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Abstract. In this paper, a viscosity splitting iterative algorithm with perturbation is introduced for
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Banach space. A convex minimization problem is also considered in Hilbert spaces as an applications.
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1. INTRODUCTION AND PRELIMINARIES

Let E* denote the dual space of a Banach space F, and let (-,-) be the duality
pairing between space E and its dual. One always uses J, (¢ > 1) to denote the
generalized duality mapping onto 2€”, which is defined by, Vz € E,

Jq(2) = {y € E* : (z,y) = | Iyl = =] 7~"}.

If ¢ = 2, then one calls Jo the normalized duality mapping, and it is denoted by
J in this paper. One knows that J,(z) is always nonempty, which is due to the
Hahn-Banach Theorem and, for all z # 0, J,(z) = ||z[|?"2J(x). The single-valued
generalized duality mapping will be denoted by j, and the single-valued normalized
duality mapping is denoted by j next.
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Let € be a real number in [0,2]. The convexity modulus Banach space E is the
function dg(e€) : (0,2] — [0, 1], defined by

Sp(e) = inf {

One says that space E is p-uniformly convex with p > 1 iff there exists a real number
associated with p, ¢, > 0, such that, for any € € (0,2], dg(e) > cpeP.

Let N be a mapping on E. The fixed point set of N is denoted by Fix(N) in this
paper. One recalls that N is said to be contractive iff, Va,y € E, ||[Nx — Ny|| <
k|lz — yl||, where & is a real number in (0,1). One further recalls that N is said
to be nonexpansive iff, Vo,y € E, ||[Nx — Ny|| < ||z — y||. There are numerous
applications of nonexpansive mappings in various research fields; see, e.g., [4, 5, 16,
20, 13]. Normal Mann iteration is a powerful scheme to investigate fixed points of
nonexpansive mappings and their extensions. But, normal Mann iteration is weakly
convergent even in Hilbert spaces; see [2]. Another popular scheme is the viscosity
scheme, which is based on the Halpern iterative scheme. It generates a sequence {z,,}
in the following manner:

2—|lz+yl

sl =l = 1. vl 2 o

x1 €V, Tpy1 = anf(xn) + (]- - Oén)an; Vn > 1,

where f is a contractive mapping, {«, } is a real sequence in (0, 1), and x; is an initial
point chosen arbitrarily.

Let Ny, Ns,---, N;,--- be nonexpansive mappings on space E. Let Id denote the
identity mapping on F, and let {(,} be a sequence in (0, (], where ( is some real
number in (0,1). Consider

Vn,n = (1 - Cn)Id + CTLN’I’LV’I’L,TL+17
‘/n,n—l - (1 - ’Yn—l)Id + fYn—an—l‘/n,ny

Vow = (1 = ) Id 4 GeNe Vi kg1, (1.1)

Voo = (1 —()Id+ (aNoV, 3,
Wn = Vn,1 = (1 - Cl)ld+ Clvan,Qa

where V,, 41 = Id.
In strictly convex Banach spaces, from [19], for every « € C, the limit lim,,_,o V;, k@
exists in strictly convex Banach spaces. Define a mapping W on E by

Wz = nh_{glo Viiz = nh_{lgo Wy, Vo € E.
W is called the W-mapping defined by Ny, No, ---. From [19], one has
Fix(W) = N2, Fix(N;).
Recall that the smoothness modulus of E, pg : [0,00) — [0, 00), is defined by

T4yl —|lz—y|| -2
pE(t):sup{H y”|2| vl :a:eBE7||y||<t}.
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E is said to be uniformly smooth iff pET(t) —0ast — 0. Let ¢ > 1. FE is said to

be g-uniformly smooth iff there exists a fixed constant ¢ > 0 such that p’i—gt) <ec If
E is g-uniformly smooth, then ¢ < 2 and F is uniformly smooth; see [21] and the
references therein.

