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1. Introduction

This paper deals with the existence of oscillatory and nonoscillatory solutions to
boundary value problems (BVP for short) for fractional differential inclusions. In
particular, we consider the boundary value problem

H
CD

ry(t) ∈ F (t, y(t)), for a.e. t ∈ J = [1, T ], 1 < r ≤ 2, (1.1)

y(1) = y1, y(T ) = yT (1.2)

where H
CD

r is the Caputo-Hadamard fractional derivative, (E, | · |) is a Banach space,
P(E) is the family of all nonempty subsets of E, F : [1, T ]×E → P(E) is a multivalued
map and y1, yT ∈ E.

Differential equations of fractional order are valuable tools in the modeling of many
phenomena in various fields of science and engineering. Indeed, there are numerous
applications in viscoelasticity, electrochemistry, control, porous media, electromag-
netism, etc. In the monographs of Hilfer [25], Kilbas et al. [27], Podlubny [32], and
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Momani et al. [30], we can find the background mathematics and various applica-
tions of fractional calculus. The existence of oscillatory and nonoscillatory solutions,
to many different problems concerned the differential equations and inclusions, was
studied by several researchers; as example of this researches, we refer the reader to
the articles of Benchohra et al [1, 8, 9, 10], Graef et al [19] and Bohner et al [14].

The Caputo left-sided fractional derivative of order r, is defined by

(cDr
a+h)(t) =

1

Γ(n− r)

∫ t

a

(t− s)n−r−1h(n)(s)ds,

where r > 0, n = [r] + 1 and [r] denotes the integer part of r. This derivative is very
useful in many applied problems, because it satisfies its initial data which contains
y(0), y′(0), etc., as well as the same data for boundary conditions.

The Hadamard fractional derivative was introduced by Hadamard in 1892 [23].
This derivative differs from the Caputo derivative in two ways; the first way is that
its kernel contains a logarithmic function of arbitrary exponent, and the second way
is that the Hadamard derivative of a constant does not equal to 0.

The Caputo-Hadamard fractional derivative given by Jarad et al. [26] is a modified
Hadamard fractional derivative, but unlike the Hadamard fractional derivative, the
Caputo-Hadamard fractional derivative of a constant is 0, which was inherited from
the Caputo derivative.

In this paper, we present existence results for the problem (1.1)-(1.2), when the
right hand side is convex valued, by using the set-valued analog of Mönch’s fixed
point theorem combined with the technique of measure of noncompactness. Recently,
this has proved to be a valued tool in solving fractional differential equations and
inclusions in Banach spaces; for details, see the papers of Laosta et al [29], Rus et al
[34, 33], Agarwal et al. [2] and Benchohra et al. [12], [11], [13]. This result extends
to the multivalued case some of those previous results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will
be used in the remainder of this paper. Let (E, | · |) be a Banach space, and we set
C(J,E) as the Banach space of all continuous functions from J into E with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J},
and L1(J,E) as the Banach space of Bohner integrable functions y : J −→ E with
the norm

‖y‖L1 =

∫
J

|y(t)|dt.

The space AC(J,E) is the space of functions y : J → E that are absolutely continuous.

Let δ = t
d

dt
, and then we set

ACnδ (J,E) = {y : J −→ E, δn−1y(t) ∈ AC(J,E)},
and AC1(J,E) is the space of functions y : J → E that are absolutely continuous and
have an absolutely continuous first derivative.

For any Banach space (X, ‖ · ‖), we set
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Pcl(X) = {Y ∈ P(X) : Y closed},
Pb(X) = {Y ∈ P(X) : Y bounded},
Pcp(X) = {Y ∈ P(X) : Y compact},
Pcp,c(X) = {Y ∈ P(X) : Y compact and convex}.

