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MĂDĂLINA PĂCURAR
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1. Introduction

In [9] an interesting type of contractive condition for operators defined on metric
spaces was suggested. The authors investigated there corresponding generalizations
of important fixed point results, such as Banach’s, Edelstein’s or Caristi’s fixed point
theorems. They developed this way a technique which was used in the same paper in
proving a known fixed point result for nonexpansive mappings.

This paper gave rise to a series of papers on what we are now used to call cyclic
operators. To our best knowledge, the notion of cyclic representation first appeared
in the short but interesting paper [20], which was also inspired by [9].

Since then many classes of cyclic operators have been studied, generally by ex-
tending known classes of generalized contractions on metric or Banach spaces (see for
example [1], [4]-[8], [11]-[14], [18], [22], for a very short list of them).

There are several other research areas where different types of cyclic phenomena
are observed and studied. Of course, only some of these phenomena are likely to be
approached by means of the instruments offered by our research. Here we mention only
a few of these inspiring topics, where our results could be refined and adapted in order
to count as instruments in further studies and for developing new models: different
types of oscillators (chemical, physical and others), social cycles, business cycles,
politico-economic cycles, financial cycles, ecosystems cycles, cycles in astrophysics
and so on (see for example [2], [3], [10]).
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Inspired by these phenomena, we aim to introduce and study in the present paper
cyclic contractive type operators corresponding to phenomena in which some charac-
teristics do not appear in each and every phase of a cycle, but they appear with a
certain periodicity (of r phases). Besides new definitions and results that are given
in the following, several remarks will complete the approach, mentioning aspects that
can be relevant in applications.

These new r-cyclic operators are an answer to natural problems and they prove to
complete the family of cyclic type operators studied in the previous literature. They
open this way a very wide space for further research, in order to extend the already
existing results and theories referring to cyclic operators, if possible, in the case of
r-cyclic operators.

The Introduction is followed by five sections:

2. Preliminaries
3. Nuances of a definition. r-Cyclic operators
4. Properties of r-cyclic operators
5. Synchronous r-cyclic contractions
6. Instead of a conclusion. The cyclic operators that have been missing

This first study of r-cyclic contractions does not exhaust the topic, as there are
more questions to be answered and problems to be solved.

2. Preliminaries

A first (to our best knowledge) cyclic-type generalization of a classical fixed point
result is Theorem 1.3 in [9], which we recall below in its original notation.

Theorem 2.1 ([9]). Let {Ai}pi=1 be nonempty closed subsets of a complete metric

space and suppose F :
p⋃

i=1

Ai →
p⋃

i=1

Ai satisfies the following conditions (where Ap+1 =

A1):

(1) f(Ai) ⊆ Ai+1, for 1 ≤ i ≤ p;
(2) ∃k ∈ (0, 1) such that d(F (x), F (y)) ≤ k · d(x, y), ∀x ∈ Ai, y ∈ Ai+1, for

1 ≤ i ≤ p.

Then F has a unique fixed point.

The ”secret” behind this result is that the Picard iteration associated to F has
infinitely many terms in each set Ai, 1 ≤ i ≤ p, and it is also a Cauchy sequence due
to the contraction condition, these two arguments together with the completeness of
the space and the closeness of Ai, i = 1, p leading to the conclusion.

In [20] the cyclic representation relative to an operator f : X → X is de-

fined as being
m⋃
i=1

Xi such that Xi are all nonempty (1 ≤ i ≤ m) and besides

f(X1) ⊆ X2, f(X2) ⊆ X3, . . . , f(Xm−1) ⊆ Xm, f(Xm) ⊆ X1. Some examples of
cyclic representations are given in [20]. Other interesting examples of cyclic operators
are to be found in the paper [5].
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The study of cyclic operators is still having an impressive development, judging
after the number of papers in which the existence of fixed points or best proximity
points is investigated, for various classes of operators and in various framework spaces.

This is why we found it interesting to revisit the papers that stood as starting
point for this rich literature, to reconsider some notations and to reformulate some
basic notions, having in view the phenomena they should be able to speak about,
in mathematical language. This apparently trivial approach can lead to surprisingly
interesting observations.

3. Nuances of a definition. r-Cyclic operators

In the rest of the paper we shall use the terminology dictated by the next definition,
introduced in [21], which allows a more accurate language of cyclic operators and all
related notions and results (instead of the initial cyclic representation terminology).

