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1. Introduction

In this paper we begin in Section 2 by presenting a variety of new collectively fixed
point results for multivalued compact maps. The class of maps considered include the
admissible maps of Gorniewicz and multivalued maps with continuous selections. The
remainder of section 2 considers collectively coincidence multivalued maps in a variety
of settings; we refer the reader to [1, 3, 5, 6, 9] for some results in the literature. Our
argument is based on either Brouwer’s fixed point theorem or a fixed point result in
the literature (see [2, 7, 8]).

Now we describe the maps considered in this paper. Let H be the C̆ech homology
functor with compact carriers and coefficients in the field of rational numbers K from
the category of Hausdorff topological spaces and continuous maps to the category of
graded vector spaces and linear maps of degree zero. Thus H(X) = {Hq(X)} (here
X is a Hausdorff topological space) is a graded vector space, Hq(X) being the q–

dimensional C̆ech homology group with compact carriers of X. For a continuous
map f : X → X, H(f) is the induced linear map f? = {f? q} where f? q : Hq(X)→
Hq(X). A space X is acyclic if X is nonempty, Hq(X) = 0 for every q ≥ 1, and
H0(X) ≈ K.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map
p : Γ→ X is called a Vietoris map (written p : Γ⇒ X) if the following two conditions
are satisfied:
(i). for each x ∈ X, the set p−1(x) is acyclic
(ii). p is a perfect map i.e. p is closed and for every x ∈ X the set p−1(x) is
nonempty and compact.
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Let φ : X → Y be a multivalued map (note for each x ∈ X we assume φ(x) is a
nonempty subset of Y ). A pair (p, q) of single valued continuous maps of the form

X
p← Γ

q→ Y is called a selected pair of φ (written (p, q) ⊂ φ) if the following two
conditions hold:
(i). p is a Vietoris map
and
(ii). q (p−1(x)) ⊂ φ(x) for any x ∈ X.

Now we define the admissible maps of Gorniewicz [4]. A upper semicontinuous map
φ : X → Y with compact values is said to be admissible (and we write φ ∈ Ad(X,Y ))
provided there exists a selected pair (p, q) of φ. An example of an admissible map is
a Kakutani map. A upper semicontinuous map φ : X → K(Y ) is said to Kakutani
(and we write φ ∈ Kak(X,Y )); here K(Y ) denotes the family of nonempty, convex,
compact subsets of Y .

The following class of maps will play a major role in this paper. Let Z and W be
subsets of Hausdorff topological vector spaces Y1 and Y2 and F a multifunction. We
say F ∈ HLPY (Z,W ) [5, 6] if W is convex and there exists a map S : Z → W with
co (S(x)) ⊆ F (x) for x ∈ Z, S(x) 6= ∅ for each x ∈ Z and Z =

⋃
{ int S−1(w) : w ∈

W}; here S−1(w) = {z ∈ Z : w ∈ S(z)}.
Now we consider a general class of maps, namely the PK maps of Park. Let X

and Y be Hausdorff topological spaces. Given a class X of maps, X(X,Y ) denotes
the set of maps F : X → 2Y (nonempty subsets of Y ) belonging to X, and Xc the
set of finite compositions of maps in X. We let

F(X) = {Z : FixF 6= ∅ for all F ∈ X(Z,Z)}

where FixF denotes the set of fixed points of F .
The class U of maps is defined by the following properties:

(i). U contains the class C of single valued continuous functions;

(ii). each F ∈ Uc is upper semicontinuous and compact valued; and

(iii). Bn ∈ F(Uc) for all n ∈ {1, 2, ....}; here Bn = {x ∈ Rn : ‖x‖ ≤ 1}.

We say F ∈ PK(X,Y ) if for any compact subset K of X there is a G ∈ Uc(K,Y )
with G(x) ⊆ F (x) for each x ∈ K. Recall PK is closed under compositions.

For a subset K of a topological space X, we denote by CovX (K) the directed set
of all coverings of K by open sets of X (usually we write Cov (K) = CovX (K)).
Given two maps F, G : X → 2Y and α ∈ Cov (Y ), F and G are said to be α–close if
for any x ∈ X there exists Ux ∈ α, y ∈ F (x) ∩ Ux and w ∈ G(x) ∩ Ux.

