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1. Introduction and preliminaries

Let E∗ denote the dual space of a Banach space E, and let 〈·, ·〉 be the duality
pairing between space E and its dual. One always uses Jq (q > 1) to denote the

generalized duality mapping onto 2E
∗
, which is defined by, ∀x ∈ E,

Jq(x) := {y ∈ E∗ : 〈x, y〉 = ‖x‖q, ‖y‖ = ‖x‖q−1}.

If q = 2, then one calls J2 the normalized duality mapping, and it is denoted by
J in this paper. One knows that Jq(x) is always nonempty, which is due to the
Hahn-Banach Theorem and, for all x 6= 0, Jq(x) = ‖x‖q−2J(x). The single-valued
generalized duality mapping will be denoted by jq and the single-valued normalized
duality mapping is denoted by j next.
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Let ε be a real number in [0, 2]. The convexity modulus Banach space E is the
function δE(ε) : (0, 2]→ [0, 1], defined by

δE(ε) = inf

{
2− ‖x+ y‖

2
: ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
,

One says that space E is p-uniformly convex with p > 1 iff there exists a real number
associated with p, cp > 0, such that, for any ε ∈ (0, 2], δE(ε) ≥ cpεp.

Let N be a mapping on E. The fixed point set of N is denoted by Fix(N) in this
paper. One recalls that N is said to be contractive iff, ∀x, y ∈ E, ‖Nx − Ny‖ ≤
κ‖x − y‖, where κ is a real number in (0, 1). One further recalls that N is said
to be nonexpansive iff, ∀x, y ∈ E, ‖Nx − Ny‖ ≤ ‖x − y‖. There are numerous
applications of nonexpansive mappings in various research fields; see, e.g., [4, 5, 16,
20, 13]. Normal Mann iteration is a powerful scheme to investigate fixed points of
nonexpansive mappings and their extensions. But, normal Mann iteration is weakly
convergent even in Hilbert spaces; see [2]. Another popular scheme is the viscosity
scheme, which is based on the Halpern iterative scheme. It generates a sequence {xn}
in the following manner:

x1 ∈ E, xn+1 = αnf(xn) + (1− αn)Nxn, ∀n ≥ 1,

where f is a contractive mapping, {αn} is a real sequence in (0, 1), and x1 is an initial
point chosen arbitrarily.

Let N1, N2, · · · , Ni, · · · be nonexpansive mappings on space E. Let Id denote the
identity mapping on E, and let {ζn} be a sequence in (0, ζ], where ζ is some real
number in (0, 1). Consider

Vn,n = (1− ζn)Id+ ζnNnVn,n+1,

Vn,n−1 = (1− γn−1)Id+ γn−1Nn−1Vn,n,

· · ·
Vn,k = (1− ζk)Id+ ζkNkVn,k+1,

· · ·
Vn,2 = (1− ζ2)Id+ ζ2N2Vn,3,

Wn = Vn,1 = (1− ζ1)Id+ ζ1N1Vn,2,

(1.1)

where Vn,n+1 = Id.
In strictly convex Banach spaces, from [19], for every x ∈ C, the limit limn→∞ Vn,kx

exists in strictly convex Banach spaces. Define a mapping W on E by

Wx = lim
n→∞

Vn,1x = lim
n→∞

Wnx, ∀x ∈ E.

W is called the W -mapping defined by N1, N2, · · · . From [19], one has

Fix(W ) = ∩∞i=1Fix(Ni).

Recall that the smoothness modulus of E, ρE : [0,∞)→ [0,∞), is defined by

ρE(t) = sup

{
‖x+ y‖ − ‖x− y‖ − 2

2
: x ∈ BE , ‖y‖ ≤ t

}
.
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E is said to be uniformly smooth iff ρE(t)
t → 0 as t → 0. Let q > 1. E is said to

be q-uniformly smooth iff there exists a fixed constant c > 0 such that ρE(t)
tq ≤ c. If

E is q-uniformly smooth, then q ≤ 2 and E is uniformly smooth; see [21] and the
references therein.