It is known that F is p-uniformly convex if and only if £* is g-uniformly smooth,
where ¢p = ¢+ p. Typical examples of both uniformly convex and uniformly smooth
Banach spaces are L, where p > 1. Let Proj5 : E — D, where E be a subset of space
E, be a mapping. It is said to be [3, 10] (1) sunny iff, for each y € C and £ € (0, 1),
Projg((l — f)Projgy + Ey) = Projgy; (2) retraction iff (Projg)2 = Projg; (3)
sunny nonexpansive retractction iff Projg is a sunny, nonexpansive, and retraction
operator. D is said to be a nonexpansive retract of E iff there exists a nonexpansive
retraction from E onto D. In a g-smooth Banach space E, Projk is sunny and
nonexpansive iff (z — ProjEx,3,(y — ProjEx)) <0, Vx € E, y € E. In the setting
of Hilbert spaces, the sunny nonexpansive retraction coincides with the nearest point
projection. Let z € E and zg € D. xg = ProjEx iff (x — z0,34(y — o)) < 0 for all
y € D, where Projg is a sunny nonexpansive retraction from E onto D in a ¢g-smooth
Banach space E.

Recall that an operator P : E — 2F with the domain, denoted by

Dom(P)={z€ E: Pz#0}

and the range, denoted by Ran(P) = U{Pz : z € Dom(P)}, is said to be accretive
iff, for r > 0,

ly =zl <lr(@—2)+ (y—2)ll, Ve Pr,ye Py,

for all ,y € Dom(P). There is a celebrated equivalent definition by Kato [11] as
follows
(Z—7,jglx —y)) >0, VzePxjye Py

Furthermore, nn accretive operator P is said to be m-accretive iff Ran(Id 4 rP)
is precisely E for any positive real number r. It is known that an operator P is m-
accretive iff A is maximally monotone in the setting of Hilbert spaces. For m-accretive
operator P, one defines a single-valued operator Res? : Ran(Id+rP) — Dom(P) by
Rest = (Id + rP)~!, which is nonexpansive. Indeed, it is also firmly nonexpansive.
And it is called the resolvent operator of P.

Let @ be a single-valued operator on E. Recall that @ is said to be n-inverse
strongly accretive iff there exist some jq(z —y) € J4(2 —y) and some ¢ > 0 such that

(Qz = Qy,jg(z —y)) 2 nl|Qx — Qu*, Vu,y e C.

From the definition, one sees that each n-inverse strongly accretive operator is accre-
tive.

The forward-backward splitting method, introduced by Peaceman and Rachford
[15] and Douglas and Rachford [9], is powerful to investigate accretive operators.
Recently, many new splitting schemes were introduced in Hilbert spaces, however,
there few associated results in Banach spaces; see, e.g., [7, 6, 8, 23]. In this paper,
we study a viscosity splitting scheme for common fixed points of an infinite family of
nonexpansive mappings and zero points of P+@Q), the sum of an m-accretive operator P



630 A. LATIF, A.E. AL-MAZROOEI, X. QIN

and an inverse-strong accretive operator (). We present a strong convergence theorems
in the framework of uniformly convex and g-uniformly smooth Banach spaces.
The following lemmas are essential to our main convergence theorem.

Lemma 1.1. [21] The following inequality holds true in a real q-uniformly smooth
Banach space ||z + y||? < q(y,Jq(x)) + ||z]|9 + K4llyl|?, Vz,y € E, where K, is the
smooth constant.

Lemma 1.2. [17] Let E be a strictly convex Banach space and q-uniformly smooth
Banach space. Let N be a nonexpansive mapping. Let P be an m-accretive operator,
and let Q be an m-inverse strongly accretive operator. Then

Fix((Id +rP)~'(Id — rQ)) = (P + Q)" *(0).

Define a mapping M by Mx = ¢Nx+ (1 —¢)Res (x —rQx), where r is a real number
in (0, (;}—")qfil) and < is a real number in (0,1). Then M is nonexpansive and

Fix(M) = Fix(N) N (P + Q) 1(0).
Lemma 1.3. [1] Let P be an m-accretive operator on a Banach space E. For A >0
and p >0,

Resf(%x + (1 — %)Resfx) = Restz, VzcE.

