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1. INTRODUCTION

Let K be a nonempty subset of a real normed linear space E. A mapping T from
K to E is called nonexpansive if ||Tz — Tyl < ||z —y] for all z,y € C. Let H
be a Hilbert space with inner product (.,.) and norm ||.||, respectively. Let C' be a
nonempty, closed and convex subset of H and A : C'— H a nonlinear operator.

It is well known that the sequence {T"x} of iterates of nonexpansive operator T at
a point x € C' may in general, not behave well. This means that it may not converge
in weak topology. Further we use Krasnoselskij Mann (KM) iteration method [[2],
[4]] that produces a sequence {x,} via the recursive manner:

Tpy1 = (1 — o)z + Tz, for all neN,

where the initial guess x; € C is chosen arbitrarily and {«,} is a real sequence in
[0,1]. Tt is worth noting that the KM iteration process is well known for finding fixed
points of nonexpansive operators.

In 2009, Agarwal et al. [1] have defined the S-iteration process as follows: Let E be
a normed linear space, C' a nonempty convex subset of ¥ and T': C' — C an operator.
Then, for arbitrary x; € C, the S-iteration process is defined by

Yn (1 - ﬁn)xn + ﬁnTxnv neN,
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Tp4+1 = (1 - an)Txn + Ty,
(S) {
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where {ay,} and {5,,} are real sequences in (0,1) satisfying the condition:

Zanﬂn(l — Bn) = 0.
n=1

It has also been shown that S-iteration process is faster than the Picard iteration
process for contraction operators.

In 1997, Browder [2] and Halpern [5] proved independently the strong convergence
of the path {z; = tu+ (1 —t)Tx; : t € (0,1)} as t — 0 for nonexpansive operator T’
in a Hilbert space H. After Browder’s result, such a problem has been investigated
by several authors for example, Singh and Watson [8], Marino and Trombetta [6] and
others. In 1998, W. Takahashi and G. E. Kim [9] defined contraction S; and U; from
C into X by

Six =tPTx+ (1 —t)u forall x € C,
and
Uix = P(tTx + (1 —t)u) for all x € C,
where C'is a closed and convex subset of a reflexive Banach space X and P is a sunny
nonexpansive retraction from X onto C.

The purpose of this paper is to further analyze Halpern type S-iteration process

for nonlinear operator which generalizes Theorem 5.4 7] for nonself mapping.

2. PRELIMINARIES

Let X be a Banach space and Sx denote the unit sphere Sy = {x € X : ||z|| = 1}.
A Banach space X is said to be strictly convex if
z,ye€ Sy withz#y = [|(1 -z + M\y|| <1 forall A € (0,1).
Recall that a Banach space X is said to be smooth provided the limit
ety ]
t—0 t
exists for each =,y € Sx. In this case, the norm of X is said to be Gateaux differen-
tiable. It is said to be uniformly Gateaux differentiable if for each y € Sx this limit
is attained uniformly for x € Sx. It is well known that every uniformly smooth space
(e.g. L, space (1 <p < o0)) has uniformly Gateaux differentiable norm.
Let E be an arbitrary real normed linear space with dual space E*. We denote J the
normalized duality mapping from E into 2F" defined by

J@)={f e B @ ) = |al’ = I/ I’} @€k,
where (.,.) denotes the generalized duality pairing. Then for each x,y € FE, there
exists j(z + y) € J(x + y) such that
lz + yll* < [ll|* + 2 (g, j(z +y)) -

It is well known that J is single-valued iff X is smooth. It is also known that if X
has a uniformly Gateaux differentiable norm, J is uniformly continuous on bounded
sets when X has its strong topology while X* has its weak* topology.

A closed convex subset C' of Banach space X is said to have a normal structure if for
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each bounded closed convex subset K of C', which contains at least two points, there
exists an element of K, which is not a diameteral point of K. It is well known that a
closed convex subset of a uniformly convex Banach space has normal structure and a
compact convex subset of Banach space has normal structure.

A subset C of a Banach space X is called a retract of X, if there exists a continuous
mapping P from X onto C such that Px = x for all z € C. We call such P a retraction
of X onto C. It follows that if a mapping P is a retraction, then Py = y for all y in
the range of P. A retraction P is said to be sunny if P(Pz + t(x — Px)) = Px for
each z € X and t > 0. If a sunny retraction P is also nonexpansive, then C' is said to
be sunny nonexpansive retract of X.

The existence of fixed point for nonself nonexpansive mapping is given by the following
lemmas:

Lemma 2.1. ([1], Theorem 5.2.26) Let C' be a nonempty closed convex bounded subset
of a uniformly convexr Banach space X and T : C' = X a weakly inward nonerpansive
mapping. Then T has a fized point in C.