A multivalued map G : X → P(X) is convex (closed) valued if G(X) is convex
(closed) for all x ∈ X. G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded
in X for all B ∈ Pb(X) (i.e supx∈B{sup{|y| : y ∈ G(x)}} <∞).
G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0)
is a nonempty closed subset of X, and for each open set N of X containing G(x0),
there exists an open neighborhood N0 of x0 such that G(N0) ⊂ N . G is said to be
completely continuous if G(B) is relatively compact for every B ∈ Pb(X).
If the multivalued map G is completely continuous with nonempty compact values,
then G is u.s.c. if and only if G has a closed graph (i.e xn → x∗, yn → y∗, yn ∈ G(xn)
imply y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X such that x ∈ G(x). The
fixed point set of the multivalued operator G will be denoted by FixG. A multivalued
map G : J → Pcl(R) is said to be measurable if for every y ∈ R, the function

t→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.

Definition 2.1. A multivalued map F : J × E → P(E) is said to be Carathéodory
if:

(1) t→ F (t, u) is measurable for each u ∈ E,
(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ J

For each y ∈ AC(J,E), define the set of selections of F by

SF,y = {v ∈ L1([1, T ],R) : v(t) ∈ F (t, y(t)) a.e. t ∈ [1, T ]}

Let (X, d) be a metric space induced from the normed space (X, | · |). The function
Hd : P(X)× P(X)→ R+ ∪ {∞} given by

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}

is known as the Hausdorff-Pompeiu metric.

Definition 2.2. A multivalued operator N : X → Pcl(X) is called

(1) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,
(2) a contraction if and only if it is γ-Lipschitz with γ < 1.

For more details on multivalued maps see the books of Aubin and Cellina [5], Aubin
and Frankowska [6], Deimling [16] and Castaing and Valadier [15].

For convenience, we first recall the definitions of the Kuratowski measure of non-
compactness and summarize the main properties of this measure.

Definition 2.3. [4, 7] Let E be a Banach space and let ΩE be the bounded subsets of
E. The Kuratowski measure of noncompactness is the map ζ : ΩE → [0,∞) defined
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by

ζ(B) = inf{ε > 0 : B ⊂
m⋃
j=1

Bj and diam(Bj) ≤ ε} ; hereB ∈ ΩE .

Properties: The Kuratowski measure of noncompactness satisfies the following prop-
erties (for more details see [4, 7])

(1) ζ(B) = 0⇔ B is compact (B is relatively compact).
(2) ζ(B) = ζ(B).
(3) A ⊂ B ⇒ ζ(A) ≤ ζ(B).
(4) ζ(A+B) ≤ ζ(A) + ζ(B).
(5) ζ(cB) = |c|ζ(B), c ∈ R.
(6) ζ(conB) = ζ(B).

Here B and conB denote the closure and the convex hull of the bounded set B,
respectively.

For a given set V of functions u : J → E, we set

V (t) = {u(t) : u ∈ V }, t ∈ J,

and

V (J) = {u(t) : u ∈ V (t), t ∈ J}.

Theorem 2.4. [7] Let E be a Banach space and C ⊂ L1(J,E) be countable with
| u(t) |≤ h(t) for a.e. t ∈ J and every u ∈ C, where h ∈ L1(J,R+). Then the function
φ(t) = α(C(t)) belong to L1(J,R+) and satisfies

ζ

({∫ T

0

u(s)ds, u ∈ C

})
≤ 2

∫ T

0

ζ(C(s))ds.

Let us now recall Mönch’s fixed point theorem.

Theorem 2.5. [31] Let K be a closed, convex subset of a Banach space E, U a
relatively open subset of K, and N : U 7→ P(K). Assume graphN is closed, N maps
compact sets into relatively compact sets, and for some x0 ∈ U , the following two
conditions are satisfied:

M ⊂ U M ⊂ conv(x0 ∪N(M))
M = U with C a countable subset of M implies

M is compact,

(2.1)

x /∈ (1− λ)x0 + λN(x) foe all x ∈ U/U, λ ∈ (0, 1). (2.2)

Then there exists x ∈ U with x ∈ N(x).

