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Vǐsegradska 33, Nǐs, 18000, Serbia
E-mail: vrakoc@sbb.rs (Corresponding author)

Abstract. In this article, we study the existence of a common best proximity points for a finite
class of cyclic relatively nonexpansive mappings in the setting of Busemann convex spaces. In this

way, we extend the main results given in Eldred and Raj (2009) [A.A. Eldred, V.S. Raj, On common

best proximity pair theorems, Acta Sci. Math. (Szeged), 75, 707-721] for relatively nonexpansive
mappings in Banach spaces to more general metric spaces. We then present a strong convergence

theorem of a common best proximity point for a pair of cyclic mappings in uniformly convex Banach

spaces by using the Ishikawa iterative process.
Key Words and Phrases: Best proximity point, fixed point, cyclic relatively nonexpansive, uni-

formly convex Banach space, iterative sequence.

2020 Mathematics Subject Classification: 47H09, 47H10, 90C48, 46B20.

1. Introduction

Let A and B be two nonempty and disjoint subsets of a metric space (X, d). A
mapping T : A ∪B → A ∪B is called cyclic provided that T (A) ⊆ B and T (B) ⊆ A.
Then d(x, Tx) ≥ dist(A,B) := inf{d(x, y) : (x, y) ∈ A × B} for any x ∈ A ∪ B. In
this case, it is natural to ask how can we find a solution for a minimization problem

min
x∈A∪B

d(x, Tx). (1.1)

A point p ∈ A ∪ B is said to be a best proximity point for the cyclic mapping
T : A∪B → A∪B if p is a solution for the minimization problem (1.1). Equivalently,
p ∈ A ∪B is called a best proximity point for T , whenever

d(p, Tp) = dist(A,B) := inf{d(x, y) : (x, y) ∈ A×B}.
595
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Inspired of cyclic mappings, we say that the mapping T : A ∪ B → A ∪ B is
noncyclic whenever T (A) ⊆ A, T (B) ⊆ B. For noncyclic case, we can consider the
following minimization problem:

min
x∈A

d(x, Tx), min
y∈B

d(y, Ty), min
(x,y)∈A×B

d(x, y). (1.2)

We say that a point (x?, y?) ∈ A × B is a best proximity pair for the noncyclic
mapping T if it is a solution of (1.2), or equivalently, x? = Tx?, y? = Ty? and
d(x?, y?) = dist(A,B).

We recall that the mapping T : A ∪ B → A ∪ B is relatively nonexpansive if
d(Tx, Ty) ≤ d(x, y) for any (x, y) ∈ A×B.

The following existence theorem was established in [5].

Theorem 1.1. Let (A,B) be a nonempty, weakly compact and convex pair in a
strictly convex Banach space with proximal normal structure. Let S = {T1, T2, ..., Tn}
be a commuting family of cyclic relatively nonexpansive mappings on A∪B. Then S
has a common best proximity point, that is, there exists a point p ∈ A ∪B such that

‖p− Tjp‖ = dist(A,B), ∀j ∈ {1, 2, ..., n}.

This article is organized as follows: in Section 2, we recall some notions and nota-
tions which will be used throughout this paper. In Section 3, we generalize Theorem
1.1 from strictly convex Banach spaces to reflexive Busemann convex spaces and by
considering the projection mappings, we establish a same result of Theorem 1.1 for
noncyclic relatively nonexpansive mappings. In Section 4, by using the Ishikawa it-
eration process, we prove a strong convergence theorem of common best proximity
points for a pair of cyclic mappings in the setting of uniformly convex Banach spaces.

2. Preliminaries

A metric space (X, d) is said to be a (uniquely) geodesic space if every two points
x and y of X are joined by a (unique) geodesic, i.e., a map c : [0, l] ⊆ R → X such
that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. A subset A of
a geodesic space X is said to be convex if the image of any geodesic that joins each
pair of points x and y of A (geodesic segment [x, y]) is contained in A. A point z
in X belongs to a geodesic segment [x, y] if and only if there exists t ∈ [0, 1] such
that d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y) and we write z = (1 − t)x ⊕ ty
for simplicity. Notice that this point may not be unique. Any Banach space is for
instance a geodesic space with usual segments as geodesic segments.