Let Q be a class of topological spaces. A space Y is an extension space for Q
(written Y ∈ ES(Q)) if for any pair (X,K) in Q with K ⊆ X closed, any continuous
function f0 : K → Y extends to a continuous function f : X → Y . A space Y is an
approximate extension space for Q (written Y ∈ AES(Q)) if for any α ∈ Cov (Y ) and
any pair (X,K) in Q with K ⊆ X closed, and any continuous function f0 : K → Y
there exists a continuous function f : X → Y such that f |K is α–close to f0.
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Let V be a subset of a Hausdorff topological vector space E. Then we say V
is Schauder admissible if for every compact subset K of V and every covering α ∈
CovV (K) there exists a continuous function πα : K → V such that
(i). πα and i : K → V are α–close;
(ii). πα(K) is contained in a subset C ⊆ V with C ∈ AES(compact).

X is said to be q– Schauder admissible if any nonempty compact convex subset Ω
of X is Schauder admissible.

Theorem 1.1. [2, 7] Let X be a Schauder admissible subset of a Hausdorff topological
vector space and Ψ ∈ PK(X,X) a compact upper semicontinuous map with closed
values. Then there exists a x ∈ X with x ∈ Ψ(x).

Remark 1.2. Other variations of Theorem 1.1 can be found in [8].

2. Fixed and coincidence point results

In this section we begin with some collectively fixed point results. Our theory is
based on either the Brouwer fixed point theorem or on Theorem 1.1.

Theorem 2.1. Let {Xi}Ni=1 be a family of convex sets each in a Hausdorff topological

vector space Ei. For each i ∈ {1, ..., N} suppose Fi : X ≡
∏N
i=1Xi → Xi and

Fi ∈ HLPY (X,Xi). In addition assume for each i ∈ {1, ..., N} there exists a convex
compact set Ki with Fi(X) ⊆ Ki ⊆ Xi. Then there exists a x ∈ X with xi ∈ Fi(x)
for i ∈ {1, ..., N} (here xi is the projection of x on Xi).
Proof. For i ∈ {1, ..., N} let Si : X → Xi with Si(x) 6= ∅ for x ∈ X, co (Si(x)) ⊆ Fi(x)

for x ∈ X and X =
⋃
{ int S−1

i (w) : w ∈ Xi}. Let K =
∏N
i=1Ki and note K is

compact. Let F ?i denote the restriction of Fi to K and we claim F ?i ∈ HLPY (K,Ki)
for each i ∈ {1, ..., N}. To see this let S?i denote the restriction of Si to K. Note since
K ⊆ X we have S?i (x) 6= ∅ and co (S?i (x)) ⊆ F ?i (x) for x ∈ K. We now show that
K =

⋃
{ intK S−1

i (w) : w ∈ Ki}. To see this first notice that

K = K ∩X = K ∩
(⋃
{ int S−1

i (w) : w ∈ Xi}
)

=
⋃
{K ∩ int S−1

i (w) : w ∈ Xi},

so

K ⊆
⋃
{ intK S−1

i (w) : w ∈ Xi}

since for each w ∈ Xi we have that K ∩ int S−1
i (w) is open in K. On the other hand

clearly
⋃
{ intK S−1

i (w) : w ∈ Xi} ⊆ K so as a result

K =
⋃
{ intK S−1

i (w) : w ∈ Xi}.

Now for any y ∈ K there exists a w ∈ Xi with y ∈ intK S
−1
i (w) ⊆ S−1

i (w) so
w ∈ Si(y) ⊆ Ki since co (S?i (y)) ⊆ F ?i (y) and Fi(X) ⊆ Ki i.e. for any y ∈ K there
exists a w ∈ Ki with y ∈ intK S−1

i (w). Thus

K =
⋃
{ intK S−1

i (w) : w ∈ Ki},
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so F ?i ∈ HLPY (K,Ki). Now for each i ∈ {1, ..., N} from [5, 6] there exists a con-
tinuous (single valued) selection fi : K → Ki of F ?i with fi(x) ∈ co (S?i (x)) ⊆ F ?i (x)
for x ∈ K and also there exists a finite set Ci of Ki with fi(K) ⊆ co (Ci) ≡ Di; note
co (Ci) ⊆ co (Ki) = Ki i.e. Di ⊆ Ki. Let

D =

N∏
i=1

Di and f(x) =

N∏
i=1

fi(x), x ∈ K.

