topological P property with respect to g. Now define f : Ag → Bg by f(0) = 1
and f(9) = 16. Therefore, |g(f(0), f(9))| = |g(1, 16)| = 3 = |g(0, 9)|. So, f is an
bijective g-isometry. Next, define T : A→ B by T (0) = 16;T (9) = 16;T (50) = 1. So
T (Ag) ⊆ Bg.
|g (0, T (50))| = 1 = |g (9, T (0))| =⇒ |g(0, 9)| = 3 ≤ |g(50, 0)| − ψ (|g(50, 0)|)
|g (0, T (50))| = 1 = |g (9, T (9))| =⇒ |g(0, 9)| = 3 ≤ |g(50, 9)| − ψ (|g(50, 9)|)
where ψ(t) = 1

50 t.
Therefore T is a topologically proximal weakly contractive mapping with respect

to g. Also Ag is compact. So, the mapping T has a unique best proximity point in
Ag. Here p = 9 ∈ Ag is a best proximity point of T and the best proximity point is
unique.
Now if we consider d as a standard metric on R, then A0 = {0} and B0 = {1}. But
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T (A0) = {16}  B0. So it does not satisfy the hypothesis of Theorem 2.30. Also, it
is clear that the mapping T has no best proximity point w.r.t d.
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