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Abstract. In this work, we investigate an iterative method based on viscosity approximation method

to approximate a common solution of split monotone variational inclusion problem and fixed point

problem for a nonexpansive mapping in the frame work of real Hilbert spaces. Further, strong con-
vergence theorem is proved by the sequences generated by the proposed iterative method under some

mild conditions, which is the unique solution of the variational inequality problem. Furthermore, we

provide some numerical experiments to support our main result. The results and method presented
in this work may be treated as an improvement, extension and refinement of some corresponding

ones in the literature.
Key Words and Phrases: Split monotone variational inclusion problem, nonexpansive mapping,

fixed-point problem, iterative method.

2020 Mathematics Subject Classification: 65K15, 47J25, 47H10, 65J15, 90C33.

1. Introduction

Variational inclusions problem has emerged as an interesting branch of applicable
mathematics and it is also being used as a models in many mathematical program-
ming to study a large number problems arising in economics, operations research,
transportation problems, optimization problems and engineering sciences, see, for ex-
ample [1, 12, 14] and references therein. They have been extended and generalized
the variational inclusion problem in different directions by using noval and innovative
ideas both for their own sake and for their applications.

In recent years, much attention has been received by variational inclusion problems
to develop the efficient and implementable numerical techniques including the pro-
jection methods and its variant forms, Wiener-Hopf equation, linear approximation,
auxiliary principle technique, proximal point algorithm and descent framework for
solving variational inequality problems and its related problems. It is well known that
the projection methods and its variant forms; and Wiener-Hopf equations technique
can not suggest and analyze iterative methods for solving the variational inequality
problems due to the presence of nonlinear term.

This fact motivated to develop another numerical technique, which involve the
use of resolvent operator associated with maximal monotone operator. By using this
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technique, one shows that the monotone variational inclusion problem are equivalent
to the fixed point problem. this alternative fixed point formulation was used to develop
numerical methods for solving the various classes of variational inclusion problems and
its related problems, see [27, 28] and references therein.

Maximal monotone operators were first introduced in [23] and [41], and can be seen
as a two-way generalization: a nonlinear generalization of linear endomorphisms with
positive semi-definite matrices, and a multidimensional generalization of nondecreas-
ing functions of a real variable; that is, of derivatives of convex and differentiable
functions. Thus, not surprisingly, the main example of this kind of operator in a
Banach space is the Fréchet derivative of a smooth convex function, or, in the set-
valued realm, the subdifferential of an arbitrary lower semi-continuous convex func-
tion. Monotone operators are the key ingredients of monotone variational inequalities
and monotone variational inclusions, which extend to the realm of set-valued map-
pings the constrained convex minimization problem. More details can be found in
[14, 3, 42] and references therein.

Proximal mapping and resolvent operator techniques are played important role to
compute the approximate solution of generalized variational and monotone variational
inequalities, and generalized variational and quasi-variational inclusions. Rockafellar
[34] and Martinet [22] used the resolvent operator associated with maximal monotone
operators for solving the variational inclusion 0 ∈ M(x), where M is a maximal
monotone operator on a Hilbert space. The main difficulty with this method is that
the operator I+ρM may be hard to invert. One alternative of the previous difficulty
is to decompose the given operator into the sum of two maximal monotone operators
whose resolvent are easy to evaluate than the resolvent of the original operator, such
a method is known as operator splitting method. The operator splitting method has
been studied and generalized by many authors, see for instance [31, 39] and references
therein.

Monotone operator theory is a fascinating field of research in nonlinear functional
analysis and found valuable applications in the field of convex optimization, subgra-
dients, partial differential equations, variational inequalities, signal and image pro-
cessing, evolution equations and inclusions; see, for instance, [2, 11, 13, 34] and the
references cited therein. It is noted that the convex optimization problem can be
translated into finding a zero of a maximal monotone operator defined on a Hilbert
space. On the other hand, the problem of finding a zero of the sum of two (maximal-)
monotone operators is of fundamental importance in convex optimization and varia-
tional analysis [19, 38]. The forwardbackward algorithm is prominent among various
splitting algorithms to find a zero of the sum of two maximal monotone operators
[19]. The class of splitting algorithms has parallel computing architectures and thus
reducing the complexity of the problems under consideration. On the other hand, the
forwardbackward algorithm efficiently tackle the situation for smooth and/or non-
smooth functions. It is worth mentioning that the forwardbackward algorithm has
been modified by employing the heavy ball method [32] for convex optimization prob-
lems. For related work, see [29, 21, 20].

A viscosity approximation method is a well known iterative method which is used
to approximate a fixed point for a nonexpansive mappings. In 2000, Moudafi [24]
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introduced and studied viscosity approximation method by combining nonexpansive
mapping and a contraction mapping. Further, he proved that fixed point of a nonex-
pansive mapping solves variational inequality problem, Further, Xu [40] developed an
iterative method based on viscosity approximation method to find the zero of maximal
monotone operators in Banach space. Recently, Kazmi and Rizvi [18] developed an
implicit iterative method based on viscosity approximation method to find common
solution of split equilibrium problem and fixed points of nonexpansive semigroup. For
related work, see [16, 33].

It is worth mentioning that if the nonlinear term involving in the variational in-
equality problem is the indicator function of a closed and convex set in a Hilbert
space, then the resolvent operator is equal to the projection operator. Consequently
the resolvent operators are equivalent to the Wiener-Hopf or normal equations, which
were introduced and studied by Shi [36] and Robinson [35] in the relation with the
classical variational inequality problems.

Recently, Moudafi [26] extended and generalized monotone variational inclusion
problem into a new direction by considering two monotone variational inclusion prob-
lem in two different Hilbert spaces, which is governed by a bounded linear operator,
such problem is known as split monotone variational inclusion problem. By using
the averaged operators technique and resolvent operators associated with maximal
monotone operators, for solving split monotone variational inclusion problem.