Definition 3.1 ([21]). Let X be a nonempty set and f : X → X an operator. If

there exists a covering of X =
m⋃
i=1

Xi, m ≥ 2 such that

f(X1) ⊆ X2, f(X2) ⊆ X3, . . . , f(Xm−1) ⊆ Xm, f(Xm) ⊆ X1,

then:

i)
m⋃
i=1

Xi is called a cyclic covering of X w.r.t. f ;

ii) f is called a cyclic operator w.r.t. the covering
m⋃
i=1

Xi.

Remark 3.1. Note that in several papers (see for example [12]) the term p-cyclic is
used to indicate an operator that is cyclic in terms of Definition 3.1, where p denotes
the number of sets in the cyclic covering. This is still essentially different from what
will be defined in the present paper as r-cyclic.

Remark 3.2. From the above definition one can see that i) and ii) are equivalent.
Therefore in the sequel when one of them is mentioned the other one will be auto-
matically assumed.

The following simple example, included also in [17], will lead to an important
remark regarding the notation used in the above definition.

Example 3.1. Let X = X1 ∪X2 ∪X3 be a cyclic covering of X w.r.t. the operator
f : X → X.

One can easily check that according to the definition X2 ∪ X1 ∪ X3 is generally
not a cyclic covering w.r.t. f , neither are X3 ∪X2 ∪X1 or X1 ∪X3 ∪X2.

Still X2 ∪X3 ∪X1 and X3 ∪X1 ∪X2 are cyclic coverings w.r.t. f .

Remark 3.3. It is now clear that the order in which the sets appear in the covering
plays an important role, therefore none of them can change places. As the usual union

of sets is commutative, we find that the notation
m⋃
i=1

Xi is not quite proper for a cyclic

covering.
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So we introduce the notation
m
∪·
i=1

Xi = X1 ∪· X2 ∪· · · · ∪· Xm

to indicate a cyclic covering w.r.t. to an operator, which will actually say that each
of the m cyclic permutations

X1 ∪X2 ∪X3 ∪ · · · ∪Xm−1 ∪Xm,

X2 ∪X3 ∪ · · · ∪Xm−1 ∪Xm ∪X1,

...

Xm ∪X1 ∪X2 ∪ · · · ∪Xm−1

is a cyclic covering of X w.r.t. f , while generally any other permutation is not.

Now let us take a look at another simple but interesting example.

Example 3.2. If
m⋃
·

i=1
Xi is a cyclic covering w.r.t. f : X → X and k ≥ 2 is integer,

then fk : X → X is generally not a cyclic operator w.r.t.
m⋃
·

i=1
Xi, but fkm+1 : X → X

is a cyclic operator w.r.t.
m⋃
·

i=1
Xi.

Motivated by the above observations and by the existence of cyclic phenomena
where some studied characteristics or parameters are mapped not in the next coming
phase, but in a more ”remote” one (e.g., not from parents to children, but from
grandparents to grandchildren, so over two generations), we introduce the following
definition:

Definition 3.2. Let X be a nonempty set, f : X → X an operator and m ≥ 2,

1 ≤ r ≤ m integers. If there is a covering X =
m⋃
·

i=1
Xi such that

f(X1) ⊆ X1+r, f(X2) ⊆ X2+r, . . . , f(Xm) ⊆ Xm+r,

where for p > m by Xp we mean Xp mod m, then:

i)
m⋃
·

i=1
Xi is called a r-cyclic covering of X w.r.t. f ;

ii) f is called a r-cyclic operator w.r.t. the covering
m⋃
·

i=1
Xi.

Remark 3.4. One can see that a cyclic covering or cyclic operator in the sense
of Definition 3.1 is a 1-cyclic covering, respectively 1-cyclic operator in the sense of
Definition 3.2.

For r > m, any r-cyclic operator/covering is actually (r mod m)-cyclic opera-
tor/covering, that is why in the above definition we only consider 1 ≤ r ≤ m.

Remark 3.5. One can also check that the notation
m⋃
·

i=1
Xi from Remark 3.3 remains

consistent in the case of r-cyclic coverings as well, since if
m⋃
·

i=1
Xi is a r-cyclic covering
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w.r.t. an operator, then implicitly

X1 ∪X2 ∪X3 ∪ · · · ∪Xm−1 ∪Xm,

X2 ∪X3 ∪ · · · ∪Xm−1 ∪Xm ∪X1,

...