Definition 2.6. [27] The Hadamard fractional integral of order r for a function
h : [1,+∞)→ R is defined as

HIrh(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
h(s)

s
ds, r > 0,

provided the integral exists.
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Definition 2.7. [27] For a function h given on the interval [1,+∞), the r Hadamard
fractional-order derivative of h, is defined by

(HDrh)(t) =
1

Γ(n− r)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−r−1
h(s)

s
ds,

n−1 < r < n, n = [r]+1, where [r] denotes the integer part of r and log(·) = loge(·).

Definition 2.8. [26] For a given function h which belongs to ACnδ ([a, b], E), such that
a > 0, we define the Caputo-type modification of the left-sided Hadamard fractional
derivative by

H
CD

ry(t) =HDr

[
y(s)−

n−1∑
k=0

δky(a)

k!

(
log

s

a

)k]
(t),

where Re(r) ≥ 0 and n = [Re(r)] + 1.

Lemma 2.9. [26] Let y belong to ACnδ ([a, b], E) or to Cnδ and r ∈ C. Then

HIr(HCD
r)y(t) = y(t)−

n−1∑
k=0

δky(a)

k!

(
log

t

a

)k

3. Main result

In this section, we study the existence of solutions to a boundary value problem
(1.1)-(1.2).

Definition 3.1. A function α ∈ AC2
δ ([1, T ], E) is said to be a lower solution of

(1.1)-(1.2), if there exists a function v1 ∈ L1([1, T ], E) with v1(t) ∈ F (t, α(t)), for
a.e t ∈ [1, T ], such that H

CD
rα(t) ≤ v1(t) and the function α satisfies the conditions

α(1) ≤ y1 and α(T ) ≤ yT . Similarly a function β ∈ AC2
δ ([1, T ], E) is said to be

an upper solution of (1.1)-(1.2), if there exists a function v2 ∈ L1([1, T ], E) with
v2(t) ∈ F (t, β(t)), for a.e t ∈ [1, T ], such that H

CD
rβ(t) ≥ v2(t) and the function β

satisfies the conditions β(1) ≥ y1 and β(T ) ≥ yT .

Lemma 3.2. Let h belong to AC2
δ ([1, T ], E). For r ∈ (1, 2], A function y is a solution

of the fractional integral equation

y(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
h(s)

ds

s

+
log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
h(s)

ds

s

]
+ y1

(3.1)

if y is a solution of the nonlinear fractional boundary value problem

H
CD

ry(t) = h(t) for a.e. t ∈ J = [1, T ], (3.2)

y(1) = y1, y(T ) = yT (3.3)
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Proof. Applying the Hadamard fractional integral of order r to both sides of (3.2),
and by using Lemma 2.9, we find

y(t) = c1 + c2 log t+HIrh(t). (3.4)

Then by using the conditions (3.3), we get

c1 = y1

and

y(T ) =
1

Γ(r)

∫ T

1

(
log

T

s

)r−1
h(s)

ds

s
+ y1 + c2(log T ).

Hence

c2 =

yT − y1 −
1

Γ(r)

∫ T

1

(
log

T

s

)r−1
h(s)

ds

s

log T
.

Finally, we obtain the solution (3.1). �

Theorem 3.3. Assume that:

(H1) F : [1, T ]× E → Pcp,c(E) is a Carathéodory multi-valued map.
(H2) There exists a function p ∈ C(J,E) such that

‖F (t, y)‖P = sup{|v| : v(t) ∈ F (t, y)} ≤ p(t)
(H3) There exists l > 0 such that

Hd(F (t, x), F (t, x̄)) ≤ l|x− x̄| for every x, x̄ ∈ E
(H4) For each bounded set B ⊂ C(J,E) and for each t ∈ J , we have

ζ(F (t, B)) ≤ p(t)ζ(B),

where ζ is a measure of noncompactness on E.
(H5) The function ϕ = 0 is the unique solution in C(J, [1, 2R]) of the inequality

ϕ(t) ≤ 2

Γ(r)

∫ t

1

(
log

t

s

)r−1
ψ(s, ζ(M(s))

ds

s

+
2 log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
ψ(s, ζ(M(s))

ds

s

]
for t ∈ J .