Note f : K → K is continuous. Also f(K) ⊆ D since fi(K) ⊆ Di for each i ∈
{1, ..., N} and now since D =

∏N
i=1 Di ⊆

∏N
i=1 Ki = K we have f : D → D with

f(D) lying in a finite dimensional subspace of E =
∏N
i=1 Ei. Note Di = co (Ci) ⊆ Ki

is compact and D is compact and convex. Brouwer’s fixed point theorem guarantees
that there exists a x ∈ D (⊆ K) with x = f(x). Thus xj = fj(x) ∈ co (S?j (x)) ⊆ F ?j (x)
for each j ∈ {1, ..., N} i.e. xj ∈ F ?j (x) for each j ∈ {1, ..., N}. �

Now we consider a more general setting.

Theorem 2.2. Let I be an index set and {Xi}i∈I be a family of convex sets each in a
Hausdorff topological vector space Ei. For each i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi

and Fi ∈ HLPY (X,Xi). In addition assume for each i ∈ I there exists a convex
compact set Ki with Fi(X) ⊆ Ki ⊆ Xi. Also suppose X is a q–Schauder admissible
subset of the Hausdorff topological vector space E =

∏
i∈I Ei. Then there exists a

x ∈ X with xi ∈ Fi(x) for i ∈ I.
Proof. For i ∈ I let Si be as in Theorem 2.1, K =

∏
i∈I Ki, F

?
i the restriction of

Fi to K and as in Theorem 2.1 we have F ?i ∈ HLPY (K,Ki) for i ∈ I, so for each
i ∈ I there exists a continuous (single valued) selection fi : K → Ki of F ?i with
fi(x) ∈ co (S?i (x)) ⊆ F ?i (x) for x ∈ K and also there exists a finite set Ci of Ki with
fi(K) ⊆ co (Ci) ≡ Di; note Di ⊆ Ki. Let

D =
∏
i∈I

Di and f(x) =
∏
i∈I

fi(x), x ∈ K,

and as in Theorem 2.1 note f : D → D is continuous. Now D is Schauder admissible
(since X is q–Schauder admissible) so Theorem 1.1 guarantees a x ∈ D (⊆ K) with
x = f(x) and as in Theorem 2.1 we immediately have xj ∈ F ?j (x) for each j ∈ I. �

Remark 2.3. In Theorem 2.2 we could replace ”for each i ∈ I suppose there exists
a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi” with ”for each i ∈ I suppose
there exists a compact set Ki with Fi(X) ⊆ Ki ⊆ Xi” provided X is a q–Schauder
admissible subset of E is replaced by X is a p–Schauder admissible subset of E (X
is a p–Schauder admissible subset of E if for any nonempty compact subset Ω0 of X
the set co (Ω0) is Schauder admissible). To see this let K =

∏
i∈I Ki and note [3]

that co (K) is paracompact. Let F ?i (respectively, S?i ) denote the restriction of Fi
(respectively, Si) to Ω ≡ co (K). We claim F ?i ∈ HLPY (Ω, Xi) for i ∈ I. Now since
Ω ⊆ X we have S?i (x) 6= ∅ and co (S?i (x)) ⊆ F ?i (x) for x ∈ Ω. We will now show that
Ω =

⋃
{ intΩ S−1

i (w) : w ∈ Xi}. To see this first notice that

Ω = Ω ∩X = Ω ∩
(⋃
{ int S−1

i (w) : w ∈ Xi}
)