Xm ∪X1 ∪X2 ∪ · · · ∪Xm−1

are r-cyclic w.r.t. to that operator, as well.

Now let us analyze some simple examples, which are extensions of some examples
in [20].

Example 3.3. If
m⋃
·

i=1
Xi, m ≥ 2 is a cyclic covering w.r.t. f : X → X, then it is a

k-cyclic covering w.r.t. fk : X → X, for any k ≥ 2.

See for example the case r = 2. Since f is cyclic w.r.t.
m⋃
·

i=1
Xi, we have that

f2(X1) ⊆ f(f(X1)) ⊆ f(X2) ⊆ X3 etc.

so

f2(X1) ⊆ X3, f
2(X2) ⊆ X4, . . . , f

2(Xm−2) ⊆ Xm, f2(Xm−1) ⊆ X1, f
2(Xm) ⊆ X2,

which by Definition 3.2 means exactly that f2 is a 2-cyclic operator w.r.t.
m⋃
·

i=1
Xi.

Example 3.4. Let X = {x1, x2, x3, . . . , xm} a set, Xi = {xi}, i = 1,m and f : X →
X defined by

f(x1) = x4, f(x2) = x5, . . . , f(xm−3) = f(xm),

f(xm−2) = f(x1), f(xm−1) = f(x2), f(xm) = f(x3).

Then f is not a cyclic operator w.r.t.
m⋃
·

i=1
Xi, but it is a 3-cyclic operator w.r.t. to the

same covering.
Note that it is generally not possible to ”rearrange” the covering so that f would

be cyclic w.r.t. this rearrangement.

Example 3.5. Let X be a nonempty set and f : X → X an operator. Let Y ⊂ X a
nonempty strict subset of X and let n0 > 0 integer such that

X = Y ∪ f(Y ) ∪ f2(Y ) ∪ · · · ∪ fn0(Y ),

with fn0+1(Y ) ⊆ Y .

Then fk is a k-cyclic operator w.r.t. the covering
n0⋃
·

i=0
f i(Y ), for any k ≥ 2.

Remark 3.6. Generally if X =
m⋃
·

i=1
Xi, m ≥ 2 is r-cyclic covering w.r.t. f : X → X,

then each Xi, 1 ≤ i ≤ m is invariant for fm.
If in particular m = k · r, with k integer, then each Xi, 1 ≤ i ≤ m is invariant for fk.
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Example 3.6. We saw in Example 3.1 that if X =
3⋃
·

i=1
Xi is a cyclic covering w.r.t.

f : X → X, then X1 ∪ X2 ∪ X3, X2 ∪ X3 ∪ X1 and X3 ∪ X1 ∪ X2 are all cyclic
coverings, while the remaining three cyclic permutations X1 ∪X3 ∪X2, X2 ∪X1 ∪X3

and X3 ∪X2 ∪X1 are generally not cyclic coverings.
Still one can check that they are all 2-cyclic coverings w.r.t. f .

4. Properties of r-cyclic operators

The above Example 3.6 could lead us to the false conclusion that, given an op-

erator f :
m⋃
·

i=1
Xi →

m⋃
·

i=1
Xi, no matter how we rearrange the elements of the covering

m⋃
·

i=1
Xi, it is possible to find a positive integer r such that f is r-cyclic w.r.t. to this

rearrangement.
This is generally not true, and an answer will be given by Lemmas 4.1 and 4.2.

These results can be simply deduced by observing the behavior of r-cyclic coverings
w.r.t. f , for various values of m and r.

Before stating the lemmas, we propose a visualization of some r-cyclic coverings,
as we found this approach extremely useful for a better understanding of the results to
come. Note that the sets X1, X2, . . . , Xm are not supposed to be disjoint, in general.

According to Definition 3.2, we refer to coverings X =
m⋃
·

i=1
Xi, m ≥ 2 and to an

operator f : X → X such that

f(Xi) ⊆ Xi+r, i = 1,m,

for 1 ≤ r ≤ m, where Xp = Xp mod m for any p > m.

4.1. Visual representation in the case m = 2. Then X = X1 ∪· X2 and we have
to analyze two values of r.

For r = 1, f would be 1-cyclic (or simply cyclic), that is,

f(X1) ⊆ X2, f(X2) ⊆ X1.