(H6) There exists α and β ∈ AC2
δ ([1, T ], E), lower and upper solutions for the

problem (1.1)-(1.2) such that α ≤ β.

Then the BVP (1.1)-(1.2) has at least one solution y in J.

Proof. We wish to transform the problem (1.1)-(1.2) into a fixed point problem.
Consider the following modified problem

H
CD

ry(t) ∈ F (t, (τy)(t)), for a.e t ∈ J = [1, T ], 1 < r ≤ 2, (3.5)

y(1) = y1, y(T ) = yT (3.6)
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where τ : C(J,E) 7→ C(J,E) be the truncation operator defined by

(τy)(t) =

 α(t), y(t) < α(t),
y(t), α(t) ≤ y(t) ≤ β(t),
β(t), y(t) > β(t)

A solution to (3.5)-(3.6) is a fixed point of the operator N : C([1, T ], E) 7→
P(C([1, T ], E)) defined by

N(y)=


h∈AC2

δ ([1, T ], E) :

h(t) = y1

+
log t

log T

[
yT−y1−

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
g(s)

s
ds

]

+
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
g(s)

s
ds, g ∈ ŜF,τy


such that

ŜF,τy = {g ∈ SF,τy, g(t) ≥ v1(t) a.e. on A1 and g(t) ≤ v2(t) a.e. on A2},
SF,τy = {g ∈ L1([1, T ], E), g(t) ∈ F (t, (τy)(t)) for a.e. t ∈ J},

A1 = {t ∈ J, y(t) < α(t) ≤ β(t)}, A2 = {t ∈ J, α(t) ≤ β(t) < y(t)}.
(It is clear that ŜF,τy is nonempty, and this is for the reason that SF,τy is nonempty).
We shall show that N satisfies the assumptions of Mönch’s fixed point theorem. The
proof will be given in several steps.

Step 1: N(y) is convex for each y ∈ C(J,E).

Indeed, if h1, h2 belong to N(y), then there exist g1, g2 ∈ ŜF,τy such that for each
t ∈ J we have

hi(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
gi(s)

s
ds

+
log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
gi(s)

s
ds

]
+ y1.

For i = 1, 2, let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(dh1 + (1− d)h2)(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
[dg1 + (1− d)g2]

s
ds

+
log t

log T

[
1

Γ(r)

∫ T

1

(
log

T

s

)r−1
[dg1 + (1− d)g2]

s
ds

]
.

Since ŜF,τy is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(y).

Step 2: N(M) is relatively compact for each compact M ⊂ C(J,E) .

Let M ⊂ C(J,E) be a compact set and let (hn) by any sequence of elements of
N(M). We show that (hn) has a convergent subsequence by using the Arzela-Ascoli
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criterion of compactness in C(J,E). Since hn ∈ N(M) there exist yn ∈ M and

gn ∈ ŜF,τyn such that

hn(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
gn(s)

s
ds

+
log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
gn(s)

s
ds

]
+ y1,

for n ≥ 1. Using Theorem 2.5 and the properties of the measure of noncompactness
of Kuratowski, we have

ζ({hn(t)}) ≤ 2

Γ(r)

∫ t

1

ζ

({(
log

t

s

)r−1
gn(s)

ds

s
: n ≥ 1

})

+
2 log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

ζ

({(
log

T

s

)r−1
gn(s)

ds

s
: n ≥ 1

})]
.