Lemma 1.4. [24] Let {a,}, {bn}, and {c,} be nonnegative real sequences with
Gn41 S (1 - tn>an + bn + Cn,s vn Z 07

where {t,} is a real sequence in (0,1). If

o0 o0 b
ch < o0, Ztn =00, and limsup — <0,

n— o0
n=0 n=0 n

then lim a, = 0.
n— o0

Lemma 1.5. [17] Let p is real number greater than 1, and let r be some positive real
number. In a uniformly convex Banach space E, the following inequality hold true
ol )
- (lx =y,
(atpp PETY

where x,y,z € {x € E: ||z|| <7}, a,b,c € [0,1] such thata+b+c=1, p:[0,00) —
[0, 00) with ©(0) =0 is some strictly increasing continuous convex function.

laz +by + cz[|” < alz[|” + blly[|” + ]| 2[]” -

Lemma 1.6. [12] Let H be a real Hilbert space, and let C be a closed, convex, and
nonempty subset of H. Let {T; : C — C} be a family of infinitely nonexpansive
mappings with

N2, Fix(T;) # 0.

Then nlgrolo sup,cc |[Wa — Wyz|| = 0.
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Lemma 1.7. [22] Let E a uniformly convex Banach space. Let f be a contractive
mapping, and let M be a nonexpansive mapping with fixed points. Let Projlf?ix(M) 1
the unique sunny nonexpansive retraction from E onto Fix(M). For each 7 in (0,1),
let x; be the unique solution to x; = (1 — 7)Mx,; + 7f(x;). Then {x;} converges
strongly to a fized point T = Projlf?ix(M)f(a’c) as T — 0.

Lemma 1.8. [14] Let ¢ > 1. Then the following inequality holds:
(ab)g < (g — b7 +a?,

for arbitrary positive real numbers a and b.

2. MAIN RESULTS

Theorem 2.1. Let E be a real uniformly convex and q-uniformly smooth Banach
space with smooth constant K,. Let f be a contractive mapping on E with the con-
tractive coefficient k € (0,1). Let P be an m-accretive operator, and let QQ be a
n-inverse strongly accretive operator. Let Ny, Na,---N;, --- be nonexpansive map-
pings with a common fixed point. Let {x,} be a sequence generated via the following
scheme

1 €F, zp = (1 = 0p)Woy + 6nZn,
Tni1 = o f(2n) + Bnzn + mRest (2 + yn — mnQxy), Vn > 1,
where {W,,} is defined by (1.1), {yn} is a sequence in E such that

e
D lgnll < oo,
n=1

{rn} is a real sequence with

1

q—1 e
0 < liminfr, <limsupr, < (qn) , and g |7r — rop1| < 00,
n—00 n—oo Kq oyt

{an}, {Bn}, {1}, and {6,} are four real sequences satisfying the condition:

) o )
lim an =0, Zan:oo, Zlan_an+l|<ooy Z|ﬂn_5n+1|<oov
n—00

n=1 n=1 n=1

o0 oo
llnn_l>£f Bnyn > 0, Z |’7n - '7n+1‘ < 00, Z |6n - 6n+1| < 00,

n=1 n=1

and oy + B+ = 1. If
N2, Fix(N;) N (P + Q) ~*(0)
is nonempty, then the sequence {x,} generated above converges strongly to
T = ijr%;lFix(Ni)n(PJrQ)—l(o)f(f)v

where & = Pro]ﬂfilFix(Ni)ﬁ(P-&-Q)*l(0) 1s the unique sunny nonexpansive retraction of
E onto N, Fix(N;) N (P + Q)~*(0).
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Proof. From the celebrated inequality, Lemma 1.1, we find that for all z,2’ € F

l(Id —r,Q)x" — (Id — r,Q)x||?

< riKollQr" — Q|| + [|2” — 2|7 — rug{Qr — Qy, Jg (2" — x))

< " = 2|+ o (rd Ky = ng)||Qa’ — Qx| Va, 2’ € E.
In view of the restriction on {r,}, one sees that I'd — r,Q is nonexpansive for all n,
that is,

l(Id — r,Q)x" — (Id — r,Q)z|| < ||z — y||,Va',x € E.
Fix a point in N, Fix(N;) N (P + Q)~1(0), say x. One easily sees that
=T +rP) I —7r,Q) = Wy,
where n > 1. Observe
|2 — 2zull = [[(1 = 6n) (2 — Wyzn) + 6n(z — 20) ||
< (1= 6p)[[Whz = Wyan || + dnllz — 24|

<l = zall,
that implies

[ = znia |
< anllz — f(zn)ll + Bullr — 2zn|| + ’yn”Resfn (x —rnQx) — Resfn (Tn + Yn — 10 Qxy)||
< anllz = f(@)] + anllf(zn) = F(@)]| + Bnllz — zull