Graphically we shall represent this as:

X1 X2

Figure 4.1. Cyclic covering for m = 2, r = 1

For r = 2, f would be 2-cyclic, that is,

f(X1) ⊆ X1, f(X2) ⊆ X2.

We shall represent this as
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X1 X2

Figure 4.2. Cyclic covering for m = 2, r = 2

4.2. Visual representation in the case m = 3. Then X = X1 ∪· X2 ∪· X3 and we
have to analyze three values of r.

For r = 1, f would be 1-cyclic (or simply cyclic), that is,

f(X1) ⊆ X2, f(X2) ⊆ X3, f(X3) ⊆ X1.

Graphically we shall represent this as:

X1

X2

X3

Figure 4.3. Cyclic covering for m = 3, r = 1

For r = 2, f would be 2-cyclic, that is,

f(X1) ⊆ X3, f(X2) ⊆ X1, f(X3) ⊆ X2.

Graphically we shall represent this as:

X1

X2

X3

X1

X2

X3

Figure 4.4. Cyclic covering for m = 3, r = 2, direct vs. simplified

Note that in the following we shall adopt this kind of ”left bent” arrows like in the
second representation to tell that f maps X1 into X3, stepping ”over” X2, X2 into
X1 and so on.

For r = 3 the representation is trivial, we omit it.
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4.3. Visual representation in the case m = 4. Now X = X1 ∪· X2 ∪· X3 ∪· X4 and
we have to analyze four values of r. In the next Figure 4.5 are depicted the first three
cases.

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

Figure 4.5. Cyclic coverings for m = 4 and r = 1, r = 2, r = 3

4.4. Comments on visual representations. As rigorous notation in the case of
r-cyclic operators is getting sometimes really hairy, as we shall see later, this visual-
ization approach helps understanding how things work.

One can already notice that in some cases, no matter which of Xi, i = 1,m is the
starting set, the operator f will run through each of the sets of the covering. In other
cases, some ”closed circuits” can be observed (for example when m = 4, r = 2), that
is, if the starting point is in one of the sets contained in this circuit, then it will never
be mapped outside the circuit.

Remark 4.1. In the rest of the paper we shall use this term of closed circuit or
simply circuit in order to denote such a family of sets, invariant for f .

We try to make this phenomenon more visible in our representations by means
of the color code we use: blue for a 1-cyclic operator, black for m-cyclic operators,
green in all those cases when f runs through all the sets Xi, i = 1,m. Finally, if there
are closed circuits to be noticed, we use other colors, one different color for each such
circuit. This color code can already be noticed for the case m = 4 above. We still
have to mention that all these representations can be well understood without any
color, only by attentively following the arrows.

4.5. Visual representation in the case m = 10. Though the other cases are not
less interesting, we omit them and we represent below only the resulting configurations
when m = 10 and r = 1, 2, . . . , 10. In this case the cyclic covering is X = X1 ∪· X2 ∪·
· · · ∪· X10.

The next Figure 4.6 shows these representations for r = 1 and r = 2:
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X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

Figure 4.6. Cyclic coverings for m = 10 and r = 1, r = 2

Further on, Figure 4.7 shows the cases r = 3 and r = 4:

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

Figure 4.7. Cyclic coverings for m = 10 and r = 3, r = 4

For r = 5 and r = 6, the representations are included in Figure 4.8, while the cases
r = 7 and r = 8 are presented in Figure 4.9. Finally for r = 9, respectively r = 10,
the representations are given in Figure 4.10.

Following the above presented color code or simply the arrows, one can trace
the behavior of the r-cyclic operators. For example, f runs through all sets of the
covering, no matter where the starting point was, for r = 1, r = 3, r = 7 and r = 9.
For each of r = 2, r = 4, r = 6 and r = 8 there arise two circuits. Again, the circuits
are distinct, although the sets involved are the same.

For example, all of the following are obviously distinct:

X1 ∪· X3 ∪· X5 ∪· X7 ∪· X9 (when f is 2-cyclic),

X1 ∪· X5 ∪· X9 ∪· X3 ∪· X7 (when f is 4-cyclic),

X1 ∪· X7 ∪· X3 ∪· X9 ∪· X5 (when f is 6-cyclic),

X1 ∪· X9 ∪· X7 ∪· X5 ∪· X3 (when f is 8-cyclic).
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X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

Figure 4.8. Cyclic coverings for m = 10 and r = 5, r = 6

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

Figure 4.9. Cyclic coverings for m = 10 and r = 7, r = 8

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10 X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

Figure 4.10. Cyclic coverings for m = 10 and r = 9, r = 10
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The most ”colorful” case is that when f is 5-cyclic and the closed circuits that
arise reach the number of five, each of them containing only two sets of the covering.