(3.7)
On the other hand, since M(s) is compact in E, the set {gn(s) : n ≥ 1} is compact.
Consequently, ζ(gn(s) : n ≥ 1) = 0 for a.e. s ∈ J . Furthermore

ζ

({(
log

t

s

)r−1
gn(s)

ds

s

})
=

(
log

T

s

)r−1
1

s
ζ({gn(s) : n ≥ 1}) = 0,

and

ζ

({(
log

T

s

)r−1
gn(s)

ds

s

})
=

(
log

T

s

)r−1
1

s
ζ({gn(s) : n ≥ 1}) = 0,

for a.e. t, s ∈ J . Now (3.7) implies that {hn(t) : n ≥ 1} is relatively compact in B,
for each t ∈ J . In addition, for each t1 and t2 from J , t1 < t2, we have

|hn(t2)− hn(t1)| =
∣∣∣ 1

Γ(r)

∫ t1

1

[(
log

t2
s

)r−1
−
(

log
t1
s

)r−1]
gn(s)

ds

s

+
1

Γ(r)

∫ t2

t1

(
log

t2
s

)r−1
gn(s)

ds

s

+
(log t2 − log t1)

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
gn(s)

ds

s

] ∣∣∣
≤ p(t)

Γ(r)

∫ t1

1

[(
log

t2
s

)r−1
−
(

log
t2
s

)r−1]
ds

s

+
p(t)

Γ(r)

∫ t2

t1

(
log

t2
s

)r−1
ds

s

+
(log t2 − log t1)

log T

[∣∣∣∣∣yT − y1 − 1

Γ(r)

∫ T

1

(
log

T

s

)r−1
gn(s)

ds

s

∣∣∣∣∣
]
.

As t1 → t2, the right hand side of the above inequality tends to zero. This shows
that{hn : n ≥ 1} is equicontinuous. Consequently, {hn : n ≥ 1} is relatively compact
in C(J,E).
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Step 3: The graph of N is closed .

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We need to show that h∗ ∈ N(y∗). Now
hn ∈ N(yn) means that there exists vn ∈ SF,yn such that, for each t ∈ J ,

hn(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
gn(s)

s
ds

+
log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
gn(s)

s
ds

]
+ y1, , gn ∈ ŜF,τyn .

We must show that there exists v∗ ∈ SF,y∗ such that for each t ∈ J

h∗(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
g∗(s)

s
ds

+
log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
g∗(s)

s
ds

]
+ y1, , g∗ ∈ ŜF,τy∗ .

Since F (t, ·, ·) is upper semicontinuous, for every ε > 0, there exists n0(x) such that
for every n ≥ n0, we have vn ∈ F (t, y(t), x(t)) ⊂ F (t, y∗(t), x∗(t))+εB(0, 1) a,e. t ∈ J.
And since F has compact values, there exists a subsequence vnm

(·) such that

vnm(.)→ v∗ as m→∞,

v∗ ∈ F (t, y∗(t)) as t ∈ J.
For every w(t) ∈ F (t, y∗(t)), we have

|vnm
− v∗| ≤ |vnm

− w(t)|+ |w(t)− v∗|

and so

|vnm
− v∗| ≤ d(vnm

(t), F (t, y∗(t))).

By an analogous relation obtained by interchanging the roles of vnm and v∗, it follows
that

|vnm − v∗| ≤ Hd(F (t, ynm(t), F (t, y∗(t)))
≤ l|ynm

− y∗|.
Therefore,

|hn(t)− h∗(t)| ≤
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
l|vnm − v∗|ds

+
1

Γ(r)

∫ T

1

(
log

T

s

)r−1
l|vnm − v∗|ds

≤ l(log T )r

Γ(r + 1)
‖ynm

− y∗‖L1 .

Hence

‖hn(t)− h∗(t)‖∞ → 0, as m→∞.