The computation of fixed points is important in the study of many problems in-
cluding inverse problems. For instance, it is not hard to show that the split monotone
variational inclusion problem can both be formulated as a problem of finding fixed
points of certain operators. Construction of fixed points of nonexpansive mappings is
an important subject in nonlinear operator theory and its applications; in particular,
in image recovery and signal processing and in transition operators for initial valued
problems of differential inclusions (see, for example, [26, 6, 17]).

2. Preliminaries

Let H1 and H2 be real Hilbert spaces with scaler product 〈·, ·〉 and norm ‖ · ‖. Let
K1 and K2 are nonempty, closed and convex subsets of H1 and H2, respectively.

Definition 2.1. A mapping S : H1 → H1 is said to be

(i) monotone, if

〈Sx− Sy, x− y〉 ≥ 0, ∀x, y ∈ H1;

(ii) r-strongly monotone, if there exists a constant r > 0 such that

〈Sx− Sy, x− y〉 ≥ r‖x− y‖2, ∀x, y ∈ H1;

(iii) τ -inverse strongly monotone, if there exists a constant τ > 0 such that

〈Sx− Sy, x− y〉 ≥ τ‖Sx− Sy‖2, ∀x, y ∈ H1;

(iv) firmly nonexpansive, if

〈Sx− Sy, x− y〉 ≥ ‖Sx− Sy‖2, ∀x, y ∈ H1.
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(v) nonexpansive, if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ H1.

The fixed point problem (in short, FPP) for a nonexpansive mapping S : H1 → H1

is to find x ∈ H1 such that

Sx = x. (2.1)

The solution set of FPP(2.1) is denoted by Fix(S). It is well known that if Fix(S) 6= ∅,
Fix(S) is closed and convex.

Next, we consider the following split monotone variational inclusion problem (in
short, SPMVIP): Find x̄ ∈ H1 such that

0 ∈M1(x̄) + f(x̄), (2.2)

and such that

ȳ = Bx̄ ∈ H2 solves 0 ∈M2(ȳ) + g(ȳ), (2.3)

where M1 : H1 → 2H1 and M2 : H2 → 2H2 are multi-valued maximal monotone
mappings and f : H1 → H1 and g : H2 → H2 are nonlinear mappings and B : H1 →
H2 be a bounded linear operator.

SPMVIP(2.2)-(2.3) has been introduced and studied by Moudafi [26]. Further, (2.2)
and (2.3) are the monotone variational inclusion problems in two different spaces, we
denote their solution sets by Sol(MVIP(2.2)) and Sol(MVIP(2.3)) respectively. The
solution set of SPMVIP(2.2)-(2.3) is denoted by Sol(SPMVIP(2.2)-(2.3))= {x̄ ∈ H1 :
x̄ ∈ Sol(MVIP(2.2)) : and Bx̄ ∈ Sol(MVIP(2.3))}.

In 2011, Moudafi [26] introduced and studied an iterative method to find the so-
lution of SPMVIP(2.2)-(2.3), under the certain conditions, he obtained weak conver-
gence theorem. If f ≡ 0 and g ≡ 0 then SPMVIP(2.2)-(2.3) reduces to the following
split variational inclusion problem (in short, SPVIP) or split null point problem (in
short, SPNPP): Find x̄ ∈ H1 such that

0 ∈M1(x̄), (2.4)

and such that

ȳ = Bx̄ ∈ H2 solves 0 ∈M2(ȳ). (2.5)

The solution set of SPVIP(2.4)-(2.5) is denoted by Sol(SPVIP(2.4)-(2.5))= {x̄ ∈
H1 : x̄ ∈ Sol(VIP(2.4)) : and Bx̄ ∈ Sol(VIP(2.5))}.

In 2012, Byrne et al. [6] studied the weak and strong convergence of the following
iterative method for SPNPP(2.4)-(2.5): For given x1 ∈ H1, compute iterative sequence
{xn} generated by the following scheme:

xn+1 = JM1
ρ (xn + δB∗(JM2

ρ − I)Bxn),

for ρ > 0.
In 2014, Kazmi and Rizvi [17] introduced and studied an iterative method, based

on viscosity approximation method to approximate a common solution of SPVIP(2.4)-
(2.5) and fixed point problem of a nonexpansive mapping in the framework of real
Hilbert spaces. {

un = JM1
ρ (xn + δB∗(JM2

ρ − I)Bxn);
xn+1 = αnQ(xn) + (1− αn)Sun,
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where Q is a contraction mapping and ρ > 0.
Very recently, Sitthithakerngkiet et al. [37] extended and generalized the work

of Byrne et al. [6] and Kazmi and Rizvi [17] for SPVIP(2.4)-(2.5). They obtained a
strong convergence theorem to approximate the common solution of SPVIP(2.4)-(2.5)
and FPP(2.1).
SPMVIP(2.2)-(2.3) includes as special cases, the split variational inequality problem,
split zero problems and split feasibility problems, see for details [25, 9, 8, 7]. This
problem has received much attention due to its various applications in the modeling of
many inverse problems arising for phase retrieval and other real-world problems; viz,
in sensor networks in computerized tomography and data compression; see [5, 4, 10]
and references quoted therein.

Remark 2.1. (i) Byrne et al. [6], Kazmi and Rizvi [17] and Sitthithakerngkiet
et al. [37] remarked that SPVIP(2.4)-(2.5) needs further research affords.

(ii) Byrne et al. [6] obtain the solution of SPVIP(2.4)-(2.5), while Kazmi and
Rizvi [17] and Sitthithakerngkiet et al. [37] obtain the common solution of
SPVIP(2.4)-(2.5) and FPP(2.1).