4.6. Two lemmas on r-cyclic operators. As announced in the beginning of this
section, our aim was to generalize what can be noticed in the behavior of r-cyclic
operators for various values of m and r. It is obvious that this behavior depends on
the relation between the two parameters m and r. There are two different situations,
namely when gcd (m, r) = 1 and when gcd (m, r) > 1. For each of them we formulate
a corresponding lemma, that will be later essential in proving our fixed point results
for r-cyclic operators.

Let us begin with the case when gcd (m, r) = k > 1, as it generates a more
spectacular behavior. Note that in the following lemmas, as well as in the fixed point
results we shall state later, r is no longer supposed to take also the value m, as the
discussion would make no sense in that case.

Lemma 4.1. Let f : X → X be r-cyclic w.r.t. X =
m⋃
·

i=1
Xi, m ≥ 2, 1 ≤ r < m

integers. If the greatest common divisor of m and r, namely gcd(m, r) = k > 1, then

there exists a covering X =
k⋃
·

j=1
Yj with the following properties:

1) The k subcoverings Yj, 1 ≤ j ≤ k are given by:

Y1 = X1 ∪· X1+r ∪· · · · ∪· X1+( m
k −1)r,

Y2 = X2 ∪· X2+r ∪· · · · ∪· X2+( m
k −1)r,

...

Yk = Xk ∪· Xk+r ∪· · · · ∪· Xk+( m
k −1)r,

or generally Yj =

m
k −1⋃
·

i=0
Xj+i·r, 1 ≤ j ≤ k.

Note that by Xp we mean Xp mod m, each time when p > m.
2) The subcoverings Yj, 1 ≤ j ≤ k are invariant for f .
3) For each j ∈ {1, . . . , k}, the corresponding restriction f |Yj

is a cyclic operator
w.r.t. Yj.

Remark 4.2. In view of Remark 4.1 above, all the subcoverings Yj , 1 ≤ j ≤ k are
(closed) circuits.

Comments. So any fixed point problem for the r-cyclic operator f : X → X

w.r.t.
m⋃
·

i=1
Xi can be ”split” into k = gcd(m, r) fixed point problems for the restrictions

f |Yj
: Yj → Yj , which are all cyclic operators w.r.t. Yj , 1 ≤ j ≤ k.

If
k⋂

j=1

Yj = ∅, then clearly f will have no fixed point in X.

Identifying these closed circuits Yj , 1 ≤ j ≤ k can play an important role in

certain applications. If for example one of them is causing
k⋂

j=1

Yj = ∅, this can be
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removed from the initial domain of f and the fixed point problem can be studied on
the remaining domain, where it might have fixed point(s).

Having in view Lemma 4.1, the following is obvious:

Lemma 4.2. Let f : X → X be r-cyclic w.r.t. X =
m⋃
·

i=1
Xi, where 1 ≤ r < m. If

gcd(m, r) = 1, then for any x ∈ X the sequence {fn(x)}n≥0 will have infinitely many
terms in each Xi, 1 ≤ i ≤ m.

Remark 4.3. The above lemmas will play an important role when studying the fixed
points of r-cyclic operators.

This is because, as mentioned at the very beginning, proving the convergence of
the Picard iteration to the fixed point requires the presence of infinitely many terms
of the sequence of successive approximations in each subset of the cyclic covering on
which the operator is invariant.

Now it would be useful to verify the notations in the above lemmas on a particular
case.

Example 4.1. Let f : X → X be r-cyclic w.r.t. X =
12⋃
·

i=1
Xi.

Take for example r = 2. Then k = gcd(2, 12) = 2. According to Definition 3.2, if

f is 2-cyclic w.r.t. X =
12⋃
·

i=1
Xi, then the following hold:

f(X1) ⊆ X3, f(X2) ⊆ X4, f(X3) ⊆ X5, . . . ,

f(x10) ⊆ X12, f(X11) ⊆ X1, f(X12) ⊆ X2.