Step 4: M is relatively compact in C(J,E)
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Suppose M ⊂ C(J,E), M ⊂ conv({0} ∪ N(M)), and M = C for some countable
set C ⊂ M . Using an estimation similar to the one used in Step 2, we can see that
N(M) is equicontinuous. Then from M ⊂ conv({0} ∪N(M)), we deduce that M is
equicontinuous as well. To apply the Arzéla-Ascoli theorem, it remains to show that
M(t) is relatively compact in E for each t ∈ J . Since C ⊂ M ⊂ conv({0} ∪ N(M))
and C is countable, we can find a countable set H = {hn : n ≥ 1} ⊂ N(M) with

C ⊂ conv({0} ∪H). Then, there exist yn ∈M and gn ∈ ŜF,τyn such that

hn(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
gn(s)

ds

s

+
log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
gn(s)

ds

s

]
+ y1.

From M ⊂ C ⊂ conv({0} ∪H)), and according to Theorem 2.5, we have

ζ(M(t)) ≤ ζ(C(t) ≤ ζ(H(t)) = ζ({hn((t) : n ≥ 1}).
Using (3.7) and the fact that gn(s) ∈M(s), we obtain

ζ(M(t)) ≤ 2

Γ(r)

∫ t

1

ζ

({(
log

t

s

)r−1
gn(s)

ds

s
: n ≥ 1

})

+
2 log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

ζ

({(
log

T

s

)r−1
gn(s)

ds

s
: n ≥ 1

})]

≤ 2

Γ(r)

∫ t

1

(
log

t

s

)r−1
ζ(M(s))

ds

s

+
2 log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
ζ(M(s))

ds

s

]

≤ 2

Γ(r)

∫ t

1

(
log

t

s

)r−1
ψ(s, ζ(M(s))

ds

s

+
2 log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
ψ(s, ζ(M(s))

ds

s

]
Also, the function ϕ given by ϕ(t) = ζ(M(t)) belongs to C(J,E). Consequently by
(H4), ϕ = 0; that is, ζ(M(t)) = 0 for all t ∈ J . Now, by the Arzéla-Ascoli theorem,
M is relatively compact in C(J,E).

Step 5: The priori estimate

Let h ∈ C(J,E) such that y ∈ λN(y) for some 0 < λ < 1.

h(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
g(s)

s
ds

+
log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
g(s)

s
ds

]
+ y1 g ∈ ŜF,τy,
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and

‖N(y)‖P ≤

∣∣∣∣∣ 1

Γ(r)

∫ T

1

(
log

T

s

)r−1
g(s)

s
ds

∣∣∣∣∣
+

∣∣∣∣∣yT − y1 − 1

Γ(r)

∫ T

1

(
log

T

s

)r−1
g(s)

s
ds

∣∣∣∣∣+ |y1|

≤ 1

Γ(r)

∫ T

1

(
log

T

s

)r−1 |g(s)|
s

ds+ |yT |+ |y1|

+
1

Γ(r)

∫ T

1

(
log

T

s

)r−1 |g(s)|
s

ds+ |y1|

≤ 2(log T )
r

Γ(r + 1)

∫ T

1

p(s)ds+ |y1|+ |yT |

≤ 2p∗(log T )
r

Γ(r + 1)
+ |y1|+ |yT |.

where

p∗ = sup{|p(t)| : t ∈ J}.

Then

‖N(y)‖P ≤
2p∗(log T )

r

Γ(r + 1)
+ |y1|+ |yT | := R.

Set

U = {u ∈ C(J,E) : ‖N(y)‖P ≤ 1 +R}.

Hence the condition (2.2) is satisfied. As a consequence of Steps 1− 5 and Theorem
(2.5), we conclude that N has a fixed point y ∈ C(J,E) which is a solution of problem
(1.1)-(1.2).

Step 6: the solution y of (3.5)-(3.6) satisfies

α(t) ≤ y(t) ≤ β(t), for all t ∈ J

Let y be a solution to (3.5)-(3.6). We prove that

y(t) ≤ β(t), for all t ∈ J.