It is known that E is p-uniformly convex if and only if E∗ is q-uniformly smooth,
where qp = q + p. Typical examples of both uniformly convex and uniformly smooth
Banach spaces are Lp, where p > 1. Let ProjED : E → D, where E be a subset of space
E, be a mapping. It is said to be [3, 10] (1) sunny iff, for each y ∈ C and ξ ∈ (0, 1),
ProjED

(
(1 − ξ)ProjEDy + ξy

)
= ProjEDy; (2) retraction iff (ProjED)2 = ProjED; (3)

sunny nonexpansive retractction iff ProjED is a sunny, nonexpansive, and retraction
operator. D is said to be a nonexpansive retract of E iff there exists a nonexpansive
retraction from E onto D. In a q-smooth Banach space E, ProjEE is sunny and
nonexpansive iff 〈x − ProjEEx, Jq(y − ProjEEx)〉 ≤ 0, ∀x ∈ E, y ∈ E. In the setting
of Hilbert spaces, the sunny nonexpansive retraction coincides with the nearest point
projection. Let x ∈ E and x0 ∈ D. x0 = ProjEDx iff 〈x − x0, Jq(y − x0)〉 ≤ 0 for all
y ∈ D, where ProjEC is a sunny nonexpansive retraction from E onto D in a q-smooth
Banach space E.

Recall that an operator P : E → 2E with the domain, denoted by

Dom(P ) = {z ∈ E : Pz 6= ∅}

and the range, denoted by Ran(P ) = ∪{Pz : z ∈ Dom(P )}, is said to be accretive
iff, for r > 0,

‖y − x‖ ≤ ‖r(ȳ − x̄) + (y − x)‖, ∀x̄ ∈ Px, ȳ ∈ Py,

for all x, y ∈ Dom(P ). There is a celebrated equivalent definition by Kato [11] as
follows

〈x̄− ȳ, jq(x− y)〉 ≥ 0, ∀x̄ ∈ Px, ȳ ∈ Py.
Furthermore, nn accretive operator P is said to be m-accretive iff Ran(Id + rP )
is precisely E for any positive real number r. It is known that an operator P is m-
accretive iff A is maximally monotone in the setting of Hilbert spaces. For m-accretive
operator P , one defines a single-valued operator ResPr : Ran(Id+ rP )→ Dom(P ) by
ResPr = (Id + rP )−1, which is nonexpansive. Indeed, it is also firmly nonexpansive.
And it is called the resolvent operator of P .

Let Q be a single-valued operator on E. Recall that Q is said to be η-inverse
strongly accretive iff there exist some jq(x− y) ∈ Jq(x− y) and some ζ > 0 such that

〈Qx−Qy, jq(x− y)〉 ≥ η‖Qx−Qy‖q, ∀x, y ∈ C.

From the definition, one sees that each η-inverse strongly accretive operator is accre-
tive.

The forward-backward splitting method, introduced by Peaceman and Rachford
[15] and Douglas and Rachford [9], is powerful to investigate accretive operators.
Recently, many new splitting schemes were introduced in Hilbert spaces, however,
there few associated results in Banach spaces; see, e.g., [7, 6, 8, 23]. In this paper,
we study a viscosity splitting scheme for common fixed points of an infinite family of
nonexpansive mappings and zero points of P+Q, the sum of anm-accretive operator P
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and an inverse-strong accretive operator Q. We present a strong convergence theorems
in the framework of uniformly convex and q-uniformly smooth Banach spaces.

The following lemmas are essential to our main convergence theorem.

Lemma 1.1. [21] The following inequality holds true in a real q-uniformly smooth
Banach space ‖x + y‖q ≤ q〈y, Jq(x)〉 + ‖x‖q + Kq‖y‖q, ∀x, y ∈ E, where Kq is the
smooth constant.

Lemma 1.2. [17] Let E be a strictly convex Banach space and q-uniformly smooth
Banach space. Let N be a nonexpansive mapping. Let P be an m-accretive operator,
and let Q be an η-inverse strongly accretive operator. Then

Fix((Id+ rP )−1(Id− rQ)) = (P +Q)−1(0).

Define a mapping M by Mx = ςNx+(1− ς)ResPr (x−rQx), where r is a real number

in (0, ( qηKq
)

1
q−1 ) and ς is a real number in (0, 1). Then M is nonexpansive and

Fix(M) = Fix(N) ∩ (P +Q)−1(0).

Lemma 1.3. [1] Let P be an m-accretive operator on a Banach space E. For λ > 0
and µ > 0,

ResPµ

(µ
λ
x+

(
1− µ

λ

)
ResPλ x

)
= ResPλ x, ∀x ∈ E.