=
⋃
{Ω ∩ int S−1

i (w) : w ∈ Xi},
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so Ω ⊆
⋃
{ intΩ S−1

i (w) : w ∈ Xi} since for each w ∈ Xi we have that Ω∩ int S−1
i (w)

is open in Ω. On the other hand clearly
⋃
{ intΩ S−1

i (w) : w ∈ Xi} ⊆ Ω so

Ω =
⋃
{ intΩ S−1

i (w) : w ∈ Xi}. [In fact, although not used here, we have
F ?i ∈ HLPY (Ω,Ωi), here Ωi is the projection of Ω in Ei, since for any y ∈ Ω
there exists a w ∈ Xi with y ∈ intΩ S

−1
i (w) ⊆ S−1

i (w) so w ∈ Si(y) ⊆ Ki ⊆ Ωi
i.e. for any y ∈ Ω there exists a w ∈ Ωi with y ∈ intΩ S

−1
i (w), so as a result

Ω =
⋃
{ intΩ S−1

i (w) : w ∈ Ωi} i.e. F ?i ∈ HLPY (Ω,Ωi)]. Now for each i ∈ I
from [6] (recall Ω is paracompact) there exists a continuous (single valued) selection
fi : Ω→ Xi of F ?i with fi(x) ∈ co (S?i (x)) ⊆ F ?i (x) for x ∈ Ω. Let f(x) =

∏
i∈I fi(x)

for x ∈ Ω and note f : Ω→ Ω is continuous (note for each i ∈ I we have fi(Ω) ⊆ Ki

so f(Ω) ⊆ K ⊆ co (K) = Ω). Now since Ω is a Schauder admissible subset of E
then Theorem 1.1 guarantees a x ∈ Ω with x = f(x), so for each i ∈ I we have
xi = fi(x) ∈ F ?i (x).

Now we consider another class of maps, namely the maps of Park.

Theorem 2.4. Let I be an index set and {Xi}i∈I be a family of convex sets each in a
Hausdorff topological vector space Ei. For each i ∈ I suppose Fi : X ≡

∏
i∈I Xi → Xi

and there exists a convex compact set Ki with Fi(X) ⊆ Ki ⊆ Xi. Let K =
∏
i∈I Ki

and F (x) =
∏
i∈I Fi(x) for x ∈ X and assume F ∈ PK(X,K). Also suppose X is a

q–Schauder admissible subset of the Hausdorff topological vector space E =
∏
i∈I Ei.

Then there exists a x ∈ X with xi ∈ Fi(x) for i ∈ I.
Proof. Let F ? denote the restriction of F to K and since the composition of PK
maps is a PK map then F ? ∈ PK(K,K). Now Theorem 1.1 guarantees a x ∈ K
with x ∈ F ?(x) and our conclusion follows. �

Next we present some collectively coincidence type results.

Theorem 2.5. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff

topological vector space Ei. For each i ∈ {1, ..., N0} suppose Fi : X ≡
∏N
i=1Xi → Yi

and Fi ∈ HLPY (X,Yi) and for each j ∈ {1, ..., N} suppose Gj : Y ≡
∏N0

i=1 Yi → Xj

and Gj ∈ HLPY (Y,Xj). In addition assume for each i ∈ {1, ..., N0} there exists a
compact set Ki with Fi(X) ⊆ Ki ⊆ Yi. Then there exists a x ∈ X and a y ∈ Y with
xi ∈ Gi(y) for i ∈ {1, ..., N} and yj ∈ Fj(x) for j ∈ {1, ..., N0}.
Proof. For i ∈ {1, ..., N0} let Ti : X → Yi with Ti(x) 6= ∅ for x ∈ X, co (Ti(x)) ⊆ Fi(x)
for x ∈ X and Y =

⋃
{ int T−1

i (w) : w ∈ Yi}. For i ∈ {1, ..., N} let Si : Y → Xi with

Si(y) 6= ∅ for y ∈ Y , co (Si(y)) ⊆ Gi(y) for y ∈ Y and X =
⋃
{ int S−1

i (w) : w ∈ Xi}.
Let K =

∏N0

i=1Ki (⊆ Y ) and note K is compact. Let G?i (respectively, S?i ) denote
the restriction of Gi (respectively, Si) to K. We claim G?i ∈ HLPY (K,Xi). We need
to show K =

⋃
{ intK S−1

i (w) : w ∈ Xi}. Note

K = K ∩ Y = K ∩
(⋃
{ int S−1

i (w) : w ∈ Xi}
)