Suppose not. Then there exists t1, t2 ∈ J , t1 < t2 such that y(t1) = β(t1) and

y(t) > β(t) for all t ∈ [t1, t2]. (3.8)

In view of the definition of τ one has

y(t) ∈
∫ t

t1

F (s, β(s))ds for all t ∈ (t1, t2).
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Thus there exists g(s) ∈ F (s, β(s)) for all s ∈ (t1, t2) with g ≤ v2(t) for all s ∈ (t1, t2)

y(t) =
1

Γ(r)

∫ t

t1

(
log

t

s

)r−1
g(s)

ds

s
+

log t

log t2

[
y(t2)− 1

Γ(r)

∫ t2

t1

(
log

t2
s

)r−1
g(s)

ds

s

]

+ y(t1)

(
1− 1

log t2

)
(3.9)

An integration on (t1, t], with t ∈ (t1, t2) and there exists g(.) ∈ F (., β(.)) yields

y(t)− y(t1) =
1

Γ(r)

∫ t

t1

(
log

t

s

)r−1
g(s)

ds

s

+
log t

log t2

[
y(t2)− 1

Γ(r)

∫ t2

t1

(
log

t2
s

)r−1
g(s)

ds

s

]

− y(t1)

log t2
.

Using the fact that β is an upper solution to (3.5)-(3.6) we find

β(t)− β(t1) ≥ 1

Γ(r)

∫ t

t1

(
log

t

s

)r−1
g(s)

ds

s

+
log t

log t2

[
y(t2)− 1

Γ(r)

∫ t2

t1

(
log

t2
s

)r−1
g(s)

ds

s

]

− y(t1)

log t2
, t ∈ (t1, t2).

It follows from y(t1) = β(t1) that

β(t) ≥ y(t), for all t ∈ (t1, t2),

which is a contradiction, since y(t) > β(t) for all t ∈ (t1, t2). Consequently

β(t) ≥ y(t), for all t ∈ J.

Analogously, we can prove that

α(t) ≤ y(t), for all t ∈ J.

This shows that

α(t) ≤ y(t) ≤ β(t), for all t ∈ J. �

4. Nonoscillation and oscillation of solutions

The following theorem gives sufficient conditions to ensure the nonoscillation of
solutions of problem (1.1)-(1.2).

Theorem 4.1. Let α and β be lower and upper solutions, respectively, of (1.1)-(1.2)
with α ≤ β and assume that

(H5) α is eventually positive nondecreasing, or β is eventually negative nonincreas-
ing. Then every solutions y of (1.1)-(1.2) such that y ∈ [α, β] is nonoscillatory.
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Proof. Assume that α is eventually positive. Thus there exists Tα > 1 such that

α(t) > 0, for all t > Tα.

Hence y(t) > 0 for all t > Tα. From (H4) we get y(t) ≥ α(t). Since for each h > 0,
α(t+h) ≥ α(t) > 0, then y(t) > 0 for all t > Tα, which means that y is nonoscillatory.
Analogously, if β eventually negative, then there exists Tβ > 1 such that

y(t) < 0, for all t > Tβ ,

which means that y is nonoscillatory. �
The following theorem discusses the oscillatory of the solutions of the problem

(1.1)-(1.2).

Theorem 4.2. Let α and β be lower and upper solutions, respectively, of (1.1)-(1.2)
with α ≤ β and assume that α(t) and β(t) are oscillatory then every solution y of
(1.1)-(1.2) such that y ∈ [α, β] is oscillatory.

Proof. Suppose on the contrary that y is nonoscillatory solutions of (1.1)-(1.2). Then
there exists Ty > 1 such that y(t) > 0 for all t > Ty or y(t) < 0 for all t > Ty. In the
case y(t) > 0 for all t > Ty we have β(t) > 0 for all t > Ty, which is a contradiction
since β(t) is an oscillatory upper solution. Analogously in the case y(t) < 0 for all
t > Ty we have α(t) < 0 for all t > Ty, which is also a contradiction since α(t) is an
oscillatory lower solution. �

5. An example

We conclude this paper with an example to illustrate our main result. Let

E = l1 = {(y1, y2, ..., yn, ..),
∞∑
1

|yn| <∞},

be our Banach space with norm

‖y‖E =

∞∑
1

|yn|.