Lemma 1.4. [24] Let {an}, {bn}, and {cn} be nonnegative real sequences with

an+1 ≤ (1− tn)an + bn + cn, ∀n ≥ 0,

where {tn} is a real sequence in (0, 1). If

∞∑
n=0

cn <∞,
∞∑
n=0

tn =∞, and lim sup
n→∞

bn
tn
≤ 0,

then lim
n→∞

an = 0.

Lemma 1.5. [17] Let p is real number greater than 1, and let r be some positive real
number. In a uniformly convex Banach space E, the following inequality hold true

‖ax+ by + cz‖p ≤ a‖x‖p + b‖y‖p + c‖z‖p − apb+ bpa

(a+ b)p
ϕ(‖x− y‖),

where x, y, z ∈ {x ∈ E : ‖x‖ ≤ r}, a, b, c ∈ [0, 1] such that a+ b+ c = 1, ϕ : [0,∞)→
[0,∞) with ϕ(0) = 0 is some strictly increasing continuous convex function.

Lemma 1.6. [12] Let H be a real Hilbert space, and let C be a closed, convex, and
nonempty subset of H. Let {Ti : C → C} be a family of infinitely nonexpansive
mappings with

∩∞i=1Fix(Ti) 6= ∅.

Then lim
n→∞

supx∈C ‖Wx−Wnx‖ = 0.
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Lemma 1.7. [22] Let E a uniformly convex Banach space. Let f be a contractive
mapping, and let M be a nonexpansive mapping with fixed points. Let ProjEFix(M) is

the unique sunny nonexpansive retraction from E onto Fix(M). For each τ in (0, 1),
let xτ be the unique solution to xτ = (1 − τ)Mxτ + τf(xτ ). Then {xτ} converges
strongly to a fixed point x̄ = ProjEFix(M)f(x̄) as τ → 0.

Lemma 1.8. [14] Let q > 1. Then the following inequality holds:

(ab)q ≤ (q − 1)b
q

q−1 + aq,

for arbitrary positive real numbers a and b.

2. Main results

Theorem 2.1. Let E be a real uniformly convex and q-uniformly smooth Banach
space with smooth constant Kq. Let f be a contractive mapping on E with the con-
tractive coefficient κ ∈ (0, 1). Let P be an m-accretive operator, and let Q be a
η-inverse strongly accretive operator. Let N1, N2, · · ·Ni, · · · be nonexpansive map-
pings with a common fixed point. Let {xn} be a sequence generated via the following
scheme {

x1 ∈ E, zn = (1− δn)Wnxn + δnxn,

xn+1 = αnf(zn) + βnzn + γnRes
P
rn(xn + yn − rnQxn), ∀n ≥ 1,

where {Wn} is defined by (1.1), {yn} is a sequence in E such that
∞∑
n=1

‖yn‖ <∞,

{rn} is a real sequence with

0 < lim inf
n→∞

rn ≤ lim sup
n→∞

rn <

(
qη

Kq

) 1
q−1

, and

∞∑
n=1

|rn − rn+1| <∞,

{αn}, {βn}, {γn}, and {δn} are four real sequences satisfying the condition:

lim
n→∞

αn = 0,

∞∑
n=1

αn =∞,
∞∑
n=1

|αn − αn+1| <∞,
∞∑
n=1

|βn − βn+1| <∞,

lim inf
n→∞

βnγn > 0,

∞∑
n=1

|γn − γn+1| <∞,
∞∑
n=1

|δn − δn+1| <∞,

and αn + βn + γn = 1. If

∩∞i=1Fix(Ni) ∩ (P +Q)−1(0)

is nonempty, then the sequence {xn} generated above converges strongly to

x̄ = ProjE∩∞i=1Fix(Ni)∩(P+Q)−1(0)f(x̄),

where x̄ = ProjE∩∞i=1Fix(Ni)∩(P+Q)−1(0) is the unique sunny nonexpansive retraction of

E onto ∩∞i=1Fix(Ni) ∩ (P +Q)−1(0).
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Proof. From the celebrated inequality, Lemma 1.1, we find that for all x, x′ ∈ E

‖(Id− rnQ)x′ − (Id− rnQ)x‖q

≤ rqnKq‖Qx′ −Qx‖q + ‖x′ − x‖q − rnq〈Qx−Qy, Jq(x′ − x)〉
≤ ‖x′ − x‖q + rn(rq−1n Kq − ηq)‖Qx′ −Qx‖q,∀x, x′ ∈ E.