=
⋃
{K ∩ int S−1

i (w) : w ∈ Xi},

soK ⊆
⋃
{ intK S−1

i (w) : w ∈ Xi} since for each w ∈ Xi we have thatK∩ int S−1
i (w)

is open in K and on the other hand clearly
⋃
{ intK S−1

i (w) : w ∈ Xi} ⊆ K so as

a result K =
⋃
{ intK S−1

i (w) : w ∈ Xi}. Thus G?i ∈ HLPY (K,Xi). Now for each
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i ∈ {1, ..., N} from [ 6] there exists a continuous (single valued) selection gi : K → Xi

of G?i with gi(y) ∈ co (S?i (y)) ⊆ G?i (y) for y ∈ K and also there exists a finite set Ri of

Xi with gi(K) ⊆ co (Ri) ≡ Qi. Let Q =
∏N
i=1 Qi (⊆ X) and note Q is compact. Now

let F ?i (respectively, T ?i ) denote the restriction of Fi (respectively, Ti) to Q. Similar
reasoning as above guarantees that F ?i ∈ HLPY (Q,Yi) Now for each i ∈ {1, ..., N0}
from [6] there exists a continuous (single valued) selection fi : Q→ Yi of F ?i and note
fi(Q) ⊆ F ?i (Q) ⊆ Fi(X) ⊆ Ki. Let

f(x) =

N0∏
i=1

fi(x) for x ∈ Q and g(y) =

N∏
i=1

gi(y) for y ∈ K

and note f : Q → K and g : K → Q are continuous since fi(Q) ⊆ Ki for i ∈
{1, ...., N0} and gi(K) ⊆ Qi for i ∈ {1, ...., N}. Consider the continuous map h : Q→
Q given by h(x) = g(f(x)) for x ∈ Q and since Q is a compact convex subset in a finite

dimensional subspace of E =
∏N
i=1 Ei the Brouwer fixed point theorem guarantees

that there exists a x ∈ Q with x = h(x) = g(f(x)). Let y = f(x) so x = g(y). Then
since x ∈ Q and y = f(x) ∈ f(Q) ⊆ K we have yj = fj(x) ∈ F ?j (x) = Fj(x) for
j ∈ {1, ..., N0} and xi = gi(y) ∈ G?i (y) = Gi(y) for i ∈ {1, ..., N}. �

Theorem 2.6. Let I and J be index sets and let {Xi}i∈I , {Yi}i∈J be families of
convex sets each in a Hausdorff topological vector space Ei. For each i ∈ J suppose
Fi : X ≡

∏
i∈I Xi → Yi and Fi ∈ HLPY (X,Yi) and for each j ∈ I suppose Gj :

Y ≡
∏
i∈J Yi → Xj and Gj ∈ HLPY (Y,Xj). In addition assume for each i ∈ J

there exists a compact set Ki with Fi(X) ⊆ Ki ⊆ Yi. Also suppose X is a q–Schauder
admissible subset of the Hausdorff topological vector space E =

∏
i∈I Ei. Then there

exists a x ∈ X and a y ∈ Y with xi ∈ Gi(y) for i ∈ I and yj ∈ Fj(x) for j ∈ J .
Proof. For i ∈ J (respectively, i ∈ I) let Ti (respectively, Si) be as in Theorem
2.5, K =

∏
i∈J Ki (⊆ Y ) and G?i the restriction of Gi to K. The same reasoning

as in Theorem 2.5 guarantees that G?i ∈ HLPY (K,Xi) for i ∈ I so there exists a
continuous (single valued) selection gi : K → Xi of G?i and also a finite set Ri of Xi

with gi(K) ⊆ co (Ri) ≡ Qi Let Q =
∏
i∈I Qi (⊆ X) and let F ?i denote the restriction

of Fi to Q. The same reasoning as in Theorem 2.5 guarantees that F ?i ∈ HLPY (Q,Yi)
for i ∈ J so there exists a continuous (single valued) selection fi : Q → Yi of F ?i
and note fi(Q) ⊆ F ?i (Q) ⊆ Fi(X) ⊆ Ki. Let f(x) =

∏
i∈J fi(x) for x ∈ Q and

g(y) =
∏
i∈I gi(y) for y ∈ K and note f(Q) ⊆ K and g(K) ⊆ Q. Consider the

continuous map h : Q → Q given by h(x) = g(f(x)) for x ∈ Q. Now Theorem 1.1
guarantees that there exists a x ∈ Q with x = h(x) = g(f(x)) and as in Theorem 2.5
we immediately have the result. �

Other classes of maps could also be considered. We illustrate this in our next
results.