It is easy to see that there are two closed circuits, that is, two subcoverings

Y1 = X1 ∪· X3 ∪· X5 ∪· X7 ∪· X9 ∪· X11,

Y2 = X2 ∪· X4 ∪· X6 ∪· X8 ∪· X10 ∪· X12,

which are both invariant for f . Moreover, according to Definition 3.1, f |Y1 : Y1 → Y1

is cyclic w.r.t. Y1 and f |Y2 : Y2 → Y2 is cyclic w.r.t. Y2.
If we refer to the notation in Lemma 4.1, then indeed

1 + (m
k − 1)r = 1 + ( 12

2 − 1) · 2 = 11 etc.

5. Synchronous r-cyclic contractions

The first problem that anyone would think to investigate, is a possible extension
of the result proved in [9] and included above as Theorem 2.1, and hence an extension
of the contraction principle of Banach for r-cyclic operators, in the framework of a
metric space.

Recall that in [9] there were considered cyclic contractions or 1-cyclic contractions,
that is, mappings satisfying d(F (x), F (y)) ≤ k·d(x, y) for any x ∈ Ai, y ∈ Ai+1, where
p
∪
i=1

Ai was a cyclic covering w.r.t. F .

While working on a r-cyclic covering, one can notice two naturally arising direc-
tions:
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1. when f satisfies a contraction condition that holds for any x ∈ Xi, y ∈ Xi+1,
that is, for elements belonging to successive sets in the cyclic covering;

2. when f satisfies a contraction condition that holds for any x ∈ Xi, y ∈ Xi+r,
where r is the same constant that defines the r-cyclic covering.

In order to differentiate these two classes of operators, we have chosen to call the
second one synchronous r-cyclic contractions, as the contraction condition has the
same ”pace” as the cyclic covering, and consequently the first class will be called
asynchronous r-cyclic contractions.

Obviously, asynchronous 1-cyclic contractions are the same as synchronous 1-cyclic
contractions and actually they are all cyclic contractions as studied in [9].

The current paper is dedicated to synchronous cyclic contractions (while the asyn-
chronous cyclic contractions are studied in [15]) and we start by introducing:

Definition 5.1. Let (X, d) be a metric space, f : X → X and X =
m⋃
·

i=1
Xi a r-cyclic

covering w.r.t. f , where m ≥ 2 and 1 ≤ r < m are integers. If there exists c ∈ [0, 1)
such that for any x ∈ Xi, y ∈ Xi+r, 1 ≤ i ≤ m,

d(f(x), f(y)) ≤ c · d(x, y),

then f is called a synchronous r-cyclic contraction w.r.t.
m⋃
·

i=1
Xi.

If r = 1 in the above definition, then one obtains the definition of cyclic contrac-
tions studied in [9], see Theorem 2.1 above.

Now let us see which conditions must be required so that operators belonging to
this class have one or more fixed points. As the above Lemmas 4.1 and 4.2 suggest, we
need to analyze two different situations. A first case, when gcd (m, r) = 1, is easier to
explore, as expected. The result we obtain is a generalization of Theorem 2.1, where
this condition was also fulfilled, as gcd (m, 1) = 1.

Theorem 5.1. Let (X, d) be a complete metric space, m ≥ 2 and 1 ≤ r < m integers,
m⋃
·

i=1
Xi a covering of X with Xi ∈ Pcl(X), i = 1,m and c ∈ [0, 1) such that f : X → X

is a synchronous r-cyclic contraction with constant c w.r.t.
m⋃
·

i=1
Xi.

If gcd (m, r) = 1, then f has a unique fixed point in X, that can be obtained by
means of the Picard iteration starting from any point in X.

Proof. Considering the above definitions, we know from the hypothesis of the theorem
that:

f(X1) ⊆ X1+r, f(X2) ⊆ X2+r, . . . , f(Xm) ⊆ Xm+r

and

d(f(x), f(y)) ≤ c · d(x, y), for any x ∈ Xi, y ∈ Xi+r, 1 ≤ i ≤ m.