In view of the restriction on {rn}, one sees that Id − rnQ is nonexpansive for all n,
that is,

‖(Id− rnQ)x′ − (Id− rnQ)x‖ ≤ ‖x− y‖,∀x′, x ∈ E.

Fix a point in ∩∞i=1Fix(Ni) ∩ (P +Q)−1(0), say x. One easily sees that

x = (I + rnP )−1(I − rnQ) = Wnx,

where n ≥ 1. Observe

‖x− zn‖ = ‖(1− δn)(x−Wnxn) + δn(x− xn)‖
≤ (1− δn)‖Wnx−Wnxn‖+ δn‖x− xn‖
≤ ‖x− xn‖,

that implies

‖x− xn+1‖
≤ αn‖x− f(zn)‖+ βn‖x− zn‖+ γn‖ResPrn(x− rnQx)−ResPrn(xn + yn − rnQxn)‖
≤ αn‖x− f(x)‖+ αn‖f(zn)− f(x)‖+ βn‖x− zn‖

+ γn‖ResPrn(x− rnQx)−ResPrn(xn + yn − rnQxn)‖
≤ αn‖x− f(x)‖+ (αnκ+ βn)‖x− zn‖+ γn(‖(x− rnQx)− (xn − rnQxn)‖+ ‖yn‖)
≤ αn‖x− f(x)‖+ (αnκ+ βn + γn)‖x− xn‖+ γn‖yn‖

≤ αn(1− κ)
‖x− f(x)‖

1− κ
+ (1− αn(1− κ))‖x− xn‖+ ‖yn‖.

Using the mathematical induction, one asserts that

‖x− xn+1‖ ≤ max

{
‖x− x1‖,

‖x− f(x)‖
1− κ

}
+

∞∑
n=1

‖yn‖ <∞.

This demonstrates that {xn} is a bounded vector sequence. Hence, {zn} is also a
bounded vector sequence, which is due to the expansivity of each Ni. Using Lemma
1.2, one has

Fix(Z) = ∩∞i=1Fix(Ni) ∩ (P +Q)−1(0),

where Z = (1 − ϑ)W + ϑResPr (I − rQ) with ϑ ∈ (0, 1) and r > 0 is nonexpansive.
Next, one demonstrates

lim sup
n→∞

〈f(x̄)− x̄, Jq(x̄− xn)〉 ≥ 0,
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where x̄ = ProjE∩∞i=1Fix(Ni)∩(P+Q)−1(0)f(x̄) with ProjE∩∞i=1Fix(Ni)∩(P+Q)−1(0) being the

sunny nonexpansive retractction. Setting λn = xn + yn − rnQxn, we find

‖λn − λn+1‖ ≤ ‖(xn + yn+1 − rn+1Qxn)− (xn+1 + yn+1 − rn+1Qxn+1)‖
+ ‖(xn + yn+1 − rn+1Qxn)− (xn + yn − rnQxn)‖
≤ ‖yn+1‖+ ‖yn‖+ |rn+1 − rn|‖Qxn‖+ ‖xn+1 − xn‖.

In view of the resolvent equality in Lemma 1.3, we have

‖ResPrn+1
λn+1 −ResPrnλn‖

= ‖ResPrnλn −Res
P
rn

(rn+1 − rn
rn+1

ResPrn+1
λn+1 +

rn
rn+1

λn+1

)
‖

≤ ‖λn −
(
(1− rn

rn+1
)ResPrn+1

λn+1 +
rn
rn+1

λn+1

)
‖

≤ ‖λn − λn+1‖+
|rn − rn+1|‖λn+1 −ResPrnλn+1‖

rn+1

≤ ‖yn+1‖+ ‖yn‖+ |rn+1 − rn|‖Qxn‖+ ‖xn+1 − xn‖

+
|rn − rn+1|‖λn+1 −ResPrnλn+1‖

rn+1
.