Theorem 2.7. Let {Xi}Ni=1, {Yi}N0
i=1 be families of convex sets each in a Hausdorff

topological vector space Ei. For each i ∈ {1, ..., N0} suppose Fi : X ≡
∏N
i=1Xi →

Yi and Fi ∈ Ad(X,Yi) and in addition assume there exists a compact set Ki with

Fi(X) ⊆ Ki ⊆ Yi. For each j ∈ {1, ..., N} suppose Gj : Y ≡
∏N0

i=1 Yi → Xj and
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Gj ∈ HLPY (Y,Xj). Then there exists a x ∈ X and a y ∈ Y with xi ∈ Gi(y) for
i ∈ {1, ..., N} and yj ∈ Fj(x) for j ∈ {1, ..., N0}.
Proof. Let Si, K, G

?
i and S?i be as in Theorem 2.5 and the same reasoning as in

Theorem 2.5 guarantees that G?i ∈ DKT (K,Xi) for i ∈ {1, ..., N} and from [6]
there exists a continuous (single valued) selection gi : K → Xi of G?i and also a

finite set Ri of Xi with gi(K) ⊆ co (Ri) ≡ Qi Let Q =
∏N
i=1 Qi (⊆ X). Let F ?i

denote the restriction of Fi to Q and let F ?(x) =
∏N0

i=1 F
?
i (x) for x ∈ Q. Since a

finite product of admissible maps of Gorniewicz is an admissible map of Gorniewicz
[4] then F ? ∈ Ad(Q,Y ). Note F ?i (Q) ⊆ Fi(X) ⊆ Ki for each i ∈ {1, ..., N0} so

F ?(Q) ⊆ K. Let g(y) =
∏N
i=1 gi(y) for y ∈ K and note since gi(K) ⊆ Qi for

i ∈ {1, ..., N} that g(K) ⊆ Q. As a result g F ? ∈ Ad(Q,Q) and note Q is a compact

convex subset in a finite dimensional subspace of E =
∏N
i=1 Ei so Theorem 1.1

guarantees that there exists a x ∈ Q with x ∈ g (F ?(x)). Now let y ∈ F ?(x) with
x = g(y). Note y ∈ F ?(Q) ⊆ K and yj ∈ F ?j (x) = Fj(x) for j ∈ {1, ..., N0} and
xi = gi(y) ∈ G?i (y) = Gi(y) for i ∈ {1, ..., N}. �

Theorem 2.8. Let I and J be index sets and let {Xi}i∈I , {Yi}i∈J be families of
convex sets each in a Hausdorff topological vector space Ei. For each i ∈ J suppose
Fi : X ≡

∏
i∈I Xi → Yi and there exists a compact set Ki with Fi(X) ⊆ Ki ⊆ Yi.

For each j ∈ I suppose Gj : Y ≡
∏
i∈J Yi → Xj and Gj ∈ HLPY (Y,Xj). Let

F (x) =
∏
i∈J Fi(x) for x ∈ X and suppose F ∈ PK(X,Y ). Also suppose X is a

q–Schauder admissible subset of the Hausdorff topological vector space E =
∏
i∈I Ei.

Then there exists a x ∈ X and a y ∈ Y with xi ∈ Gi(y) for i ∈ I and yj ∈ Fj(x) for
j ∈ J .
Proof. Let Si, K, G

?
i and S?i be as in Theorem 2.6 and the reasoning in Theorem 2.5

guarantees that G?i ∈ HLPY (K,Xi) for i ∈ I and there exists a continuous (single
valued) selection gi : K → Xi of G?i and also a finite set Ri of Xi with gi(K) ⊆
co (Ri) ≡ Qi. Let Q =

∏
i∈I Qi (⊆ X) and let F ? denote the restriction of F to Q.