+ ’yn||Resil (x — r,Qx) — Res,.Pn (xn 4 yn — rnQxn)||
S aplle = F@)] + (ank + Bo)llz = 2ol + W ([[(z — Q) — (20 — ra Q)| + llynl])
< apllz = f(@)]| + (ks + Bn + )l — 2ol + v llynl

<ot =IO ol =l + ol

Using the mathematical induction, one asserts that
= f(@)| -
o=l < mas =l L 45 < oo

This demonstrates that {x,} is a bounded vector sequence. Hence, {z,} is also a
bounded vector sequence, which is due to the expansivity of each N;. Using Lemma
1.2, one has

Fix(Z) = N2, Fix(N;) N (P + Q) (0),
where Z = (1 — 9)W + 9Resl (I — rQ) with ¥ € (0,1) and r > 0 is nonexpansive.

Next, one demonstrates

hmsup(f(f) - jvﬁq(i‘ - xn)> Z Oa

n—oo
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= .E — . .E .
where T = ProjﬁfilFix(Ni)ﬂ(P—&-Q)—l(O)f(x) with Pro]ﬂfilFix(Ni)ﬂ(P—i-Q)—l(0) being the
sunny nonexpansive retractction. Setting A\, = z,, + yn, — rn@Qz,, we find

||)‘n - )‘n-&-lH < H(xn + Ynt+1 — rn-i-len) - (xn-i-l + Ynt1 — Tn-‘rlen-‘rl)”
+ 1(@n + Ynt1 — 1p41QTn) — (Tn + Yn — 1 Q0|
< yntll + llynll + |rnsr = rall|Qunll + 2041 — znll-
In view of the resolvent equality in Lemma 1.3, we have

||Resfn+1)\n+1 - Res,i)\n”

Tpil — 7T r
= ||Res! A\, — Res! (MR&S:;H)\nH + —"Xpt1) |

Tn+1 Tn+1
T T
< H)‘n - ((1 e )R€S£+1>\n+1 + —= )‘n+1) H
Tn-l—l Tn+1 (2 1)
T —T A — ResP A :
S ||>\n o )\n+1|| + | n n+1||| n+1 Tn 71+1H
Tn+1

< ynt1ll + [lynll + rns1 = mal|Qrn |l + [[Tnr1 — zul]

70 = Tnsall|Ans1 — Res? A

+

Tn+1
Observe that

Zn41l — Zn = (1 - 5n+1)(Wn+1xn+1 - ann) + (ann - xn)(én - 5n+1)

+ Ont1(Tns1 — Tn). (2:2)
From the nonexpansivity of each IV;, one has
Hann - Wn-&-lan = C1||N1Vn,2xn - van+1,2$n||
< G l[Vi2tn — Vig1,22n ||
= <1||Vn,2mn - n+1,2xn”
= (1G2|| N2V 32, — NaVii1 320 |
< GG Van,32n — Vig1,3%n| (2.3)

< ...

S ClCQ et Cn”Vn,n-&-lxn - Vn+1,n+1xn||

< Mﬁ@,
=1

where M is an appropriate constant. Combining (2.2) and (2.3), one arrives at
201 = znll < (1 = Ong 1) [[Wns1Zns1 — Wazn || + [[Wozn — 20|05 — 6nta
+ Ont1l|Tnt1 — 2|
< ||xn+1 - an + (1 - 5n+1)||Wn+1zn - ann”
Wiz = 2l — 6] 24

< ||xn+1 - an + (1 - 5n+1)MHCi + ||ann - wn”wn - 5n+1|~

i=1
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Observe that
0o — Zng ||
< falllentt — an| + anga || f(znt1) = fz0)l
+ 20 ll|Brt1 = Bl + Batillzn+1 — 2|