Open Question: Could we obtain the common solution of SPMVIP(2.2)-(2.3) and
FPP(2.1)?

Therefore, the main objective of this work is to investigate and analyze an itera-
tive method based on viscosity approximation method to approximate the common
element of set of solution of SPMVIP(2.2)-(2.3) and FPP(2.1). Further, we prove
that the sequences generated by the iterative scheme converges strongly to a common
solution of SPMVIP(2.2)-(2.3) and FPP(2.1). Finally, we provide some numerical
experiments to support our main result. The results and method presented in this
paper generalize the corresponding results of Byrne et al. [6], Kazmi and Rizvi [17]
and Sitthithakerngkiet et al. [37].

We recall some concepts and results which are needed in sequel.

Lemma 2.1. [2] Assume that S be a nonexpansive self mapping of a closed and convex
subset K1 of a Hilbert space H1. If S has a fixed point, then I − S is demiclosed,
i.e., whenever {xn} is a sequence in K1 converging weakly to some x ∈ K1 and the
sequence {(I − S)xn} converges strongly to some y, it follows that (I − S)x = y.

Lemma 2.2. [2] In a real Hilbert space the following hold:

(i) For all x, y ∈ H1 and λ ∈ [0, 1], then

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2. (2.6)

(ii) Opial’s condition [30]: For any sequence {xn} with xn ⇀ x the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ (2.7)

holds for every y ∈ H1 with y 6= x.

Definition 2.2. A multi-valued mapping M1 : H1 → 2H1 is called monotone if for
all x, y ∈ H1, u ∈M1x and v ∈M1y such that

〈x− y, u− v〉 ≥ 0.



706 SHUJA HAIDER RIZVI

Definition 2.3. A monotone mapping M1 : H1 → 2H1 is maximal if the Graph(M1)
is not properly contained in the graph of any other monotone mapping.

It is known that a monotone mapping M1 is maximal if and only if for (x, u) ∈
H1 ×H1, 〈x− y, u− v〉 ≥ 0, for every (y, v) ∈ Graph(M1) implies that u ∈M1x.

Definition 2.4. Let M1 : H1 → 2H1 be a multi-valued maximal monotone mapping.
Then, the resolvent mapping JM1

ρ : H1 → H1 associated with M1, is defined by

JM1
ρ (x) := (I + ρM1)−1(x), ∀x ∈ H1,

for some ρ > 0.

Remark 2.2. [2]

(i) We note that for all ρ > 0 the resolvent operator JM1
ρ is single-valued, non-

expansive and firmly nonexpansive;
(ii) If we take M1 = ∂IK1 , the subdifferential of the indicator function IK1 of K1,

where IK1 is defined by

IK1
(x) =

{
0 x ∈ K1

+∞ x /∈ K1,

then y = J
IK1
ρ (x) = (I + ρIK1

)−1(x)⇐⇒ y = PK1
(x), see for details [34].

The following Lemma is the fixed point formulation of SPMVIP(2.2)-(2.3) and is
followed by the definition of resolvent mapping JM1

ρ :

Lemma 2.3. SPMVIP(2.2)-(2.3) is equivalent to find x̄ ∈ H1 such that ȳ = Bx̄ ∈ H2,

x̄ = JM1
ρ (I − ρnf)x̄ and ȳ = JM2

ρ (I − ρng)ȳ, for some ρ > 0.

Lemma 2.4. [40]. Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1− βn)an + δn, n ≥ 0,

where {βn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∞∑
n=1

βn =∞;

(ii) lim sup
n→∞

δn
βn
≤ 0 or

∞∑
n=1
|δn| <∞.

Then lim
n→∞

an = 0.

3. Iterative Algorithm

In this section, we prove a strong convergence theorem based on the proposed
iterative method to approximate the solution of SPMVIP(1.2)-(1.3) and FPP(2.1).

Theorem 3.1. Let H1 and H2 are real Hilbert spaces and B : H1 → H2 be a bounded
linear operator. Let M1 : H1 → 2H1 , M2 : H2 → 2H2 are the multi-valued maximal
monotone mappings, let the mapping f : H1 → H1 and g : H2 → H2 are θ1, θ2-
inverse strongly monotone and Q : H1 → H1 be a contraction mapping with constant
α ∈ (0, 1). Let S : H1 → H1 be a nonexpansive mapping such that

Ω = Fix(S) ∩ Sol(SPMVIP(2.2)− (2.3)) 6= ∅.
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Let the iterative sequences {xn}, {yn}, {vn} and {zn} are generated by the following
iterative schemes: 

x1 = x ∈ H1,

yn = JM1
ρn (xn − ρnfxn),

vn = JM2
ρn (I − ρng)Byn,

zn = PK1 [yn + δB∗(vn −Byn)],

xn+1 = αnQ(xn) + (1− αn)Szn,

(3.1)

where δ ∈
(

0, 1
‖B‖2

)
, {ρn} and {αn} are the sequences in (0, 1) and satisfying the

following conditions

(i) lim
n→∞

αn = 0,
∞∑
n=0

αn =∞, and

∞∑
n=1

|αn − αn−1| <∞;

(ii) lim inf
n→∞

ρn > 0,
∞∑
n=0

ρn =∞, and

∞∑
n=1

|ρn − ρn−1| <∞.

Then the sequences {xn} and {yn} converges strongly to z ∈ Ω, where z = PΩQ(z).

Proof. Let p ∈ Ω then p ∈ Sol(SPMVIP(2.2)-(2.3)) and hence

p = JM1
ρn (xn − ρnfxn)

and

Bp = JM2
ρn (I − ρng)Bp.