The following theorem shows the convergence of path for nonself nonexpansive
mapping.
Lemma 2.2. ([9], Theorem 3) Let X be a reflexive Banach space with uniformly
Gateauz differentiable norm. Let C be a nonempty closed convex subset of X which
has normal structure and let T : C' — X be a nonexpansive nonself mapping satisfying
the weak inwardness condition. Suppose that C' is sunny nonexrpansive retract of X
and for some u € C and each t € (0,1), y; € C is a (unique) fixed point of contraction
U defined by

Uix = P(tTx + (1 — t)u),

where P is a sunny nonexpansive retraction of X onto C. Then T has a fized point
iff {y:} remains bounded as t — 1. In this case, {y;} converges strongly ast — 1 to a
fized point of T.

3. STRONG CONVERGENCE OF HALPERN TYPE S-ITERATION PROCESS

Motivated by the works of D. R. Sahu [7], we propose the following algorithms
for nonself mapping to further analyze Halpern type S-iteration process for nonlinear
operator. We generalize Theorem from self mapping to nonself mapping.
Algorithm 3.1. Let C' be a nonempty closed convex subset of Banach space X and
T :C — X an operator. Given u,z7 € C, a sequence {z,} in C is constructed as
follows:

Tny1 = Pl(1—an)Tan + Ty,

Yn = (1 —=LBn)xn+ Buu, neN, (3.1)
where {ay,} and {5, } are two sequences in (0,1] satisfying the following condition:
(C1) lim B, =0, lim I im Bn =1 and Zanﬂn = 00,

n—o00 n—00 Uy 41 n— oo BN-&-l =

where P is a sunny nonexpansive retraction of X.
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Algorithm 3.2. Let C' be a nonempty closed convex subset of a Banach space X
and T : C — X an operator. Given u,z; € C, a sequence {x,} in C is constructed
as follows:

Tny1 = Pl1—=NTx, + ATy,
Yn = (1—=PBn)rn+Bru, neN, (3.2)
where A € (0,1] and {8, } is sequence in (0,1] satisfying the following condition:
. _ . Bn — .
(C2) nli}rgo Br =0, lim =1 and Z:lﬁn = 00,

n—oo n+1 —
where P is a sunny nonexpansive retraction of X.

Lemma 3.1. Let X be a smooth Banach space. Then
e +yl* < |lzl|> + 2y, J(x+y) forall z,y€ X.

Lemma 3.2. Let {a,} be a sequence of nonnegative real numbers satisfying:
ant1 < (1 —tp)an +tpby, for all n € N,

where {b,} and {t,} are sequences of real numbers which satisfy the conditions:
o0

(i) {t,} C [0,1] and Ztn = 00 and

n=1
(i) lim sup b, = 0.
n—oo
Then lim a, = 0.
n—oo

Proposition 3.3. Let C be a nonempty closed conver subset of a Banach space X
and T : C' — X a nonezpansive operator such that F(T) # 0. For given u,x1 € C, let
{zn} be a sequence in C' generated by Algorithm 3.1. Then we have {x,,} and {yn}
are bounded.

Proof. Suppose p € F(T'). From Algorithm 3.1, we have

lyn =2l < (1= Bn) lzn — pll + Bullu —pl|.- (3.3)
Since
[Znt1 —pll = [P[(1 = on)T2y + anTyn] — Ppl|
< (A = an)(Txn —p) + an(Ty, —p)||
< (L= an) [Tz = pl| + an [ Tyn — pll
< (I=an)llzn —pll + an llyn —pll
< (L—an)llzn —pll +an [(L = Bn) lzn — pll + Bn llu — pll]
= (1—ap) |lzn —pll + (an — anbp) |20 — pll + @nfby [[u—pll
(1 = anBn) |70 = pll + B [lu - pl|

< max {[|z, —pl, lu—pl}
< max{[lz1 —pl,|lu—p|}. (3.4)
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Thus, {x,} is bounded and hence from (3.3), {y,} is bounded.

Theorem 3.4. Let C be a nonempty closed convex subset of a Banach space X and
T :C — X a nonexpansive operator such that F(T) # (. For given u,x; € C, let
{zn} be a sequence in C' generated by Algorithm 3.1. Then nh—>Holo |z — Tzy| = 0.

Proof. Observe that

Hxn-i-l -zl = P [(1 —ap) Tz, + anTyn]

-P [(1 - anfl)Txnfl + anflTynfl] H

< 1= ap) Tz, + anTy,)]
—[(1=an-1)Trp-1+ an_1Tyn-1] H

= ||(1—ap)Txy—(1—an)Txn1+ (1 —an)Trp1+ anTyn
—apTyn—1+ anTyn—1— (1 —ap_1)Txp_1 — an_lTyn_lH

< (I —ap) |zn — 2p—1|l + an |[Yn — Yn—1]|
+lan — an—1| |Tn—1 — Yn-1ll - (3.5)

Now,
lyn = yn—1ll = [[Q = Bn)zn + Bar] = [(1 = Ba—1)@n—1 + Bn-1u]|

H(l — Bn)xn — (1= Bn)Tn-1+ (1 = Bn)an_1

= (1= Bu)@n-1+ (Ba = Bu-1)u|

(L= Bn) lzn — -1l + 1Bn = Ba-1l (lull + [lzn-1l])
(1 - Bn) Hxn - xn—l” + |ﬁn - ﬁn—1| Kl (36)

VANVAN

for some constant K7 > 0. From proposition 3.3, {x,} is bounded, so

Hxnfl - ynle = 57171 ||$n71 - U”
< Bt ([wn—al + [ull)
< Ba-1K (3.7)

for some constant K5 > 0. Using (3.6) and (3.7) in (3.5), we have

[Znt1 =zl < (1 —an)l|on —2nal +an [(1 = Bn) [|Tn — Zn—1|

+ 180 = Bu-1 | K1 | + lan = @1 201 = g1l

(1 = anBn) |20 — 1| + an |Bn — ﬂn—ll K
+ ‘an - anfl‘ /6n71K2

IN
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Bn—
= (1 - O‘nﬁn) ||xn - xn71|| + anﬁn 1- ! Kl
Bn
Oy
+ anﬁnfl 1- 71 KZ
Qp
— 5n—1
= (1 - Ofnﬂn) ||In - xn—l” + O‘nﬂn 1- B K,
Oy
+an6n—1 1- ! K2
Qp
= (1- O‘nﬁn) ||$n - xn,1||
ﬁnfl anl Qp—1
+ B Hl— K+ 1- K 3.8
/Bn ! /Bn Qp ? ( )
Using condition (C1), we have
lim |1— 271 = 0 and lim ‘1— brr]
n—oo (7% n— 00 n
Using Lemma 3.2, we have
nh_{go |Zn+1 — 2nll = 0.
Hence
|2 —Txnll = |20 — PT2,||
= |l&n — Tpt1 + X1 — PTxy||
< Nen = gl + o — PTa,||. (3.9)
Consider,
|Xnt1 — PTz,| = |IP[(1— an)Tzn + @nTyn] — PTx,||
< (@ = ap)Ten + an Ty, — Ty ||

lan(Tyn — Tyl
= ap|Tyn — T,

IN

an|lyn — znll
= opl|Bn(zn —u)|
s —u|| = 0 as n — co.

Hence (3.9) becomes
|zn — Tap|| — 0 as n — oco.

Lemma 3.5. Let X be a Banach space with a uniformly Gateaux differentiable norm,
C' a nonempty closed convex subset of X, Let T : C' — X a nonexpansive mapping
and {zn} is a bounded sequence in C such that lim, oo |2, — Txy|| = 0. Suppose
{2t} is a path in C defined by zx = P((1 — t)Tz + tu), t € (0,1) such that zz — z as
t — 0". Then

limsup (v — z, J(z, — 2)) < 0.

n— oo
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Proof. Since z; — x, = 2y — Px,, = P((1 — t)T'2¢ + tu) — Pz,. Now, we consider

”Zt - an2 = (2t — Zn, (2 — 2p))

= (P((1 =t)Tz +tu) — Pxy, J(zt — zp))

< (1=8)(Tz —xn) +t(u—x,) — Py,
J(z¢ —zn)>

< (A=t (Tz —xn, J (2 — x0))
+t(u—xpn, (2t — x0))

= (1-t) Tzt —Taxn+Txyp — xpn, J(2t — Tpn))
+t{u—zt 4 2t — T, J(2t — Tp))

< L=tz —zalP+ (1 t)<Ta:n —
J(z — xn)> +t{u—z, J (2t — xn))
+t]l 2 —

ie. t{u—zy, J(xn—2zt)) < (1 =8)||Txn — a2t — xall

1
(u— 2z, J (g, — 2¢)) < n T2z, — x| K1
for some constant K7 > 0. It follows that

limsup (u — 2z, J(zp, — 2¢)) < 0. (3.10)

n—oo

Further, since z; — z as t — 0. The set {z; —x, } is bounded and the duality mapping
J is norm to weak® uniformly continuous on bounded subsets of X, it follows that

((u—2),J(xn —2)) — ((u— 2t), J(xn — 2¢)) ’ =|{(u—2zJ(xy —2) = J(xp — 2¢))

— o~

+((u=2) = (u—2),J(wn — 2))

< Nu—z,J(xn — 2) — J(@n — 2t))]
+((u—2) = (u—2¢), J(zn — 2¢))|
= Ku—2z,J(zn —2) = J(zn — 2t))|

Fll(w=2) = (u—z)llllzn — 2
—0 as t— 0.
Let € > 0. Then there exists § > 0 such that
(u—z,J(xy — 2)) < {u— 2z, J(n — 2¢)) + ¢,
for all n € N and ¢ € (0,6). We have
limsup (u — 2z, J(z, — 2)) < limsup(u— z¢, J(xn — 2¢)) + €

n—oo n—oo

< e



750 JULEE SRIVASTAVA

Since € is arbitrary, we obtain that

limsup (u — z, J(z, — 2)) <0.

n— oo

Theorem 3.6. Let X be a uniformly convex Banach space whose norm is uniformly
Gateauz differentiable, C' a nonempty closed convexr subset of X and T : C — X
a nonexpansive operator satisfying weakly inwardness condition with F(T) # (. For
given u,x1 € C, let {x,,} be a sequence in C generated by Algorithm 3.1. Then {x,}
converges strongly to a fixed point of T.

Proof. Using Lemma 2.2, we see that the path {z;} defined by

z22=1—t)Tz2 +tu, forte(0,1)
converges strongly to FI(T') as t — 0T. Let z = limy_,¢ 2¢, by Lemma 3.1, we get
lyn — Z||2 = [[(1 = Bn)(@n — 2) + Bn(u — Z)||2
< (1=380)|zn —z||2+26n (u—2z,J(yn — 2)) . (3.11)

Now, since X is uniformly convex, there exists a continuous strictly convex function
¢ : Rt — R* such that ¢(0) =0 and

Az + (1= Nyll* = Allel® + (1 = My * = M1 = Xe(llz — yl) (3.12)

for all z,y € X with ||z| < 7, ||y]| < r and for all A € [0,1] and for some r > 0.
Choose r > 0 large enough so that || Tz, — z|| < r for all n € N. From (3.12), we have

IP[(1 — an)Txpn + anTys] — Pz||
||(1 - O‘n)(T'rn - Z) + an(Tyn - Z)”Q
(1= an)||Tzy — 2| + an | Ty — 2|

a1 = 2]

(1= an)llzn — 2l + anllyn — [
(1 — anBo)l|zn — 2|1? + 20080 (4 — 2, J(yp — 2))
(1 - anﬁn)llxn - Z||2 + )‘nana (313)

where A\, = a,, 8, and o,, = {(u — z, J(y, — z)) . Since

IAIA A TN IA

o0

Z)\n =00 and limsupo, <0
n=1

using Lemma 3.5. Hence we conclude from Lemma 3.2 that {z,} converges strongly
to z.

Example 3.7. Let X = R with absolute norm. Let C' = [-2,2] and let T : C' — X be
defined by T'x = —z a nonexpansive operator satisfying weakly inwardness condition
and F(T) = 0. For u = 21 = 1/2. let {x,,} be a sequence in C generated by Algorithm
3.1 for o, = 1 and B,, = 1/n satisfying condition (C1) then we can see that sequence
{z,} converges strongly to 0, a fixed point of T'.

Corollary 3.8. Let X be a uniformly convex Banach space whose norm is uniformly
Gateauz differentiable, C' a nonempty closed convexr subset of X and T : C — X
a nonexpansive operator satisfying weakly inwardness condition with F(T) # (. For
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given u,x1 € C, {z,} be a sequence in C generated by Algorithm 3.2. Then sequence
{zn} converges strongly to the fixed point of T.

Proof. Let us take o, = A for all n € N in Algorithm 3.1. Then Algorithm 3.2 with
condition (C2) is same as Algorithm 3.1 with condition (C1). Hence it follows from
Theorem 3.2.

Theorem 3.9. Let X be a uniformly convexr Banach space whose norm is uniformly
Gateauz differentiable, C' a nonempty closed convexr subset of X and T : C — X
a nonexpansive operator satisfying weakly inwardness condition with F(T) # (. For
given u,x1 € C, {z,} be a sequence in C' generated by

i1 = PT[(1 = Bn)an + Bnu], neN,

where {Bn} is a sequence in (0,1] satisfying the condition (C2).Then {x,} converges
strongly to the fized point of T.
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