(2.1)

Observe that

zn+1 − zn = (1− δn+1)(Wn+1xn+1 −Wnxn) + (Wnxn − xn)(δn − δn+1)

+ δn+1(xn+1 − xn).
(2.2)

From the nonexpansivity of each Ni, one has

‖Wnxn −Wn+1xn‖ = ζ1‖N1Vn,2xn −N1Vn+1,2xn‖
≤ ζ1‖Vn,2xn − Vn+1,2xn‖
= ζ1‖Vn,2xn − Vn+1,2xn‖
= ζ1ζ2‖N2Vn,3xn −N2Vn+1,3xn‖
≤ ζ1ζ2‖Vn,3xn − Vn+1,3xn‖
≤ · · ·
≤ ζ1ζ2 · · · ζn‖Vn,n+1xn − Vn+1,n+1xn‖

≤M
n∏
i=1

ζi,

(2.3)

where M is an appropriate constant. Combining (2.2) and (2.3), one arrives at

‖zn+1 − zn‖ ≤ (1− δn+1)‖Wn+1xn+1 −Wnxn‖+ ‖Wnxn − xn‖|δn − δn+1|
+ δn+1‖xn+1 − xn‖
≤ ‖xn+1 − xn‖+ (1− δn+1)‖Wn+1xn −Wnxn‖

+ ‖Wnxn − xn‖|δn − δn+1|

≤ ‖xn+1 − xn‖+ (1− δn+1)M

n∏
i=1

ζi + ‖Wnxn − xn‖|δn − δn+1|.

(2.4)
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Observe that

‖xn+2 − xn+1‖
≤ ‖f(zn)‖|αn+1 − αn|+ αn+1‖f(zn+1)− f(zn)‖

+ ‖zn‖|βn+1 − βn|+ βn+1‖zn+1 − zn‖
+ ‖ResPrnλn‖|γn+1 − γn|+ γn+1‖ResPrnλn −Res

P
rn+1

λn+1‖
≤ ‖f(zn)‖|αn+1 − αn|+ (αn+1κ+ βn+1)‖zn+1 − zn‖+ ‖zn‖|βn+1 − βn|

+ ‖ResPrnλn‖|γn+1 − γn|+ γn+1‖ResPrnλn −Res
P
rn+1

λn+1‖.

(2.5)

Substituting (2.1) and (2.4) into (2.5) yields that

‖xn+2 − xn+1‖
≤ ‖f(zn)‖|αn+1 − αn|+ (αn+1κ+ βn+1)‖zn+1 − zn‖+ ‖zn‖|βn+1 − βn|

+ ‖ResPrnλn‖|γn+1 − γn|+ γn+1‖ResPrnλn −Res
P
rn+1

λn+1‖
≤ ‖f(zn)‖|αn+1 − αn|+ (1− αn+1(1− κ))‖xn+1 − xn‖

+M

n∏
i=1

ζi + ‖Wnxn − xn‖|δn − δn+1|+ ‖zn‖|βn+1 − βn|

+ ‖ResPrnλn‖|γn+1 − γn|+ ‖yn+1‖+ ‖yn‖+ |rn+1 − rn|‖Qxn‖

+
|rn − rn+1|‖λn+1 −ResPrnλn+1‖

rn+1

(2.6)

From
∞∑
n=1

|αn+1 − αn| <∞,
∞∑
n=1

|βn+1 − βn| <∞,
∞∑
n=1

|γn+1 − γn| <∞,

∞∑
n=1

|δn+1 − δn| <∞,
∞∑
n=1

|rn+1 − rn| <∞, lim
n→∞

αn = 0, and

∞∑
n=1

αn =∞,

one obtains from Lemma 1.4 that limn→∞ ‖xn+2 − xn+1‖ = 0. Observe that

‖x−ResPrnλn‖
2 ≤ ‖(x− rnQx)− (xn + yn − rnQxn)‖2

≤ ‖x− xn‖2 + ‖yn‖(‖y‖+ 2‖(x− rnQx)− (xn − rnQxn)‖).
(2.7)

Setting p = 2 in Lemma 1.5 yields

‖x− xn+1‖2 ≤ αn‖x− f(zn)‖2 + βn‖x− zn‖2 + γn‖x−ResPrnλn‖
2

− βnγnϕ(‖zn −ResPrnλn‖).
(2.8)

From (2.7) and (2.8), one has

‖x− xn+1‖2

≤ αn‖x− f(zn)‖2 + ‖x− xn‖+‖yn‖(‖y‖+ 2‖(x− rnQx)− (xn − rnQxn)‖)2
− βnγnϕ(‖zn −ResPrnλn‖),
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which in turn implies

βnγnϕ(‖zn −ResPrnλn‖) ≤ αn‖x− f(zn)‖2 + (‖x− xn‖+ ‖x− xn+1‖)‖xn − xn+1‖
+ ‖yn‖(‖y‖+ 2‖(x− rnQx)− (xn − rnQxn)‖),

In view of the condition lim infn→∞ βnγn > 0, one has

lim
n→∞

ϕ(‖zn −ResPrnλn‖) = 0.