We compute

‖yn − p‖2 = ‖JM1
ρn (xn − ρnfxn)− JM1

ρn (p− ρnfp)‖2

≤ ‖(xn − p)− ρn(fxn − fp)‖2

= ‖xn − p‖2 + ρ2
n‖fxn − fp‖2 + 2ρ〈xn − p, fxn − fp〉

≤ ‖xn − p‖2 − ρn(2θ1 − ρn)‖fxn − fp‖2 (3.2)

≤ ‖xn − p‖2. (3.3)

Next, we compute

‖vn −Bp‖2 = ‖JM2
ρn (I − ρng)Byn − JM2

ρn (I − ρg)Bp‖2

≤ ‖(Byn −Bp)− δ(gByn − gBp)‖2

= ‖Byn −Bp‖2 + δ2‖gByn − gBp‖2 + 2δn〈Byn −Bp, gByn − gBp〉
≤ ‖Byn −Bp‖2 − δ(2θ2 − δ)‖gByn − gBp‖2 (3.4)

≤ ‖Byn −Bp‖2. (3.5)
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Next, we compute

‖zn − p‖2 = ‖PK1
[yn + δB∗(vn −Byn)]− p‖2

≤ ‖yn + δB∗(vn −Byn)− p)‖2

= ‖yn − p‖2 + ‖δB∗(vn −Byn)‖2 + 2δ〈yn − p,B∗(vn −Byn)〉
≤ ‖yn − p‖2 + δ2‖B∗‖2‖vn −Byn‖2

+ 2δ〈B(yn − p) + (vn −Byn)− (vn −Byn), (vn −Byn)〉

= ‖yn−p‖2 + δ2‖B∗‖2‖vn−Byn‖2 + 2δ
[1
2
‖vn −Bx̄‖2 +

1

2
‖vn −Byn‖2

−‖vn −Bp‖2 − ‖vn −Byn‖2
]

= ‖yn − p‖2 − δ(1− δ‖B∗‖2)‖vn −Byn‖2 (3.6)

≤ ‖yn − p‖2 ≤ ‖xn − p‖2. (3.7)

Next, we compute

‖xn+1 − p‖ = ‖αnQ(xn) + (1− αn)Szn − p‖
≤ αn‖Q(xn)− p‖+ (1− αn)‖zn − p‖
≤ αn

[
‖Q(xn)−Q(p)‖+ ‖Q(p)− p‖

]
+ (1− αn)‖zn − p‖

≤ αnα‖xn − p‖+ αn‖Q(p)− p‖+ (1− αn)‖xn − p‖
≤ [1− αn(1− α)]‖xn − p‖+ αn‖Q(p)− p‖

≤ max
{
‖xn − p‖,

‖Q(p)− p‖
1− α

}
...

≤ max
{
‖x0 − p‖,

‖Q(p)− p‖
1− α

}
. (3.8)

Hence {xn} is bounded and consequently, we deduce that {yn}, {vn}, {zn}, {Q(xn)}
and {Szn} are bounded.
Next, we show that the sequence {xn} is asymptotically regular, i.e.,

lim
n→∞

‖xn+1 − xn‖ = 0.

It follows from (3.1) that

‖yn − yn−1‖ ≤ ‖JM1
ρn (xn − ρnfxn)− JM1

ρn (xn−1 − ρnfxn−1)‖
+‖JM1

ρn (xn−1 − ρnfxn−1)‖ − JM1
ρn−1

(xn−1 − ρn−1fxn−1)‖
≤ ‖(xn − xn−1)− ρn(fxn − fxn−1) + (ρn − ρn−1)fxn−1‖
≤ ‖xn − xn−1‖+ |ρn − ρn−1|‖fxn−1‖. (3.9)

Similarly

‖vn − vn−1‖ ≤ ‖JM2
ρn (gByn − ρngByn)− JM2

ρn (gByn−1 − ρngByn−1)‖
+‖JM2

ρn (gByn−1 − ρngByn−1)‖ − JM2
ρn−1

(gByn−1 − ρn−1gByn−1)‖
≤ ‖(gByn − gByn−1)− ρn(gByn − gByn−1) + (ρn − ρn−1)gByn−1‖
≤ ‖gByn − gByn−1‖+ |ρn − ρn−1|‖gByn−1‖. (3.10)



VISCOSITY APPROXIMATION FOR SPLIT MONOTONE VARIATIONAL... 709

Next, we compute

‖zn − zn−1‖2 ≤ ‖yn + δB∗(vn −Byn)− yn−1 + δB∗(vn−1 −Byn−1)‖2

≤ ‖yn − yn−1‖2 + ‖δB∗
(
(vn −Byn)− (vn−1 −Byn−1)

)
‖2

+2δ〈yn − yn−1, B
∗((vn −Byn)− (vn−1 −Byn−1)

)
〉

≤ ‖yn − yn−1‖2 + δ‖B∗‖2 + ‖
(
(vn −Byn)− (vn−1 −Byn−1)

)
‖2

+2δ〈Byn −Byn−1 + vn −Byn − (vn−1 −Byn−1), vn

−Byn − (vn−1 −Byn−1)〉
−2δ〈vn −Byn − (vn−1 −Byn−1), vn −Byn − (vn−1 −Byn−1)〉

= ‖yn − yn−1‖2 + δ2‖B∗‖2 + ‖vn −Byn − (vn−1 −Byn−1)‖2

+2δ
[1
2
‖vn − vn−1‖2

+
1

2
‖vn −Byn − (vn−1 −Byn−1)‖2 − 1

2
‖Byn −Byn−1‖2

]
−2δ‖vn −Byn − (vn−1 −Byn−1)‖2

= ‖yn − yn−1‖2 + δ(1− δ‖B∗‖2)‖vn −Byn − (vn−1 −Byn−1)‖2

+δ
[
‖vn − vn−1‖2 − ‖Byn −Byn−1‖2

]
= ‖yn − yn−1‖2 + δ(1− δ‖B∗‖2)‖vn −Byn − (vn−1 −Byn−1)‖2

+δ|ρn − ρn−1|
(
‖vn − vn−1‖2 − ‖Byn −Byn−1‖2

)
‖gByn−1‖

≤ ‖xn − xn−1‖2 + |ρn − ρn−1|
[
‖fxn−1‖‖xn − xn−1‖

+|ρn − ρn−1|‖fxn−1‖
]