Now since the composition of PK maps is a PK map then F ? ∈ PK(Q,Y ). Also
note since Fi(X) ⊆ Ki for i ∈ J that F ?(Q) ⊆ F (X) ⊆ K. Let g(y) =

∏
i∈I gi(y) for

y ∈ K and note since gi(K) ⊆ Qi for i ∈ I that g(K) ⊆ Q. Thus g F ? ∈ PK(Q,Q)
(note F (X) ⊆ K and g(K) ⊆ Q). Now Theorem 1.1 guarantees that there exists a
x ∈ Q with x ∈ g (F ?(x)) = g(F (x)) and the conclusion follows as before. �

Remark 2.9. Note in the statement of Theorem 2.7 and Theorem 2.8 we do not
need to have the sets Yi convex.

We now establish a new minimax inequality to illustrate our theory. To show the
idea we will apply Theorem 2.1 (of course the other theorems could also be used by
appropriately adjusting the assumptions) and N = 1 for simplicity in writing.

Let X be a convex set in a Hausdorff topological vector space E and let f, g :
X × X → R with g(x, y) ≤ f(x, y) for all (x, y) ∈ X × X. We will now consider
supy∈X infz∈X f(y, z). If supy∈X infz∈X f(y, z) = ∞ then the minimax inequality
(2.1) below is trivially satisfied. As a result we will assume supy∈X infz∈X f(y, z) <
∞. Let λε = supy∈X infz∈X f(y, z) + ε for ε > 0 small. For each fixed ε > 0 small
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let Fε(x) = {z ∈ X : g(x, z) < λε} for x ∈ X, Gε(y) = {x ∈ X : f(x, y) < λε}
for y ∈ X, and Tε(x) = {y ∈ X : x ∈ intGε(y)} for x ∈ X. For each fixed ε > 0
small, assume (a). Fε(x) is convex valued for each x ∈ X, (b). if x ∈ X with
f(x, z) < λε for some z ∈ X, then there exists a neighborhood Ux of x and a z? ∈ X
with f(w, z?) < λε for all w ∈ Ux, and (c). there exists a convex compact set Kε with
Fε(X) ⊆ Kε ⊆ X.

Then
inf
x∈X

g(x, x) ≤ sup
y∈X

inf
z∈X

f(y, z). (2.1)

Remark 2.10. For example, if for each x ∈ X, y → g(x, y) is quasi–convex on X,
then Fε(x) is convex valued for each x ∈ X.

To prove (2.1) we will apply Theorem 2.1. Let ε > 0 be small and fixed. First we
show co (Tε(x)) ⊆ Fε(x) for x ∈ X. To see this note if y ∈ Tε(x) then x ∈ intGε(y)
so f(x, y) < λε and as a result g(x, y) < λε (i.e. y ∈ Fε(x)) so Tε(x) ⊆ Fε(x)
for x ∈ X. Consequently co (Tε(x)) ⊆ co (Fε(x)) = Fε(x) for x ∈ X since Fε is
convex valued. We will now show for each x ∈ X that Tε(x) 6= ∅. Let x ∈ X.
Since λε > supy∈X infz∈X f(y, z) there exists a z ∈ X with f(x, z) < λε. Now
(b) above guarantees a neighborhood Ux of x and a z? ∈ X with f(w, z?) < λε for
all w ∈ Ux. Thus x ∈ intGε(z

?) so Tε(x) 6= ∅. As a result for a x ∈ X there
exists a w ∈ X with w ∈ Tε(x) i.e. x ∈ T−1

ε (w) and since T−1
ε (w) = intGε(w)

then x ∈ T−1
ε (w) = int T−1

ε (w). Consequently X =
⋃
{ int T−1

ε (w) : w ∈ X}.
Now Theorem 2.1 guarantees a xε ∈ X with xε ∈ Fε(xε) i.e. g(xε, xε) < λε so
g(xε, xε) < supy∈X infz∈X f(y, z) + ε. We can do this argument for each ε > 0 small.
As a result (2.1) holds.
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