We aim to show that the Picard iteration of f converges to a fixed point, starting
from any point in X.
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Therefore we consider an arbitrary point x0 ∈ X. As X =
m⋃
·

i=1
Xi, there exists

l ∈ {1, 2, . . . ,m} such that x0 ∈ Xl. Because f is r-cyclic w.r.t.
m⋃
·

i=1
Xi, the terms of

the Picard iteration are distributed as follows:

x1 = f(x0) ∈ Xl+r, x2 = f(x1) ∈ Xl+2r, . . . , xn = f(xn−1) ∈ Xl+nr, . . . ,

where Xk = Xk mod m for all k > m.
We have that

d(xn, xn+1) = d(f(xn−1), f(xn)),

which, in view of the fact that xn−1 ∈ Xl+(n−1)r and xn ∈ Xl+nr, implies that

d(xn, xn+1) ≤ c · d(xn−1, xn), n ≥ 1.

This way we obtain that, for n ≥ 1,

d(xn, xn+1) ≤ cn · d(x0, x1).

For p ≥ 1 we have that

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ cn · d(x0, x1) + cn+1 · d(x0, x1) + · · ·+ cn+p · d(x0, x1)

= cn · 1− cp

1− c
· d(x0, x1),

so d(xn, xn+p) → 0 as n → ∞, which shows that {xn}n≥0 is a Cauchy sequence in
the complete metric space (X, d).

So there exists x ∈ X such that lim
n→∞

xn = x.

At this point it is essential to know that {xn}n≥0 has infinitely many terms in
each Xi, i = 1,m, and this is ensured by the condition gcd (r,m) = 1, see Lemma 4.2
above. So from each Xi one can extract a subsequence of {xnk

}k≥0 which converges
to x as well, since (X, d) is complete. As Xi, i = 1,m are all closed, it follows that

x ∈
m⋂
i=1

Xi.

Then
m⋂
i=1

Xi is not empty and is invariant for f . It follows that the restriction

f | m
∩

i=1
Xi

is a Banach contraction with constant c ∈ [0, 1) on the complete metric space

m⋂
i=1

Xi, so it has a unique fixed point, say x∗ ∈
m⋂
i=1

Xi, which can be obtained as the

limit of the Picard iteration starting from any initial point x ∈
m⋂
i=1

Xi.

We still have to prove that the Picard iteration converges to x∗ for any starting

point in X. So let x ∈ X. Since X =
m⋃
·

i=1
Xi, there must exist s ∈ {1, 2, . . . ,m} such

that x ∈ Xs. As x∗ ∈
m⋂
i=1

Xi, it follows that x∗ ∈ Xs+r as well and, since f is a
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synchronous r-cyclic contraction w.r.t.
m⋃
·

i=1
Xi, we have that

d(f(x), x∗) = d(f(x), f(x∗)) ≤ c · d(x, x∗).

But f(x) ∈ Xs+r and x∗ = f(x∗) ∈ Xs+2r, so

d(f2(x), x∗) = d(f(f(x)), f(x∗)) ≤ c · d(f(x), x∗) ≤ c2 · d(x, x∗).

Following in a similar manner we obtain that, for n ≥ 1,

d(fn(x), x∗) ≤ cn · d(x, x∗).

Then fn(x) → x∗ as n → ∞, so the Picard iteration converges to the unique fixed

point x∗ ∈
m⋂
i=1

Xi for any starting point x ∈ X. �

In order to complete the study of synchronous r-cyclic contractions, we have to
analyze the remaining situations that are not covered by Theorem 5.1, namely when
gcd (m, r) > 1. Having in view Lemma 4.1 and Definition 5.1, the following is obvious:

Lemma 5.1. Let (X, d) be a metric space, m ≥ 2, 1 ≤ r < m and f : X → X a

synchronous r-cyclic contraction w.r.t. X =
m⋃
·

i=1
Xi.

If gcd (m, r) = k > 1, then there exists a covering X =
k⋃
·

j=1
Yj with the following

properties:

1) Yj =

m
k −1⋃
·

i=0
Xj+i·r, 1 ≤ j ≤ k.

2) The subcoverings Yj, 1 ≤ j ≤ k are invariant for f .
3) For each j ∈ {1, . . . , k}, the corresponding restriction of f is a cyclic contrac-

tion (or 1-cyclic contraction) w.r.t. Yj.

Now based on the above results we have:

Theorem 5.2. Let (X, d) be a complete metric space, m ≥ 2 and 1 ≤ r < m integers,
m⋃
·

i=1
Xi a covering of X with Xi ∈ Pcl(X), i = 1,m and c ∈ [0, 1) such that f : X → X

is synchronous r-cyclic contraction with constant c w.r.t.
m⋃
·

i=1
Xi.