We apply the Theorems (3.3),(4.1) and (4.2) to the the following fractional differential
inclusion

H
CD

ry(t) ∈ Fn(t, y(t)), for a.e t ∈ J1 = [1, e], 1 < r ≤ 2, (5.1)

y(1) = y1, y(e) = y2 (5.2)

We set

Fn(t, y) = {v ∈ R : fn(t, y) ≤ v ≤ hn(t, y)}
where fn, hn : [1, e] × E 7→ E. We assume that for each t ∈ [1, e], fn(t, ·) is lower
semi-continuous (i.e., the set {y ∈ E : fn(t, y) > µ} is open for each µ ∈ E), and
assume that for each t ∈ [1, e], hn(t, ·) is upper semi-continuous (i.e., the set {y ∈ E :
f2(t, y) < µ} is open for each µ ∈ E) with y = (y1, y2, . . . , yn, . . .).
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Set F = (F1, F2, . . . , Fn, . . .), f = (f1, f2, . . . , fn, . . .), g = (g1, g2, . . . , gn, . . .)..
Assume that there exists p ∈ C([1, e],R+) such that,

‖F (t, u)‖P = sup{|v|, v(t) ∈ F (t, y(t))}
= max(|fn(t, y(t))|, |gn(t, y(t))|)
≤ p(t), for each t ∈ [1, e], y ∈ E.

It is clear that F is compact and convex-valued, and it is upper semi-continuous, and
furthermore, we assume that there exists h1(.), h2(.) ∈ L1(J,E) such that

h1(t) ≤ max(|fn(t, y)|, |hn(t, y)|) ≤ h2(t), for all t ∈ J, and y ∈ E,

and for each t ∈ J ∫ t

1

h1(s)
ds

s
≤ y1 and

∫ t

1

h1(s)
ds

s
≤ yT ,

∫ t

1

h2(s)
ds

s
≥ y1 and

∫ t

1

h2(s)
ds

s
≥ yT ,

Consider the functions

α(t) =

∫ t

1

g1(s)
ds

s
, β(t) =

∫ t

1

g2(s)
ds

s
.

Clearly, α and β are lower and upper solutions of the problem (5.1)-(5.2), respectively;
that is,

H
CD

rα(t) ≤ fn(t, α(t)), for all t ∈ J1 and all y ∈ E,

and
H
CD

rβ(t) ≥ hn(t, β(t)), for all t ∈ J1 and all y ∈ E,

We also assume that for each bounded set B ⊂ C(J,E) and for each t ∈ J , we have

ζ(F (t, B) ≤ p(t)α(B),

where α is a measure of noncompactness on E, and the function φ = 0 is the unique
solution in C(J,E) of

ϕ(t) ≤ 2

Γ(r)

∫ t

1

(
log

t

s

)r−1
ϕ(s, φ(s))

ds

s

+
2 log t

log T

[
yT − y1 −

1

Γ(r)

∫ T

1

(
log

T

s

)r−1
ϕ(s, φ(s))

ds

s

]
for t ∈ J .
Since all the conditions of the Theorem (3.3) are satisfied, problem (5.1)-(5.2) has at
least one solution y on J1 with α < y < β. If h1(t) > 0 then α is positive and non-
decreasing, thus y(t) is nonoscillatory. If h2(t) then β is negative and nonincreasing,
thus y(t) is nonoscillatory. If the functions α(t) and β(t) are both oscillatory, then
y(t) is oscillatory.
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[34] I.A. Rus, M.A. Şerban, Basic problems of the metric fixed point theory and the relevance of a

metric fxed point theorem, Carpathian J. Math., 29(2013), no. 2, 239-258.

Received: April 4, 2021; Accepted: June 28, 2022.