Moreover, from the fact that ϕ is a strictly increasing convex continuous function
ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0, one also has

lim
n→∞

‖zn −ResPrnλn‖ = 0. (2.9)

Next, without loss of generality, one assumes that there exists a positive number ξ
such that rn ≥ ξ. From the accretiveness of P , one has

‖ResPξ (xn − ξQxn)−ResPrn(xn − rnQxn)‖q

≤
〈xn −ResPrn(xn − rnQxn), Jq

(
ResPξ (xn − ξQxn)−ResPrn(xn − rnQxn)

)
〉|ξ − rn|

rn

≤ ‖xn −ResPrn(xn − rnQxn)‖‖ResPrn(xn − rnQxn)−RPξ (xn − ξQxn)‖q−1,
which demonstrates that

‖ResPrn(xn − rnQxn)− xn‖ ≥ ‖ResPrn(xn − rnQxn)−ResPξ (xn − ξQxn)‖. (2.10)

From the fact that

‖ResPrnλn − xn‖ ≤ ‖xn+1 − xn‖+ αn‖f(zn)−ResPrnλn‖+ βn‖zn −ResPrnλn‖,
one obtains from (2.9) that

lim
n→∞

‖ResPrnλn − xn‖ = 0. (2.11)

Observe that

‖ResPrn(xn − rnQxn)− xn‖ ≤ ‖ResPrnλn − xn‖+ ‖ResPrnλn −Res
P
rn(xn − rnQxn)‖

≤ ‖ResPrnλn − xn‖+ ‖λn − (xn − rnQxn)‖
≤ ‖ResPrnλn − xn‖+ ‖yn‖.

This implies from (2.11) that

lim
n→∞

‖ResPrn(xn − rnQxn)− xn‖ = 0, (2.12)

On the other hand,

‖xn −ResPξ (xn − ξQxn)‖
≤ ‖ResPrn(xn − rnQxn)− xn‖+ ‖ResPξ (xn − ξQxn)−ResPrn(xn − rnQxn)‖,

which together with (2.10) and (2.12) yields

lim
n→∞

‖Resξ(xn − ξQxn)− xn‖ = 0. (2.13)

This also implies that zn−xn → 0 as n→∞. Hence, Wnxn−xn → 0 as n→∞. Note
that ‖Wxn−xn‖ ≤ ‖Wxn−Wnxn‖+‖Wnxn−xn‖. One asserts from Lemma 1.6 that
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Wxn − xn → 0 as n → ∞. Fix % ∈ (0, 1) and set M = (1 − %)W + %ResPξ (I − ξQ).
Using Lemma 1.2 reaches the situation that M becomes a nonexpansive mapping
with Fix(M) = ∩∞i=1Fix(Ni) ∩ (P + Q)−1(0). From the construction of M , one
has Mxn − xn → 0 as n → ∞. The nonexpansivity of M and the contractivity
of f guarantee that (1 − τ)M + τf is contractive. Next, the unique fixed point of
(1− τ)M + τf is denoted by xτ . Let x̄ = limt→0 x

τ . It follows from Lemma 1.7 that

x̄ = ProjEFix(M)f(x̄) = ProjE∩∞i=1Fix(Ni)∩(P+Q)−1(0)f(x̄),

where ProjE∩∞i=1Fix(Ni)∩(P+Q)−1(0) is the unique sunny nonexpansive retraction of E

onto ∩∞i=1Fix(Ni) ∩ (P +Q)−1(0). Observe that

‖xτ − xn‖q = (1− τ)〈Mxη − xn, Jq(xη − xn)〉+ η〈f(xτ )− xn, Jq(xη − xn)〉

= (1− τ)
(
〈Mxn − xn, Jq(xη − xn)〉+ 〈Mxτ −Mxn, Jq(x

τ − xn)〉
)

+ τ
(
〈xτ − xn, Jq(xτ − xn)〉+ 〈f(xτ )− xτ , Jq(xτ − xn)〉

)
≤ (1− τ)‖Mxn − xn‖‖xn − xτ‖q−1 + (1− τ)‖xτ − xn‖‖xτ − xn‖q−1

+ τ‖xτ − xn‖q + τ〈f(xτ )− xη, Jq(xτ − xn)〉
≤ τ〈f(xτ )− xη, Jq(xτ − xn)〉+ ‖xn − xτ‖q + ‖xτ − xn‖q−1‖xn −Mxn‖,

which demonstrates

〈xτ − f(xη), Jq(x
τ − xn)〉 ≤ ‖xn −Mxn‖‖xτ − xn‖q−1

τ
.

Fix τ . By letting n→∞, one has

lim sup
n→∞

〈xτ − f(xτ ), Jq(x
τ − xn)〉 ≤ 0.

Hence, lim supn→∞〈x̄ − f(x̄), Jq(x̄ − xn)〉 ≤ 0. In view of the definition of Wn, we
obtain that

‖zn − x̄‖ ≤ (1− δn)‖Wnxn − x̄‖+ δn‖xn − x̄‖ ≤ ‖xn − x̄‖.

Hence,

‖xn+1 − x̄‖q

≤ αn〈f(zn)− x̄, Jq(xn+1 − x̄)〉+ βn〈zn − x̄, Jq(xn+1 − x̄)〉
+ γn〈ResPrn(xn + yn − rnQxn)− x̄, Jq(xn+1 − x̄)〉
≤ αn〈f(x̄)− x̄, Jq(xn+1 − x̄)〉+ (καn + βn)‖zn − x̄‖‖xn+1 − x̄‖q−1

+ γn‖(xn + yn − rnQxn)− (x̄− rnQx̄)‖‖xn+1 − x̄‖q−1

≤ αn〈f(x̄)− x̄, Jq(xn+1 − x̄)〉+ (καn + βn)‖zn − x̄‖‖xn+1 − x̄‖q−1

+ γn‖(xn − rnQxn)− (x̄− rnQx̄)‖‖xn+1 − x̄‖q−1 + γn‖yn‖‖xn+1 − x̄‖q−1

≤ αn〈f(x̄)− x̄, Jq(xn+1 − x̄)〉+ (1− αn(1− κ))‖xn − x̄‖‖xn+1 − x̄‖q−1

+ ‖xn+1 − x̄‖q−1‖yn‖.
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Using the inequality in Lemma 1.8 yields that

‖xn+1 − x̄‖q ≤ qαn〈f(x̄)− x̄, Jq(xn+1 − x̄)〉+ (1− αn(1− κ))‖xn − x̄‖q

+ q‖xn+1 − x̄‖q−1‖yn‖.

Using Lemma 1.4, one concludes xn → x̄ as n→∞ immediately. �

From Theorem 2.1, the following result can be derived immediately.

Corollary 2.1. Let E be a real uniformly convex and q-uniformly smooth Banach
space with smooth constant Kq. Let f be a contractive mapping on E with the contrac-
tive coefficient κ ∈ (0, 1). Let P be an m-accretive operator, and let Q be a η-inverse
strongly accretive operator. Let {xn} be a sequence generated via the following scheme

x1 ∈ E, xn+1 = αnf(xn) + βnxn + γnRes
P
rn(xn + yn − rnQxn), ∀n ≥ 1,

where {yn} is a sequence in E such that

∞∑
n=1

‖yn‖ <∞,

{rn} is a real sequence with

0 < lim inf
n→∞

rn ≤ lim sup
n→∞

rn <

(
qη

Kq

) 1
q−1

, and

∞∑
n=1

|rn − rn+1| <∞,

{αn}, {βn}, and {γn} are three real sequences satisfying the condition:

lim
n→∞

αn = 0,

∞∑
n=1

αn =∞,
∞∑
n=1

|αn − αn+1| <∞,
∞∑
n=1

|βn − βn+1| <∞,

lim inf
n→∞

βnγn > 0,

∞∑
n=1

|γn − γn+1| <∞,
∞∑
n=1

|δn − δn+1| <∞,

and αn+βn+γn = 1. If (P +Q)−1(0) is nonempty, then the sequence {xn} generated
above converges strongly to x̄ = ProjE(P+Q)−1(0)f(x̄), where x̄ = ProjE(P+Q)−1(0) is the

unique sunny nonexpansive retraction of E onto (P +Q)−1(0).

Remark 2.1. The framework of the spaces in the theorem and corollary above is
applicable to Lp, where 1 < p <∞.