Definition 2.1. A geodesic metric space X is said to be reflexive if for every de-
creasing chain {Cα} ⊆ X with α ∈ I such that Cα is nonempty, bounded, closed and

convex for all α ∈ I we have that
⋂
α∈I

Cα 6= ∅.

We mention that reflexive Banach spaces can be considered as reflexive geodesic
spaces. Also, it is well-known that every complete uniformly convex metric space
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with either a monotone or lower semicontinuous from the right modulus of uniform
convexity is reflexive (see [19] for more details).

Let (X, d) be a uniquely geodesic space. The metric d : X ×X → R is said to be
convex if for any x, y, z ∈ X one has

d(x, (1− t)y ⊕ tz) ≤ (1− t)d(x, y) + td(x, z) for all t ∈ [0, 1].

Definition 2.2. ([3]) A geodesic space (X, d) is called convex in the sense of Buse-

mann if given any pair of geodesics c1 : [0, l1]→ X and c2 : [0, l2]→ X one has

d(c1(tl1), c2(tl2)) ≤ (1− t)d(c1(0), c2(0)) + td(c1(l1), c2(l2)) for all t ∈ [0, 1].

Equivalently, a geodesic metric space (X, d) is convex in the sense of Busemann pro-
vided that

d((1− t)x⊕ ty, (1− t)z ⊕ tw) ≤ (1− t)d(x, z) + td(y, w),

for all x, y, z, w ∈ X and t ∈ [0, 1].
A reflexive and Busemann convex space is complete (see [9, Lemma 4.1]).

Definition 2.3. ([1]) A metric space is said to be strictly convex if X is a geodesic
space and for every r > 0, a, x and y ∈ X with d(x, a) ≤ r, d(y, a) ≤ r and x 6= y,
it is the case that d(a, p) < r, where p is any point between x and y such that p 6= x
and p 6= y, i.e., p is any point in the interior of a geodesic segment that joins x and y.

It is worth noticing that Busemann convex spaces are strictly convex with convex
metric ([10]).

We shall say that a pair (A,B) of subsets of a geodesic space X satisfies a property
if both A and B satisfy that property. For example, (A,B) is convex if and only if
both A and B are convex; (A,B) ⊆ (C,D) ⇔ A ⊆ C, and B ⊆ D. We shall also
adopt the notation

δx(A) = sup{d(x, y) : y ∈ A} for all x ∈ X,
δ(A,B) = sup{δx(B) : x ∈ A},

diam(A) = δ(A,A).

From now on, B(a; r) will denote the closed ball in the space X centered at a ∈ X
with radius r > 0.

For a nonempty pair (A,B) in a metric space (X, d), we define

A0 = {x ∈ A : d(x, y′) = dist(A,B) for some y′ ∈ B},
B0 = {y ∈ B : d(x′, y) = dist(A,B) for some x′ ∈ A}.

The pair (A0, B0) is called the proximal pair of the pair (A,B). It is worth mentioning
that proximal pairs may be empty. It is easy to see that the proximal pair of every
nonempty, weakly compact and convex pair in a Banach space is also nonempty,
weakly closed and convex. In more general, we have the following result in the setting
of Busemann convex spaces.

Proposition 2.1. (Proposition 3.1 of [11]) If (A,B) is a nonempty, closed and convex
pair in a reflexive and Busemann space X such that B is bounded, then (A0, B0) is
nonempty, bounded, closed and convex.
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Definition 2.4. A pair (A,B) in a Banach space is said to be proximinal if A = A0

and B = B0.
We mention that if A is a nonempty subset of a geodesic space X, then the (closed)

convex hull of A is the smallest (closed) convex set containing the set A or equivalently,
the intersection of all (closed) convex sets containing the set A. The convex hull and
closed convex hull of the set A will be denoted by con(A) and con(A), respectively.