2.5
T IRes? AullFnst — nl + ns11Res? Ay — Res?, nsa | (25)
<N fEa)lllantt = an| + (ant1k + Bat1)znt1 — zoll + (120l Brt1 — Bal
+ HResfn Anlllvn+1 = nl + ’Yn-&-l”Rean)‘n - R65£+1/\n+1”-
Substituting (2.1) and (2.4) into (2.5) yields that
lZnt2 — Tpyall
< N fEa)lllantt — an] + (@ng16 + Bos1)|2nt1 — 2all + (|20l Bnr1 — Bal
+ ||ResE Anll|vna1 — Yol + Yot | Rest A — R685L+1)\n+1||
< N fGEalllants — an] + (1 = ang1(1 = K))[[Tnr1 — za]
n (2.6)
+ MHCZ + [[Woon — 20|00 — nsa| + |20l Brt1 — Bal
i=1
+ | Res? Anlllvns1 = Yol + lyntall + lyall + 1rngr — ralll Q||
4 70— o1l Ans1 — Resfn)‘nJrlH
TnJrl
From
oo oo oo
Z |an+1 - an| < 0, Z |ﬁn+1 - ﬁn‘ < 00, Z |’Vn+1 _’Vn| < 0,
n=1 n=1 n=1
oo oo oo
Z [0r41 — 0| < 00, Z |Prg1 — 7nl| < 00, nler;Oan =0, and Zan = 00,
n=1 n=1 n=1
one obtains from Lemma 1.4 that lim,_, [|Znt2 — Zn11]] = 0. Observe that
| — Resy, Anll” < [[(z — Q) = (20 + yn — 70 Qun)[|* (27)
<lz = zall” + llynll (1]l + 2[(z — Q) = (0 — T0Qn)])-
Setting p = 2 in Lemma 1.5 yields
||33 - xn+1||2 < an”x - f(zn)HQ + ﬁon - Zn||2 + yon - Resf,/\nHZ (2.8)

— Bane(llzn — Resfﬂ Anl])-
From (2.7) and (2.8), one has
|2 = @nga||?
< apllz = )2 + & = 2l lyall(lyll + 2ll(z = raQ) = (20 — r2.Qu,) )2
— Bnne(ll2n — RG.S?I;)\"”),
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which in turn implies
ﬁn’Yn‘P(”Zn - Resfﬂ)\nH) < O‘n”x - f(zn>||2 + (Hx - an + ||x - CCnJr1||)||55'n — Tpy1|
+ lynll(lyll + 2[[(z — raQz) — (2 — raQa)l)),
In view of the condition lim inf,,_, o 8,7, > 0, one has

le ©0(||zn — ResE \|)) = 0.

Tn

Moreover, from the fact that ¢ is a strictly increasing convex continuous function
¢ :[0,00) = [0,00) with ©(0) = 0, one also has

lim ||z, — Rest A\, | =0. (2.9)

n—oo

Next, without loss of generality, one assumes that there exists a positive number &
such that r, > £. From the accretiveness of P, one has

HRes?(mn —&Qw,) — Resf; (T — 1, Qwy) ||
- (X — Resfn (T, — rnQxn), Jqg (Resg(xn —€Qxy,) — Resfn (zpn — TnQ:cn))Hf — T

Tn
< o — ResT (2 — raQua) || ResE, (n — rnQin) — RE (2 — £Quwa) |17,
which demonstrates that
HResi (xp, — rnQxy) — p|| > HResil (n — TnQxy) — Resf(:z:n —£&Qxy)|.  (2.10)
From the fact that
|ResE An — tall < 2ns1 — ol + @nllf(z) — Res? Al + Bullzn — Res Al
one obtains from (2.9) that
lim |Reskt A — 2] = 0. (2.11)
Observe that
||Resib (n, — rnQxy) — xn|| < HResi)\n — x| + ||Resfn)\n — Resfn (xn, — rnQzy)||
< I1Res? An — 2l + [An — (2 — Q)|
< [Res, An — zall + .
This implies from (2.11) that
nll_}n;o |Resk (xn — Q) — || = 0, (2.12)

On the other hand,
0 — Resf (x, — €Qr)|
< I1Res? (w0 — 12 Q) =zl + | ResE (wn — €Qun) — ResE (n — raQun)ll
which together with (2.10) and (2.12) yields
nhﬁngo |Rese(zrn, — EQxy) — zp]| = 0. (2.13)