Finally, we apply our iterative algorithm to a convex minimization problem. In the
setting of Hilbert spaces, the class of accretive operators coincides with the class of
maximally monotone operators. Let ω : H → (−∞,∞], where H denotes a Hilbert
space, be a proper, lower semicontinuous, and convex function. Recall that the sub-
differential mapping, ∂ω, of ω is defined by

∂ω(x) = {x∗ ∈ H : ω(x) + 〈y − x, x∗〉 ≤ ω(y),∀y ∈ H}, ∀x ∈ H.

From Rockafellar [18], one sees that the subdifferential mapping, ∂ω, is a maximal
monotone operator. One also easily verify ω(v) = minx∈H ω(x) if and only if 0 ∈
∂ω(v).



638 A. LATIF, A.E. AL-MAZROOEI, X. QIN

Theorem 2.2. Let ω : H → (−∞,+∞] be a proper, convex, and lower semicontinu-
ous function with (∂ω)−1(0) 6= ∅. Let f be a contractive mapping on H the contractive
coefficient κ ∈ (0, 1). Let N1, N2, · · ·Ni, · · · be nonexpansive mappings with a common
fixed point. Let {xn} be a sequence generated via the following scheme

x1 ∈ H, zn = (1− δn)Wnxn + δnxn,

ξn = arg minz∈H{ω(z) + ‖z−xn−yn‖2
2rn

},
xn+1 = αnf(zn) + βnzn + γnξn, ∀n ≥ 1,

where {Wn} is defined by (1.1), {yn} is a sequence in H such that

∞∑
n=1

‖yn‖ <∞,

{rn} {αn}, {βn}, {γn}, and {δn} are real sequences satisfying the condition:

lim
n→∞

αn = 0,

∞∑
n=0

αn =∞,
∞∑
n=0

|αn − αn+1| <∞,
∞∑
n=0

|βn − βn+1| <∞,

lim inf
n→∞

βnγn > 0,

∞∑
n=0

|γn − γn+1| <∞,
∞∑
n=0

|δn − δn+1| <∞,

and αn + βn + γn = 1. If ∩∞i=1Fix(Ni) ∩ (∂ω)−1(0) is nonempty, then the sequence
{xn} generated above converges strongly to x̄ = ProjH∩∞i=1Fix(Ni)∩(∂ω)−1(0)f(x̄), where

x̄ = ProjH∩∞i=1Fix(Ni)∩(∂ω)−1(0) is the nearest point projection of H onto

∩∞i=1Fix(Ni) ∩ (∂ω)−1(0).

Proof. Set Q = 0. From the fact that ω is proper, convex, and lower semicontinuous
function, one sees that the subdifferential, ∂ω, is maximal monotone. Observe that

ξn = arg min
z∈H

{
‖z − xn − yn‖2

2rn
+ ω(z)

}
is equivalent to

0 ∈ 1

rn
(ξn − xn − yn) + ∂ω(ξn).

It follows that

xn + yn ∈ ξn + rn∂ω(ξn).

From Theorem 2.1, we obtain the desired conclusion immediately. �

If Ni = Id, the identity mapping, then the above theorem is reduced to the following.

Corollary 2.2. Let ω : H → (−∞,+∞] be a proper, convex, and lower semicontinu-
ous function with (∂ω)−1(0) 6= ∅. Let f be a contractive mapping on H the contractive
coefficient κ ∈ (0, 1). Let {xn} be a sequence generated via the following scheme{

x1 ∈ H, ξn = arg minz∈H{ω(z) + ‖z−xn−yn‖2
2rn

},
xn+1 = αnf(xn) + βnxn + γnξn, ∀n ≥ 1,
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where {yn} is a sequence in H such that

∞∑
n=1

‖yn‖ <∞,

{rn} {αn}, {βn}, and {γn}, are real sequences satisfying the condition:

lim
n→∞

αn = 0,

∞∑
n=1

αn =∞,
∞∑
n=1

|αn − αn+1| <∞,

∞∑
n=1

|βn − βn+1| <∞, lim inf
n→∞

βnγn > 0,

∞∑
n=1

|γn − γn+1| <∞,

and αn + βn + γn = 1. Then the sequence {xn} generated above converges strongly to
x̄ = ProjH(∂ω)−1(0)f(x̄), where x̄ = ProjH(∂ω)−1(0) is the nearest point projection of H

onto (∂ω)−1(0).
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