Bridson and Haefliger ([2]) presented an interesting equivalent concept of the con-
vex hull of a set as follows:

Lemma 2.1. Let A be a nonempty subset of a geodesic space X. Let G1(A) denote
the union of all geodesic segments with endpoints in A. Recursively, for n ≥ 2 put
Gn(A) = G1(Gn−1(A)). Then

con(A) =

∞⋃
n=1

Gn(A).

It is worth noticing that in a Busemann convex space X the closure of con(A) is
convex and so, coincides with con(A) ([8]).

The next lemmas play important roles in our main results.

Lemma 2.2. (Lemma 3.7 of [15]) Let (A,B) be a nonempty, closed and convex pair
in a reflexive and Busemann convex space (X, d). Assume that (E,F ) ⊆ (A,B)
is a nonempty and proximinal pair with dist(E,F ) = dist(A,B). Then the pair
(con(E), con(F )) is proximinal with

dist(con(E), con(F )) = dist(A,B).

If A is a nonempty subset of a metric space (X, d), then the metric projection
operator is a set-valued mapping PA : X → 2A which is defined as

PA(x) := {y ∈ A : d(x, y) = dist({x}, A)},
where 2A denotes the set of all subsets of A. It is well-known that if A is a nonempty,
bounded, closed and convex subset of reflexive Busemann convex space X, then the
metric projection PA is single-valued from X to A.

Proposition 2.2. ([12, 13]) Let (A,B) be a nonempty, bounded, closed and convex
pair in a reflexive Busemann convex space X. Define P : A0 ∪B0 → A0 ∪B0 as

P(x) =

{
PA0(x) if x ∈ B0,

PB0(x) if x ∈ A0.
(2.1)

Then the following statements hold.
(i) P is cyclic on A0 ∪B0 and d(x,Px) = dist(A,B) for any x ∈ A0 ∪B0,
(ii) If X is a Hilbert space, then P is relatively isometry, that is, d(Px,Py) = d(x, y)
for all (x, y) ∈ A0 ×B0,
(iii) P is affine,
(iv) P2|A0

= iA0
and P2|B0

= iB0
, where iA0

denotes the identity mapping on A0,
(v) P|A0 and P|B0 are continuous,
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(vi) If moreover, T : A ∪ B → A ∪ B is a cyclic (noncyclic) relatively nonexpansive
mapping, then (A0, B0) is T -invariant, that is, T is cyclic (noncyclic) on A0∪B0 and
also T and P commute on A0 ∪B0.

Here, we recall a well-known geometric notion of Banach spaces, called uniformly
convexity, and some of related suitable properties.

Definition 2.5. A Banach space X with positive modulus of convexity δX(ε) is said
to be uniformly convex where 0 < ε < 2 and

δX(ε) := inf{1− ‖x+ y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}.

It is well-known that Hilbert and lp spaces (1 < p <∞) are uniformly convex.
Also, it is worth noticing that the uniform convexity can be defined on geodesic spaces
as follows.

Definition 2.6. ([19]) A geodesic metric space (X, d) is said to be uniformly convex
if for any r > 0 and any ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all a, x, y ∈ X
with d(x, a) ≤ r , d(y, a) ≤ r and d(x, y) ≥ εr, we have

d(m, a) ≤ (1− δ)r,

where m stands for a midpoint of the points x and y.
The following lemma gives a suitable property for characterization of uniformly

convex Banach spaces.

Lemma 2.3. ([22]) A Banach space X is uniformly convex if and only if for each
fixed number r > 0, there exists a continuous strictly increasing function ϕ : [0,∞)→
[0,∞) with ϕ(t) = 0⇔ t = 0, such that

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)ϕ(‖x− y‖),

for all λ ∈ [0, 1] and x, y ∈ X, where ‖x‖ ≤ r and ‖y‖ ≤ r.
Uniformly convex Banach spaces has another interesting property which states as

below.