This also implies that z,, —x,, — 0 as n — oco. Hence, W, x, —x, — 0 as n — co. Note
that ||Wx, —2,| < [|Wap—Waas ||+ |[|Watn —2,||. One asserts from Lemma 1.6 that
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Wz, — 2, — 0asn — oo. Fix p € (0,1) and set M = (1 — o)W + QResg(I —£Q).
Using Lemma 1.2 reaches the situation that M becomes a nonexpansive mapping
with Fix(M) = NX,Fix(N;) N (P + Q)~'(0). From the construction of M, one
has Mz, — x, — 0 as n — oo. The nonexpansivity of M and the contractivity
of f guarantee that (1 — 7)M + 7f is contractive. Next, the unique fixed point of
(1—=7)M + 7f is denoted by z". Let z = lim;_,¢ z". It follows from Lemma 1.7 that

7 = Projgianf(@) = Projfe mnvonpro)-1 0 f (@),
where ijr%;lFix(Ni)m(P+Q)fl(0) is the unique sunny nonexpansive retraction of F
onto N2, Fix(N;) N (P + Q)~1(0). Observe that
27 = x| = (1= 7){Ma" — 25, Jq(¢" = 2n)) +0(f(27) = 2, Jg(2" = 20))
= (1= 1) (M = 20, 3g (" = w0)) + (Ma7 = M, g7 = 2,))

({27 = 2,3y (@” =) + (F@7) =27, 3ya” — 7))
< A =1)Mzy = apllllan — 277+ (1= 7)l|l27 — 2all[la” = 2,77
+7l2” —an||* + 7(f(27) — 2", Jg (27 — zn))
< 7{f(@7) =2 Jg(@” = @n)) + o — 27|+ a7 = @l lon — Man||,
which demonstrates

lzn — Map||[|27 — @a 7"

T

(@7 = f(a"),Jq(a7 —zn)) <
Fix 7. By letting n — oo, one has

limsup(z™ — f(z7),J,(z7 — z,)) <O0.

n— oo

Hence, limsup,,_,.. (T — f(%),J4(Z — z,,)) < 0. In view of the definition of W, we
obtain that

2n — 2| < (1 = 0u)[[Whzn — Z|| + bnllzn — 2| < llzn — 2.
Hence,
[2n41 — 2|
< an<f(2”) - jaﬁq(anrl - 37)> + Bn<zn - j>3q(wn+1 - f»
+n(Resy (T + Y — 1aQn) — T, Jg(Tni1 — T))
< an(f(2) = 2,3g(Tn41 — 7)) + (kan + Ba) |20 — Z|l[|2nts — 2|77
+ %l @ + Yo — 10 Qun) — (2 — 1 QE) 241 — Z|*7
< an(f(2) = 2, 3q(2n41 — 2)) + (kan + Ba) |20 — Z|l[|2nt1 — 2|77
+mll(@n = raQan) — (2 = 12Q@)znt1 — 277 + Wmllynlllzner — 2|7
< an(f(2) = 2, Jg(2n41 — 7)) + (1 = an(l = K) |2 — Z|||2ps1 — 2] 77

+llznsr = 21T ynll-
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Using the inequality in Lemma 1.8 yields that
i1 = 7% < qn(F(@) — 7 3g(@ns1 — 7)) + (1 — an(l = 1)z, — 7]
+qllznss — 277 lyal-

Using Lemma 1.4, one concludes x,, — T as n — oo immediately. O
From Theorem 2.1, the following result can be derived immediately.

Corollary 2.1. Let E be a real uniformly convex and q-uniformly smooth Banach
space with smooth constant K. Let f be a contractive mapping on E with the contrac-
tive coefficient k € (0,1). Let P be an m-accretive operator, and let Q be a n-inverse
strongly accretive operator. Let {x,} be a sequence generated via the following scheme

21 € E, Tny1 = anf(@n) + Bun + mmResk (xn +yn — rQxy), Vn > 1,

where {y,} is a sequence in E such that

oo
S llgnl < o0,
n=1

{rn} is a real sequence with

1

q—1 e
0 < liminfr, <limsupr, < n , and Z |7 — To1| < 00,
nree n—00 Kq n=1

{an}, {Bn}, and {y,} are three real sequences satisfying the condition:

0o LS LS
lim o, =0, Zan:oo7 Zlan_an+l|<ooa Z'ﬂn_ﬂn+1|<oo7
n—00

n=1 n=1 n=1

o0 oo
hﬂ%gfﬂn’}/’n > 07 Z:l |’Yn - 'yn-&-l‘ < 00, Zl |5n - 6n+1| < 0,
n= n=
and o, + B+ = 1. If (P+Q)~1(0) is nonempty, then the sequence {x,,} generated
above converges strongly to T = Proj(b;,JrQ),l(O)f(j;), where T = Projgj+Q),1(0) is the
unique sunny nonexpansive retraction of E onto (P + Q)~*(0).

Remark 2.1. The framework of the spaces in the theorem and corollary above is
applicable to L, where 1 < p < oo.

Finally, we apply our iterative algorithm to a convex minimization problem. In the
setting of Hilbert spaces, the class of accretive operators coincides with the class of
maximally monotone operators. Let w : H — (—o00, 00|, where H denotes a Hilbert
space, be a proper, lower semicontinuous, and convex function. Recall that the sub-
differential mapping, dw, of w is defined by

Ow(z)={2z" € H:w(x)+(y—=,2") <w(y),Vy € H}, Vx € H.

From Rockafellar [18], one sees that the subdifferential mapping, dw, is a maximal
monotone operator. One also easily verify w(v) = min,ey w(z) if and only if 0 €

Ow(v).
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Theorem 2.2. Let w: H — (—o00,+00] be a proper, convez, and lower semicontinu-
ous function with (dw)~1(0) # 0. Let f be a contractive mapping on H the contractive
coefficient € (0,1). Let Ny, No,--- N;,--- be nonexpansive mappings with a common
fized point. Let {x,} be a sequence generated via the following scheme

21 € Hy 2z = (1 = 6)Woy + 0nZn,

€n = argmingep {w(z) + L=mmvelly

Tnt1 = o f(2n) + Bnzn + mén, Yn =1,
where {W,} is defined by (1.1), {yn} is a sequence in H such that

o0
Z lynll < oo,
n=1

{rn} {an}, {Bn}, {1}, and {6,} are real sequences satisfying the condition:

0o o 0o
lim an =0, Zan:oo, Zlan_an+l|<ooy Z|ﬂn_ﬁn+l|<oov
n—0o0

n=0 n=0 n=0

o0 oo
liminf 5,7, > 0, D 1 = Al <00, Y 80 = Gpa < 0,
n=0 n=0

and oy + By + yn = 1. If N2, Fix(N;) N (0w)~1(0) is nonempty, then the sequence
{z,} generated above converges strongly to T = PTO]#OO Fix(N:)N(0w) - o)f( Z), where

T = Progﬁoc Fix(N;)N(9w)~1(0) is the nearest point projection of H onto
i=1 K3

721 Fix(N) 1 (0w)~H(0).

Proof. Set Q = 0. From the fact that w is proper, convex, and lower semicontinuous
function, one sees that the subdifferential, dw, is maximal monotone. Observe that

|2 = 20 — yall?
& = arg rzrélg { o + w(z)

is equivalent to

0 (60 — 20 — yu) + O(En).

Tn

It follows that
Tn + Yn € & + 10w (En)-
From Theorem 2.1, we obtain the desired conclusion immediately. O

If N; = Id, the identity mapping, then the above theorem is reduced to the following.

Corollary 2.2. Let w: H — (—00,400| be a proper, convez, and lower semicontinu-
ous function with (dw)~1(0) # 0. Let f be a contractive mapping on H the contractive
coefficient k € (0,1). Let {x,} be a sequence generated via the following scheme

T € H7 fn = argminZeH{w( )-|- lz=zn—ynll” w" 'Un” }
Tnt1 = Qn f(Tn) + BnZn + Vnén, Vn Z 1’
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where {yn} is a sequence in H such that

oo
S gl < oo,
n=1

{rn} {an}, {Bn}, and {vn}, are real sequences satisfying the condition:

n— oo

o0 oo
lim «, =0, E o, = 00, E lan, — apt1] < o0,
n=1 n=1

oo oo
Z ‘Bn - Bn+1| < 00, hnrggfﬁn’yn > 07 Z h/n - ’Yn+1| < 00,
n=1 n=1

and ap + B +n = 1. Then the sequence {x,} generated above converges strongly to
T = Proj(%w)_l(o)f(i), where T = Proj(%w)_l(o) s the nearest point projection of H
onto (0w)~1(0).
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