If gcd (m, r) = k > 1, then f is a weakly Picard operator and it has at most k fixed

points x∗j ∈ Yj, where Yj =

m
k −1⋃
·

i=0
Xj+i·r, 1 ≤ j ≤ k.

For each 1 ≤ j ≤ k, x∗j can be obtained as the limit of the Picard iteration of f ,
starting from any initial point in Yj.

Proof. By Lemma 5.1 and applying the Theorem 2.1 due to Kirk et al. [9] for the
restrictions f |Yj

, j = 1, k. �

As we see in Theorem 5.1, the convergence of the Picard iteration to the unique

fixed point of a synchronous r-cyclic contraction w.r.t. a covering
m⋃
·

i=1
Xi of a complete

metric space X is guaranteed only if gcd (m, r) = 1.
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In the other case, that is, when gcd (m, r) = k > 1, the fixed point problem
can be approached by splitting it into k fixed point problems for the restrictions
f |Yj , j = 1, k, see Lemma 4.1 and Theorem 5.2. These restrictions of f are 1-cyclic
or simply cyclic contractions with the same constant c ∈ [0, 1) on the respective
subcoverings of ”length” m

k , so there are known instruments available to study the
existence of the fixed points there.

Remark 5.1. In view of Definition 4.4 from [21], under the assumptions of Theorem

5.2 above,
k⋃

j=1

Yj is a fixed point invariant partition of X.

6. Instead of a conclusion. The cyclic operators that have been
missing

There are still many things to inquire about r-cyclic operators. The first question
one would probably still want to ask is if they are really necessary and not a trivial
generalization. Instead of a long discourse, we could answer by the following:

Proposition 6.1. Let X be a nonempty set and X =
m⋃
·

i=1
Xi, m ≥ 2 a covering. We

denote by CycGm the set of r-cyclic operators w.r.t.
m⋃
·

i=1
Xi, 1 ≤ r ≤ m:

CycGm = {fr is r-cyclic w.r.t.
m
∪·
i=1

Xi|1 ≤ r ≤ m}.

Then (CycGm, ◦) is an abelian group, where ◦ is the composition of functions.

Proof. For any m ≥ 2, the identity element of the CycGm group is fm, which maps
each Xi into itself, i = 1,m.

The associativity is easy to check with the definition.
For each fr, r = 1,m, the inverse element is fm−r.
Obviously the commutativity is also satisfied. �

This simple observation enables us to state that r-cyclic operators naturally com-
plete the framework in which the study of cyclic operators should be carried out and
that they have been somehow missing from previous research regarding fixed points
or best proximity points for various types of cyclic operators.

When it comes to applications, there are countless research areas which involve
cyclic processes - in fact some of these have inspired the present study.

It would be interesting to analyze some typical problems occurring in each of
these areas and to see in which of them the cyclic phenomena are likely to be ap-
proached by the results given above. At a common search in the Scopus database,
there are almost 700 000 papers matching the word cyclic in their title, abstract or
keywords, belonging to the most diverse areas, like engineering, biochemistry, genetics
and molecular biology, chemistry and chemical engineering, neuroscience, computer
science, ecosystems science, system engineering, sociology, even linguistics. Of course,
not all of the phenomena referred there are matching the mathematics described in
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the present paper, just the term ”cyclic” is not all of it, but among them there are
still a significant number where our results could serve as instruments for some steps
forward in the related research, because they reflect some natural behavior that can
be easily observed in real life.

Another aspect worth mentioning is that our attention should not be attracted
exclusively by quantitative applications, where numerical instruments work best, but
also by applications where conceptual models work as well, as mathematics is a lan-
guage and it consequently can well serve for formulating such models.

There arise a lot of open problems: could the same type of investigation lead
to relevant results if other types of contraction conditions, generalized metrics are
considered, if best proximity points are studied etc.? This remains for future study,
along with all the other aspects regarding r-cyclic operators, that have not been
covered in the present paper.
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[13] A. Magdaş, A fixed point theorem for Ciric type multivalued operators satisfying a cyclical

condition, J. Nonlinear Convex Anal., 17(2016), no. 6, 1109-1116.
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[17] M. Păcurar, I.A. Rus, Fixed point theory of cyclic operators, J. Fixed Point Theory Appl., 24,

79(2022).
[18] G. Petruşel, Cyclic representations and periodic points, Stud. Univ. Babeş-Bolyai Math.,
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