Lemma 2.4. ([6]) Let A be a nonempty, closed and convex subsets and B be a
nonempty and closed subset of a uniformly convex Banach space X. Let {xn} and
{zn} be sequences in A and let {yn} be a sequence in B satisfying

(i) ‖xn − yn‖ → dist(A,B),
(ii) ‖zn − yn‖ → dist(A,B).

Then ‖xn − zn‖ → 0.
We also refer to the following auxiliary lemma.

Lemma 2.5. Consider a strictly increasing function φ : [0,∞)→ [0,∞) with φ(0) =
0. If a sequence {rn} in [0,∞) satisfies limn→∞ φ(rn) = 0, then limn→∞ rn = 0.
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Definition 2.7. ([21]) Let (A,B) be a pair of nonempty subsets of a metric space
(X, d) with A0 6= ∅. The pair (A,B) is said to have P-property if and only if{

d(x1, y1) = dist(A,B)

d(x2, y2) = dist(A,B)
⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A0 and y1, y2 ∈ B0.
It was announced in [18] that every nonempty, bounded, closed and convex pair in

a reflexive and Busemann convex space X has the P-property.
A concept of proximal normal structure was first introduced in [4]. It was then

improved in [11] from Banach spaces to geodesic spaces as below.

Definition 2.8. A convex pair (K1,K2) in a geodesic space is said to have prox-
imal normal structure (PNS) if for any bounded, closed, convex and proximinal
pair (H1, H2) ⊆ (K1,K2) for which dist(H1, H2) = dist(K1,K2) and δ(H1, H2) >
dist(H1, H2), there exists (x1, x2) ∈ H1 ×H2 such that

max{δx1(H2), δx2(H1)} < δ(H1, H2).

For instance, every nonempty, compact and convex pair in a geodesic space with
convex metric, has the PNS (see Proposition 3.10 of [11]). Also, every nonempty,
bounded, closed and convex pair in a uniformly convex metric space X has the PNS
(see Proposition 3.5 of [11]).
We refer to [16] for some interesting characterization of PNS.

3. Existence results of a common best proximity pair

We begin our main conclusions with the following theorem.

Theorem 3.1. ([11]) Let X be a reflexive and Busemann convex metric space and let
(A,B) be a nonempty, closed and convex pair of subsets of X such that A is bounded.
Suppose T : A ∪ B → A ∪ B is a cyclic relatively nonexpansive mapping. If (A,B)
has the PNS, then T has a best proximity point.

We are now ready to state the first existence result of a common best proximity
point for a finite family of cyclic relatively nonexpansive mappings in Busemann
convex spaces.

Theorem 3.2. Let (A,B) be a nonempty, disjoint, bounded, closed and convex
pair in a reflexive Busemann convex space X such that (A,B) has the PNS. Let
S = {T1, T2, . . . , Tn} be a finite commuting family of cyclic relatively nonexpansive
mappings on A∪B. Then S has a common best proximity point, that is, there exists
a point x? ∈ A ∪B for which

d(x?, Tjx
?) = dist(A,B), ∀j = 1, 2, ..., n.

Proof. This result follows by applying similar patterns as in the proof of Theorem
3.1 in [5]. However, in this more general setting, several changes and new techniques
must be considered to get the result. It follows from Proposition 2.1 that (A0, B0)
is nonempty, closed and convex. Without loss of generality let us assume that S =
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{T1, T2, ..., Tn} contains an odd number of relatively nonexpansive maps. If not, then
we replace the collection S by S ′ = {T1, T2, ..., Tn, T1} and proceed. From Proposition
2.2, the proximal pair (A0, B0) associated with (A,B) is a nonempty, closed, convex
and proximinal pair with dist(A0, B0) = dist(A,B). Let Γ denote the collection of all
nonempty subsets F of A0 ∪ B0 for which F ∩ A0 and F ∩ B0 are nonempty closed
and convex with

Tj(F ∩A0) ⊆ F ∩B0, Tj(F ∩B0) ⊆ F ∩A0, ