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1. Introduction

Let K be a nonempty subset of a real normed linear space E. A mapping T from
K to E is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. Let H
be a Hilbert space with inner product 〈., .〉 and norm ‖.‖, respectively. Let C be a
nonempty, closed and convex subset of H and A : C → H a nonlinear operator.

It is well known that the sequence {Tnx} of iterates of nonexpansive operator T at
a point x ∈ C may in general, not behave well. This means that it may not converge
in weak topology. Further we use Krasnoselskij Mann (KM) iteration method [[2],
[4]] that produces a sequence {xn} via the recursive manner:

xn+1 = (1− αn)xn + αnTxn for all n ∈ N,

where the initial guess x1 ∈ C is chosen arbitrarily and {αn} is a real sequence in
[0,1]. It is worth noting that the KM iteration process is well known for finding fixed
points of nonexpansive operators.

In 2009, Agarwal et al. [1] have defined the S-iteration process as follows: Let E be
a normed linear space, C a nonempty convex subset of E and T : C → C an operator.
Then, for arbitrary x1 ∈ C, the S-iteration process is defined by

(S)

{
xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn, n ∈ N,

743



744 JULEE SRIVASTAVA

where {αn} and {βn} are real sequences in (0,1) satisfying the condition:
∞∑

n=1

αnβn(1− βn) =∞.

It has also been shown that S-iteration process is faster than the Picard iteration
process for contraction operators.

In 1997, Browder [2] and Halpern [5] proved independently the strong convergence
of the path {xt = tu + (1 − t)Txt : t ∈ (0, 1)} as t → 0 for nonexpansive operator T
in a Hilbert space H. After Browder’s result, such a problem has been investigated
by several authors for example, Singh and Watson [8], Marino and Trombetta [6] and
others. In 1998, W. Takahashi and G. E. Kim [9] defined contraction St and Ut from
C into X by

Stx = tPTx+ (1− t)u for all x ∈ C,
and

Utx = P (tTx+ (1− t)u) for all x ∈ C,
where C is a closed and convex subset of a reflexive Banach space X and P is a sunny
nonexpansive retraction from X onto C.

The purpose of this paper is to further analyze Halpern type S-iteration process
for nonlinear operator which generalizes Theorem 5.4 [7] for nonself mapping.

2. Preliminaries

Let X be a Banach space and SX denote the unit sphere SX = {x ∈ X : ‖x‖ = 1}.
A Banach space X is said to be strictly convex if

x, y ∈ SX with x 6= y =⇒ ‖(1− λ)x+ λy‖ < 1 for all λ ∈ (0, 1).

Recall that a Banach space X is said to be smooth provided the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ SX . In this case, the norm of X is said to be Gateaux differen-
tiable. It is said to be uniformly Gateaux differentiable if for each y ∈ SX this limit
is attained uniformly for x ∈ SX . It is well known that every uniformly smooth space
(e.g. Lp space (1 < p <∞)) has uniformly Gateaux differentiable norm.
Let E be an arbitrary real normed linear space with dual space E∗. We denote J the
normalized duality mapping from E into 2E

∗
defined by

J(x) =
{
f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2

}
, x ∈ E,

where 〈., .〉 denotes the generalized duality pairing. Then for each x, y ∈ E, there
exists j(x+ y) ∈ J(x+ y) such that

‖x+ y‖2 ≤ ‖x‖2 + 2 〈y, j(x+ y)〉 .
It is well known that J is single-valued iff X is smooth. It is also known that if X
has a uniformly Gateaux differentiable norm, J is uniformly continuous on bounded
sets when X has its strong topology while X∗ has its weak∗ topology.
A closed convex subset C of Banach space X is said to have a normal structure if for
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each bounded closed convex subset K of C, which contains at least two points, there
exists an element of K, which is not a diameteral point of K. It is well known that a
closed convex subset of a uniformly convex Banach space has normal structure and a
compact convex subset of Banach space has normal structure.
A subset C of a Banach space X is called a retract of X, if there exists a continuous
mapping P from X onto C such that Px = x for all x ∈ C. We call such P a retraction
of X onto C. It follows that if a mapping P is a retraction, then Py = y for all y in
the range of P. A retraction P is said to be sunny if P (Px + t(x − Px)) = Px for
each x ∈ X and t ≥ 0. If a sunny retraction P is also nonexpansive, then C is said to
be sunny nonexpansive retract of X.
The existence of fixed point for nonself nonexpansive mapping is given by the following
lemmas:
Lemma 2.1. ([1], Theorem 5.2.26) Let C be a nonempty closed convex bounded subset
of a uniformly convex Banach space X and T : C → X a weakly inward nonexpansive
mapping. Then T has a fixed point in C.

The following theorem shows the convergence of path for nonself nonexpansive
mapping.
Lemma 2.2. ([9], Theorem 3) Let X be a reflexive Banach space with uniformly
Gateaux differentiable norm. Let C be a nonempty closed convex subset of X which
has normal structure and let T : C → X be a nonexpansive nonself mapping satisfying
the weak inwardness condition. Suppose that C is sunny nonexpansive retract of X
and for some u ∈ C and each t ∈ (0, 1), yt ∈ C is a (unique) fixed point of contraction
Ut defined by

Utx = P (tTx+ (1− t)u),

where P is a sunny nonexpansive retraction of X onto C. Then T has a fixed point
iff {yt} remains bounded as t→ 1. In this case, {yt} converges strongly as t→ 1 to a
fixed point of T.

3. Strong convergence of Halpern type S-iteration process

Motivated by the works of D. R. Sahu [7], we propose the following algorithms
for nonself mapping to further analyze Halpern type S-iteration process for nonlinear
operator. We generalize Theorem from self mapping to nonself mapping.
Algorithm 3.1. Let C be a nonempty closed convex subset of Banach space X and
T : C → X an operator. Given u, x1 ∈ C, a sequence {xn} in C is constructed as
follows:

xn+1 = P [(1− αn)Txn + αnTyn] ,

yn = (1− βn)xn + βnu, n ∈ N, (3.1)

where {αn} and {βn} are two sequences in (0,1] satisfying the following condition:

(C1) lim
n→∞

βn = 0, lim
n→∞

αn

αn+1
= lim

n→∞

βn
βn+1

= 1 and

∞∑
n=1

αnβn =∞,

where P is a sunny nonexpansive retraction of X.
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Algorithm 3.2. Let C be a nonempty closed convex subset of a Banach space X
and T : C → X an operator. Given u, x1 ∈ C, a sequence {xn} in C is constructed
as follows:

xn+1 = P [(1− λ)Txn + λTyn]

yn = (1− βn)xn + βnu, n ∈ N, (3.2)

where λ ∈ (0, 1] and {βn} is sequence in (0,1] satisfying the following condition:

(C2) lim
n→∞

βn = 0, lim
n→∞

βn
βn+1

= 1 and

∞∑
n=1

βn =∞,

where P is a sunny nonexpansive retraction of X.

Lemma 3.1. Let X be a smooth Banach space. Then

‖x+ y‖2 ≤ ‖x‖2 + 2 〈y, J(x+ y)〉 for all x, y ∈ X.

Lemma 3.2. Let {an} be a sequence of nonnegative real numbers satisfying:

an+1 ≤ (1− tn)an + tnbn for all n ∈ N,
where {bn} and {tn} are sequences of real numbers which satisfy the conditions:

(i) {tn} ⊂ [0, 1] and

∞∑
n=1

tn =∞ and

(ii) lim sup
n→∞

bn = 0.

Then lim
n→∞

an = 0.

Proposition 3.3. Let C be a nonempty closed convex subset of a Banach space X
and T : C → X a nonexpansive operator such that F (T ) 6= ∅. For given u, x1 ∈ C, let
{xn} be a sequence in C generated by Algorithm 3.1. Then we have {xn} and {yn}
are bounded.
Proof. Suppose p ∈ F (T ). From Algorithm 3.1, we have

‖yn − p‖ ≤ (1− βn) ‖xn − p‖+ βn ‖u− p‖ . (3.3)

Since

‖xn+1 − p‖ = ‖P [(1− αn)Txn + αnTyn]− Pp‖
≤ ‖(1− αn)(Txn − p) + αn(Tyn − p)‖
≤ (1− αn) ‖Txn − p‖+ αn ‖Tyn − p‖
≤ (1− αn) ‖xn − p‖+ αn ‖yn − p‖
≤ (1− αn) ‖xn − p‖+ αn [(1− βn) ‖xn − p‖+ βn ‖u− p‖]
= (1− αn) ‖xn − p‖+ (αn − αnβn) ‖xn − p‖+ αnβn ‖u− p‖
= (1− αnβn) ‖xn − p‖+ αnβn ‖u− p‖
≤ max {‖xn − p‖ , ‖u− p‖}

...

≤ max {‖x1 − p‖ , ‖u− p‖} . (3.4)
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Thus, {xn} is bounded and hence from (3.3), {yn} is bounded.
Theorem 3.4. Let C be a nonempty closed convex subset of a Banach space X and
T : C → X a nonexpansive operator such that F (T ) 6= ∅. For given u, x1 ∈ C, let
{xn} be a sequence in C generated by Algorithm 3.1. Then lim

n→∞
‖xn − Txn‖ = 0.

Proof. Observe that

‖xn+1 − xn‖ =
∥∥∥P [(1− αn)Txn + αnTyn]

− P [(1− αn−1)Txn−1 + αn−1Tyn−1]
∥∥∥

≤
∥∥∥ [(1− αn)Txn + αnTyn]

− [(1− αn−1)Txn−1 + αn−1Tyn−1]
∥∥∥

=
∥∥∥(1− αn)Txn − (1− αn)Txn−1 + (1− αn)Txn−1 + αnTyn

− αnTyn−1 + αnTyn−1 − (1− αn−1)Txn−1 − αn−1Tyn−1

∥∥∥
≤ (1− αn) ‖xn − xn−1‖+ αn ‖yn − yn−1‖

+ |αn − αn−1| ‖xn−1 − yn−1‖ . (3.5)

Now,

‖yn − yn−1‖ = ‖[(1− βn)xn + βnu]− [(1− βn−1)xn−1 + βn−1u]‖

=
∥∥∥(1− βn)xn − (1− βn)xn−1 + (1− βn)xn−1

− (1− βn−1)xn−1 + (βn − βn−1)u
∥∥∥

≤ (1− βn) ‖xn − xn−1‖+ |βn − βn−1| (‖u‖+ ‖xn−1‖)
≤ (1− βn) ‖xn − xn−1‖+ |βn − βn−1|K1 (3.6)

for some constant K1 > 0. From proposition 3.3, {xn} is bounded, so

‖xn−1 − yn−1‖ = βn−1 ‖xn−1 − u‖
≤ βn−1 (‖xn−1‖+ ‖u‖)
≤ βn−1K1 (3.7)

for some constant K2 > 0. Using (3.6) and (3.7) in (3.5), we have

‖xn+1 − xn‖ ≤ (1− αn) ‖xn − xn−1‖+ αn

[
(1− βn) ‖xn − xn−1‖

+ |βn − βn−1|K1

]
+ |αn − αn−1| ‖xn−1 − yn−1‖

≤ (1− αnβn) ‖xn − xn−1‖+ αn |βn − βn−1|K1

+ |αn − αn−1|βn−1K2
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= (1− αnβn) ‖xn − xn−1‖+ αnβn

∣∣∣∣1− βn−1
βn

∣∣∣∣K1

+ αnβn−1

∣∣∣∣1− αn−1

αn

∣∣∣∣K2

= (1− αnβn) ‖xn − xn−1‖+ αnβn

∣∣∣∣1− βn−1
βn

∣∣∣∣K1

+ αnβn−1

∣∣∣∣1− αn−1

αn

∣∣∣∣K2

= (1− αnβn) ‖xn − xn−1‖

+ αnβn

[∣∣∣∣1− βn−1
βn

∣∣∣∣K1 +
βn−1
βn

∣∣∣∣1− αn−1

αn

∣∣∣∣K2

]
(3.8)

Using condition (C1), we have

lim
n→∞

∣∣∣∣1− αn−1

αn

∣∣∣∣ = 0 and lim
n→∞

∣∣∣∣1− βn−1
βn

∣∣∣∣ = 0.

Using Lemma 3.2, we have

lim
n→∞

‖xn+1 − xn‖ = 0.

Hence

‖xn − Txn‖ = ‖xn − PTxn‖
= ‖xn − xn+1 + xn+1 − PTxn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − PTxn‖. (3.9)

Consider,

‖xn+1 − PTxn‖ = ‖P [(1− αn)Txn + αnTyn]− PTxn‖
≤ ‖(1− αn)Txn + αnTyn − Txn‖
= ‖αn(Tyn − Txn)‖
= αn‖Tyn − Txn‖
≤ αn‖yn − xn‖
= αn‖βn(xn − u)‖
= αnβn‖xn − u‖ → 0 as n→∞.

Hence (3.9) becomes

‖xn − Txn‖ → 0 as n→∞.

Lemma 3.5. Let X be a Banach space with a uniformly Gateaux differentiable norm,
C a nonempty closed convex subset of X, Let T : C → X a nonexpansive mapping
and {xn} is a bounded sequence in C such that limn→∞ ‖xn − Txn‖ = 0. Suppose
{zt} is a path in C defined by zt = P ((1− t)Tzt + tu), t ∈ (0, 1) such that zt → z as
t→ 0+. Then

lim sup
n→∞

〈u− z, J(xn − z)〉 ≤ 0.
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Proof. Since zt − xn = zt − Pxn = P ((1− t)Tzt + tu)− Pxn. Now, we consider

‖zt − xn‖2 = 〈zt − xn, J(zt − xn)〉
= 〈P ((1− t)Tzt + tu)− Pxn, J(zt − xn)〉

≤
〈

(1− t)(Tzt − xn) + t(u− xn)− Pxn,

J(zt − xn)
〉

≤ (1− t) 〈Tzt − xn, J(zt − xn)〉
+ t 〈u− xn, J(zt − xn)〉

= (1− t) 〈Tzt − Txn + Txn − xn, J(zt − xn)〉
+ t 〈u− zt + zt − xn, J(zt − xn)〉

≤ (1− t)‖zt − xn‖2 + (1− t)
〈
Txn − xn,

J(zt − xn)
〉

+ t 〈u− zt, J(zt − xn)〉

+ t‖zt − xn‖2

i.e. t 〈u− zt, J(xn − zt)〉 ≤ (1− t) ‖Txn − xn‖ ‖zt − xn‖

〈u− zt, J(xn − zt)〉 ≤
1

t
‖Txn − xn‖K1

for some constant K1 > 0. It follows that

lim sup
n→∞

〈u− zt, J(xn − zt)〉 ≤ 0. (3.10)

Further, since zt → z as t→ 0. The set {zt−xn} is bounded and the duality mapping
J is norm to weak* uniformly continuous on bounded subsets of X, it follows that∣∣∣ 〈(u− z), J(xn − z)〉 − 〈(u− zt), J(xn − zt)〉

∣∣∣ =
∣∣∣ 〈u− z, J(xn − z)− J(xn − zt)〉

+ 〈(u− z)− (u− zt), J(xn − zt)〉
∣∣∣

≤ |〈u− z, J(xn − z)− J(xn − zt)〉|
+ |〈(u− z)− (u− zt), J(xn − zt)〉|
= |〈u− z, J(xn − z)− J(xn − zt)〉|
+ ‖(u− z)− (u− zt)‖‖xn − zt‖
→ 0 as t→ 0+.

Let ε > 0. Then there exists δ > 0 such that

〈u− z, J(xn − z)〉 < 〈u− zt, J(xn − zt)〉+ ε,

for all n ∈ N and t ∈ (0, δ). We have

lim sup
n→∞

〈u− z, J(xn − z)〉 < lim sup
n→∞

〈u− zt, J(xn − zt)〉+ ε

≤ ε.
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Since ε is arbitrary, we obtain that

lim sup
n→∞

〈u− z, J(xn − z)〉 ≤ 0.

Theorem 3.6. Let X be a uniformly convex Banach space whose norm is uniformly
Gateaux differentiable, C a nonempty closed convex subset of X and T : C → X
a nonexpansive operator satisfying weakly inwardness condition with F (T ) 6= ∅. For
given u, x1 ∈ C, let {xn} be a sequence in C generated by Algorithm 3.1. Then {xn}
converges strongly to a fixed point of T.
Proof. Using Lemma 2.2, we see that the path {zt} defined by

zt = (1− t)Tzt + tu, for t ∈ (0, 1)

converges strongly to F (T ) as t→ 0+. Let z = limt→0 zt, by Lemma 3.1, we get

‖yn − z‖2 = ‖(1− βn)(xn − z) + βn(u− z)‖2

≤ (1− βn)‖xn − z‖2 + 2βn 〈u− z, J(yn − z)〉 . (3.11)

Now, since X is uniformly convex, there exists a continuous strictly convex function
φ : R+ −→ R+ such that φ(0) = 0 and

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)φ(‖x− y‖) (3.12)

for all x, y ∈ X with ‖x‖ ≤ r, ‖y‖ ≤ r and for all λ ∈ [0, 1] and for some r > 0.
Choose r > 0 large enough so that ‖Txn− z‖ ≤ r for all n ∈ N. From (3.12), we have

‖xn+1 − z‖2 = ‖P [(1− αn)Txn + αnTyn]− Pz‖
≤ ‖(1− αn)(Txn − z) + αn(Tyn − z)‖2

≤ (1− αn)‖Txn − z‖2 + αn‖Tyn − z‖2

≤ (1− αn)‖xn − z‖2 + αn‖yn − z‖2

≤ (1− αnβn)‖xn − z‖2 + 2αnβn 〈u− z, J(yn − z)〉
≤ (1− αnβn)‖xn − z‖2 + λnσn, (3.13)

where λn = αnβn and σn = 〈u− z, J(yn − z)〉 . Since
∞∑

n=1

λn =∞ and lim supσn ≤ 0

using Lemma 3.5. Hence we conclude from Lemma 3.2 that {xn} converges strongly
to z.

Example 3.7. Let X = R with absolute norm. Let C = [−2, 2] and let T : C → X be
defined by Tx = −x a nonexpansive operator satisfying weakly inwardness condition
and F (T ) = 0. For u = x1 = 1/2. let {xn} be a sequence in C generated by Algorithm
3.1 for αn = 1 and βn = 1/n satisfying condition (C1) then we can see that sequence
{xn} converges strongly to 0, a fixed point of T .

Corollary 3.8. Let X be a uniformly convex Banach space whose norm is uniformly
Gateaux differentiable, C a nonempty closed convex subset of X and T : C → X
a nonexpansive operator satisfying weakly inwardness condition with F (T ) 6= ∅. For
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given u, x1 ∈ C, {xn} be a sequence in C generated by Algorithm 3.2. Then sequence
{xn} converges strongly to the fixed point of T.
Proof. Let us take αn = λ for all n ∈ N in Algorithm 3.1. Then Algorithm 3.2 with
condition (C2) is same as Algorithm 3.1 with condition (C1). Hence it follows from
Theorem 3.2.

Theorem 3.9. Let X be a uniformly convex Banach space whose norm is uniformly
Gateaux differentiable, C a nonempty closed convex subset of X and T : C → X
a nonexpansive operator satisfying weakly inwardness condition with F (T ) 6= ∅. For
given u, x1 ∈ C, {xn} be a sequence in C generated by

xn+1 = PT [(1− βn)xn + βnu] , n ∈ N,
where {βn} is a sequence in (0,1] satisfying the condition (C2).Then {xn} converges
strongly to the fixed point of T.
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