−δ(1− δ‖B∗‖2)‖vn −Byn − (vn−1 −Byn−1)‖2

+δ|ρn − ρn−1|
[
‖vn − vn−1‖2 − ‖Byn −Byn−1‖2

]
‖gByn−1‖

≤ ‖xn − xn−1‖2 + |ρn − ρn−1|c1,
≤

∣∣‖xn − xn−1‖2 + |ρn − ρn−1|c1
∣∣ , (3.11)

where c1 is a constant such that

[
‖xn − xn−1‖+ |ρn − ρn−1|

]
‖fxn−1‖+ δ|ρn − ρn−1|

[
‖vn − vn−1‖2

− ‖Byn −Byn−1‖2
]
‖gByn−1‖ ≤ c1. (3.12)

On taking the square root from both sides in (3.11), we obtain

‖zn − zn−1‖ ≤ ‖xn − xn−1‖+
√
|ρn − ρn−1|c1. (3.13)
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Next, we have

‖xn+1 − xn‖ = ‖αnQ(xn) + (1− αn)Szn − [αn−1Q(xn−1) + (1− αn−1)Szn−1]‖
= ‖αnQ(xn)− αnQ(xn−1) + αnQ(xn−1)− αn−1Q(xn−1) + (1− αn)Szn

− (1− αn)Szn−1 + (1− αn)Szn−1 − (1− αn−1)Szn−1‖
≤ αnα‖xn − xn−1‖+ (1− αn)‖Szn − Szn−1‖+ 2|αn − αn−1|c2
≤ αnα‖xn − xn−1‖+ (1− αn)‖zn − zn−1‖+ 2|αn − αn−1|c2, (3.14)

where c2 := sup{‖f(xn)‖+ ‖Sun‖ : n ∈ N}.
It follows from (3.13) and (3.14) that

‖xn+1 − xn‖ ≤ (1− αn(1− α))‖xn − xn−1‖+ 2|αn − αn−1|c2 +
√
|ρn − ρn−1|c1.

By applying Lemma 2.4 with

βn := αn(1− α)

and

δn := 2|αn − αn−1|c2 +
√
|ρn − ρn−1|c1,

we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (3.15)

Since, we have

xn+1 − xn = αnQ(xn) + (1− αn)Szn − xn
= αn(Q(xn)− xn) + (1− αn)(Szn − xn). (3.16)

Then, we obtain

(1− αn)‖Szn − xn‖ ≤ ‖xn+1 − xn‖+ αn‖Q(xn)− xn‖.

Since ‖xn+1 − xn‖ → 0 and αn → 0 as n→∞, we obtain

lim
n→∞

‖Szn − xn‖ = 0. (3.17)

Next, we show that lim
n→∞

‖xn − yn‖ = 0. It follows from (3.1) that

‖xn+1 − p‖2 ≤ αn‖Q(xn)− p‖2 + (1− αn)‖Szn − p‖2 (3.18)

≤ αn‖Q(xn)− p‖2 + (1− αn)‖yn − p‖2

≤ αn‖Q(xn)− p‖2 + (1− αn)
{
‖xn − p‖2 + ρn(ρn − 2θ1)‖fun − fp‖2

}
≤ αn‖Q(xn)− p‖2 + ‖xn − p‖2 + ρn(ρn − 2θ1)‖fun − fp‖2,

which yields

ρn(ρn − 2θ1)‖fun − fp‖2 ≤ αn‖Q(xn)− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖Q(xn)− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖.

Since ‖xn+1 − xn‖ → 0 and αn → 0 as n→∞, we obtain

lim
n→∞

‖fxn − fp‖ = 0. (3.19)
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Further, we observe that

‖yn − p‖2 = ‖JM1
ρn (xn − ρnfxn)− JM1

ρn (p− ρnfp)‖2

≤ 〈yn − p, (xn − ρnfxn)− (p− ρnfp)〉

≤ 1

2

{
‖yn − p‖2 + ‖(xn − ρnfxn)− (p− ρnfp)‖2

−‖(yn − xn) + ρn(fxn − fp)‖2
}

≤ 1

2

{
‖yn − p‖2 + ‖xn − p‖2 − ‖yn − xn + ρn(fxn − fp)‖2

}
.

Hence,

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖yn − xn‖2 − ρ2
n‖fxn − fp‖2 + 2ρn〈yn − xn, fxn − fp〉

≤ ‖xn − p‖2 − ‖yn − xn‖2 + 2ρn‖yn − xn‖‖fxn − fp‖.

It follows that

‖xn+1 − p‖2 ≤ αn‖Q(xn)− p‖2 + (1− αn)‖Szn − p‖2

≤ αn‖Q(xn)− p‖2 + (1− αn)‖yn − p‖2

≤ αn‖Q(xn)− p‖2 + +(1− αn)[‖xn − p‖2 − ‖yn − xn‖2

+2ρn‖yn − xn‖‖fxn − fp‖
]

≤ αn‖Q(xn)− p‖2 + ‖xn − p‖2 − ‖yn − xn‖2

+2ρn‖yn − xn‖‖fxn − fp‖.

Therefore, we obtain

‖yn − xn‖2 ≤ αn‖Q(xn)− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+2ρn‖yn − xn‖‖fxn − fp‖
≤ αn‖Q(xn)− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖

+2ρn‖yn − xn‖‖fxn − fp‖.

Since ‖xn+1 − xn‖ → 0 and αn → 0 as n→∞ and lim
n→∞

‖fxn − fp‖ = 0, we obtain

lim
n→∞

‖yn − xn‖ = 0. (3.20)

Similarly again, it follows from (3.2) and (3.18) that

‖xn+1 − p‖2 ≤ αn‖Q(xn)− p‖2 + (1− αn)‖Szn − p‖2

≤ αn‖Q(xn)− p‖2 + (1− αn)‖zn − p‖2

≤ αn‖Q(xn)− p‖2 + (1− αn)
[
‖yn − p‖2 − δ(1− δ‖B∗‖2)‖vn −Byn‖2

]
≤ αn‖Q(xn)− p‖2 + ‖xn − p‖2 − δ(1− δ‖B∗‖2)‖vn −Byn‖2.

Therefore, we obtain

δ(1− δ‖B∗‖2)‖vn −Byn‖2 ≤ αn‖Q(xn)− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖Q(xn)−p‖2 + (‖xn−p‖+ ‖xn+1−p‖)‖xn−xn+1‖.
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Since δ(1− δ‖B∗‖2) > 0 , ‖xn+1 − xn‖ → 0 and αn → 0 as n→∞, we obtain

lim
n→∞

‖vn −Byn‖ = 0. (3.21)

It follows from (3.4) and (3.21) that

ρn(2θ2 − ρn)‖gByn − gBp‖2 ≤ ‖Byn −Bp‖2 − ‖vn −Bp‖2

= (‖Byn−Bp‖+ ‖vn−Bp‖)(‖Byn−Bp‖ − ‖vn−Bp‖)
≤ (‖Byn −Bp‖+ ‖vn −Bp‖)‖vn −Byn‖.

Since ρn(2θ2 − ρn) > 0, ‖vn −Byn‖ → 0 as n→∞, we obtain

lim
n→∞

‖gByn − gBp‖ = 0. (3.22)

Next, we compute

‖zn − p‖2 = ‖PK1
[yn + δB∗(vn −Byn)]− p)‖2

≤ 〈yn + δB∗(vn −Byn)− p, zn − p〉

=
1

2
[‖(yn − p) + δB∗(vn −Byn)‖2 + ‖zn − p‖2

− ‖yn + δB∗(vn −Byn)− p− zn + p‖2]

=
1

2

[
‖yn − p‖2 + ‖zn − p‖2 + ‖+ δB∗(vn −Byn)‖2

+ 2δ〈Byn −Bp, vn −Byn〉
− ‖(yn − zn) + δB∗(vn −Byn)‖2

]
≤ 1

2

[
‖yn − p‖2 + ‖zn − p‖2 + ‖δB∗(vn −Byn)‖2

+ 2δ‖Byn −Bp‖‖vn −Byn‖
− ‖yn − zn‖2 − ‖δB∗(vn −Byn)‖2 + ‖zn − p‖2

+ 2δ〈yn − zn, B∗(vn −Byn)〉],
which in turns yields

‖zn − p‖2 ≤ ‖yn − p‖2 − ‖yn − zn‖2 + 2δ‖Byn −Bp‖‖vn −Byn‖
+ 2δ‖yn − zn‖‖B∗‖‖vn −Byn‖
≤ ‖yn − p‖2 − ‖yn − zn‖2 + 2δ‖vn
−Byn‖(‖Byn −Bp‖+ ‖B∗‖‖yn − zn‖). (3.23)

It follows from (3.18), (3.21) and (3.24) that

‖xn+1 − p‖2 ≤ αn‖Q(xn)− p‖2 + (1− αn)‖Szn − p‖2

≤ αn‖Q(xn)− p‖2 + +(1− αn)‖zn − p‖2

≤ αn‖Q(xn)− p‖2 + +(1− αn)
[
‖yn − p‖2 − ‖yn − zn‖2

+2δ‖vn −Byn‖(‖Byn −Bp‖+ ‖B∗‖‖yn − zn‖)
]

≤ αn‖Q(xn)− p‖2 + ‖xn − p‖2 − ‖yn − zn‖2

+2δ‖vn −Byn‖(‖Byn −Bp‖+ ‖B∗‖‖yn − zn‖),
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which implies that

‖yn − zn‖2 ≤ αn‖Q(xn)− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+2δ
[
‖vn −Byn‖(‖Byn −Bp‖+ ‖B∗‖‖yn − zn‖)

]
≤ αn‖Q(xn)− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖

+2δ‖vn −Byn‖(‖Byn −Bx̄‖+ ‖B∗‖‖yn − zn‖). (3.24)

Since the sequences {xn} and {un} all are bounded and lim
n→∞

‖un − xn‖ = 0 and

lim
n→∞

‖vn −Byn‖ = 0, therefore (3.24) implies that

lim
n→∞

‖yn − zn‖ = 0. (3.25)

Now, we can write

‖zn − xn‖ ≤ ‖zn − yn‖+ ‖yn − xn‖
→ 0 as n→∞. (3.26)

and

‖Szn − zn‖ ≤ ‖Szn − xn‖+ ‖xn − yn‖+ ‖yn − zn‖
→ 0 as n→∞. (3.27)

Since {zn} is bounded, there exists a subsequence {znk
} of {zn} such that znk

⇀ x̂
say. Therefore, it follows from (3.27) that there also exists a subsequence {ynk

} of
{yn} such that ynk

⇀ x̂.
We first show that x̂ ∈ Fix(S). On contrary, we assume that x̂ /∈ Fix(S). From

(3.26) and xnk
⇀ x̂, we have znk

⇀ x̂. Since Sx̂ 6= x̂, then from Opial’s condition
(2.7) and (3.27), we have

lim inf
k→∞

‖znk
− x̂‖ < lim inf

k→∞
‖znk

− Sx̂‖

≤ lim inf
k→∞

{
‖znk

− Sznk
‖+ ‖Sznk

− Sx̂‖
}

≤ lim inf
k→∞

‖znk
− x̂‖,

which is a contradiction. Thus, x̂ ∈ Fix(S). On the other hand

ynk
= JM1

ρn (xnk
− ρnk

fxnk
)

can be rewritten as
(xnk

− ynk
)− ρnk

f(xnk
)

ρnk

∈M1ynk
. (3.28)

By passing to the limit k → ∞ in (3.28) and by taking account (3.20), (3.25) and
the fact that the graph of maximal monotone operator is weakly-strongly closed, we
obtain 0 ∈ M1(x̂) + f(x̂), i.e., x̂ ∈ Sol(MVIP(2.2)). Furthermore, since {xn} and
{yn} have the same asymptotical behavior, {Bxn} weakly converges to Bx̂. Again
by (3.21) and the fact that the mapping JM2

ρn (I − ρng) is nonexpansive and Lemma
2.1, we obtain that 0 ∈M2(Bx̂) + g(Bx̂), i.e., Bx̂ ∈ Sol(MVIP(2.3)).
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Next, we claim that lim sup
n→∞

〈Q(z)− z, xn− z〉 ≤ 0, where z = PΩQ(z). Indeed, we

have

lim sup
n→∞

〈Q(z)− z, xn − z〉 = lim sup
n→∞

〈Q(z)− z, Szn − z〉

≤ lim sup
n→∞

〈f(z)− z, Szn − z〉

= 〈Q(z)− z, w − z〉
≤ 0. (3.29)

Finally, we show that xn → z. Therefore, it follows from Lemma 2.4 that

‖xn+1 − z‖2 = ‖αnQ(xn) + (1− αn)Sun − z‖2

= ‖αn(Q(xn)− z) + (1− αn)(Sun − z)‖2

= ‖αn(Q(xn)−Q(p)) + αn(f(z)− z) + (1− αn)Sun − z‖2.
≤ ‖αn(Q(xn)−Q(z)) + (1− αn)Sun − z‖2

+2αn〈Q(xn)− z, xn+1 − z〉
≤ ‖αn‖Q(xn)−Q(z)‖2 + (1− αn)‖un − z‖2

+2αn〈Q(xn)− z, xn+1 − z〉
≤ αnα

2‖xn − z)‖2 + (1− αn)‖xn − z‖2

+2αn〈Q(xn)− z, xn+1 − z〉
≤ (1− (1− α2)αn)‖xn − z)‖2 + 2αn〈Q(xn)− z, xn+1 − z〉.

Hence, we obtain

‖xn+1 − z‖2 ≤ (1− (1− α2)αn)‖xn − z)‖2 + 2αn〈Q(xn)− z, xn+1 − z〉.
Finally, by using (3.29) and Lemma 2.4, we deduce that xn → z in norm as n→∞.
Further it follows from ‖yn − xn‖ → 0, yn ⇀ x̂ ∈ Ω and xn → z as n → ∞, that
z = x̂. This completes the proof. �

As a direct consequences of Theorem 3.1, we obtain the following result due to
Kazmi and Rizvi [17] to approximate the common solution of SPVIP(2.4)-(2.5) and
FPP(2.1). Take f = g = 0 and PK1

= I in Theorem 3.1 then the following Corollary
is obtained.

Corollary 3.1. [17] Let H1 and H2 are real Hilbert spaces and B : H1 → H2 be
a bounded linear operator. Let M1 : H1 → 2H1 , M2 : H2 → 2H2 are the multi-
valued maximal monotone mappings, and let Q : H1 → H1 be a contraction mapping
with constant α ∈ (0, 1). Let S : H1 → H1 be a nonexpansive mapping such that
Fix(S)∩Sol(SPVIP(2.4)-(2.5)) 6= ∅. Let the iterative sequences {xn}, {yn}, {vn} and
{zn} are generated by the following iterative schemes:

x1 = x ∈ H1,
yn = JM1

ρ (xn),
vn = JM2

ρ (Byn),
zn = PK1

[yn + δB∗(vn −Byn)],
xn+1 = αnQ(xn) + (1− αn)Szn,
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where δ ∈
(

0, 1
‖B‖2

)
and {αn} are the sequences in (0, 1) and satisfying the conditions

(i) of Theorem 3.1. Then the sequences {xn} converges strongly to z ∈ Fix(S) ∩
Sol(SPVIP(2.4)-(2.5)), where z = PFix(S)∩Sol(SPVIP(2.4)−(2.5))Q(z).

The following Corollary is due to Byrne et al. [6] to approximate the solution of
SPVIP(2.4)-(2.5). Take f = g = 0, PK1 = S = I and αn = 0 in Theorem 3.1 then the
following Corollary is obtained.

Corollary 3.2. [6] Let H1 and H2 are real Hilbert spaces and B : H1 → H2 be a
bounded linear operator. Let M1 : H1 → 2H1 , M2 : H2 → 2H2 are the multi-valued
maximal monotone mappings such that Sol(SPVIP(2.4)-(2.5)) 6= ∅. Let the iterative
sequences {xn} be generated by the following iterative schemes:

JM1
ρ (xn + δB∗(JM2

ρ − I)Bxn),

where δ ∈
(

0, 1
‖B‖2

)
.

Then the sequences {xn} converges strongly to z ∈ Sol(SPVIP(2.4)-(2.5)).

Remark 3.1. Theorem 3.1 extends and generalize the approximation schemes of
Byrne et al. [6] and the viscosity results of Kazmi and Rizvi [17] to a general iter-
ative method for a split variational inclusion and Moudafi [26] for a split monotone
variational inclusion, which includes the results of [6, 17, 26] as special cases.

4. Numerical Example

In this section, we provide a numerical example to support our main result.

Example 4.1. Let H1 = H2 = R, the set of all real numbers. Let K1 = [0, 1] and
K2 = [−∞, 0]; M1(x) = 2x and M2(x) = 3x, for all x ∈ R. Let for each x ∈ R, we
define Q(x) = 1

8x, B(x) = 2x and S(x) = x and let f : R → R and g : R → R are
defined by f(x) = g(x) = 0, ∀x ∈ R. Then it is easy to prove that the mappings
M1 and M2 are maximal monotone; S is nonexpansive and B is a bounded linear
operator with its adjoint B∗ such that ‖B‖ = ‖B∗‖ = 2. The iterative sequences
{xn}, {yn}, {vn}, and {zn} are generated by (3.1) are then reduced to the following
iterative schemes:

x1 = x ∈ H1,

yn = 1
3 (xn),

vn = 1
4 (2yn),

zn =

 0 if x < 0,
1 if x > 0,
PK1

[yn + 0.2((vn − 2yn)], Otherwise,

xn+1 = 1
8
sin(n)
n xn +

(
1− sin(n)

n

)
1
6xn,

(4.1)

where αn = sin(n)
n and ρn = 1. Then {xn} converges strongly to 0 ∈ Ω.
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Table 1: Numerical results for some initial points x(1) = -1, 0, 1, -10, 25

Iter. (n) x
(1)
n x

(2)
n x

(3)
n x

(4)
n x

(5)
n

1. -0.4472 0.0000 0.4472 -4.4472 11.1789

2. -0.1423 0.0000 0.1423 -1.4229 3.5573
3. -0.0259 0.0000 0.0259 -0.2595 0.6487
4. -0.0027 0.0000 0.0027 -0.0269 0.0672
5. -0.0003 0.0000 0.0003 -0.0028 0.0069
6. 0.0000 0.0000 0.0000 -0.0004 0.0010

7.
...

...
...

...
...

8. 0.0000 0.0000 0.0000 0.0000 0.0000
9. 0.0000 0.0000 0.0000 0.0000 0.0000
10. 0.0000 0.0000 0.0000 0.0000 0.0000

Setting ‖xn − p‖ < 10−4 as stop criterion, we obtain the numerical results of scheme
(4.1) with different initial points x1. in Table 1. The computations are performed by
Matlab R2007a running on a PC Desktop Intel(R) Core(TM)i3-2330M, CPU @2.20
GHz, 790 MHz, 2 GB RAM. Next, by using Matlab 7.0, we study the convergence of
{xn}, for different initial values which shows that {xn} converges strongly to 0.
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Figure 1. Convergence of {xn} for the initial values -1 and 1
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Figure 2. Convergence of {xn} for the initial values -10 and 25
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Example 4.2. Let H1 = H2 = R3, the set of all real numbers. Let

K1 = [0,+∞)× [0,+∞)× [0,+∞).

Let the inner product 〈·, ·〉 : R3 × R3 → R be defined by

〈x, y〉 = x · y = x1y1 + x2y2 + x3y3

and with respect to the usual norm ‖.‖ : R→R be defined by

‖x‖ =
√
x2

1 + x2
2 + x2

3.

Let M1 : R3 → R3 and M2 : R3 → R3 be defined by

M1 =

 1 0 0
0 2 0
0 0 3


and

M2 =

 2 0 0
0 5 0
0 0 3

 .
Then we can define the resolvent operators JM1

ρ1 and JM2
ρ2 on R3 associated with M1

and M2 where ρ1, ρ2 > 0. Let

B =

 1 0 0
0 2 0
0 0 1

 ∈ R3 × R3

be a singular matrix operator and B∗ be the adjoint of B. It is easy to calculate that

B∗ =

 2 0 0
0 1 0
0 0 2

 .
Let the mapping S : H1 → H1 defined by

Sx =
(x1

10
,
x2

10
,
x3

10

)
and let Qx =

x

2
(∀x ∈ R3). Let

f(x) =
1

2
x, ∀x ∈ R3 and g(x) =

1

3
x, ∀x ∈ R3.

Then it is easy to prove that the mappings M1 and M2 are maximal monotone and
S is nonexpansive. The iterative sequences {xn}, {yn}, {vn}, and {zn} are generated
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by (3.1) are then reduced to the following iterative schemes:

x1 = x ∈ H1,

yn = JM1

1/2(I − 1
2f)xn,

vn = JM2

1/2(I − 1
3g)

 1 0 0
0 2 0
0 0 1

 yn,

zn = PK1

yn +
1

5

 2 0 0
0 1 0
0 0 2

 (vn −

 1 0 0
0 2 0
0 0 1

 yn)

 ,

xn+1 =
1

2
xn +

1

10

(
1− 1

n

)
zn,

(4.2)

where αn =
1

n
and δ = 0.2. Then {xn} converges strongly to 0 = (0, 0, 0) ∈ Ω.

Setting ‖xn − p‖ < 10−4 as stop criterion, then we obtain the numerical results
of scheme (4.1) with different initial points x1. in Table 1. The computations are
performed by Matlab R2007a running on a PC Desktop Intel(R) Core(TM)i3-2330M,
CPU @2.20 GHz, 790 MHz, 2 GB RAM.

Next, by using the software Matlab 7.0, we study the convergence behavior of {xn},
for different initial values which shows that {xn} converges strongly to 0 = (0, 0, 0).
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Figure 3. Convergence of {xn} for the initial values (1,3,5) and
(-2,-4,-7)
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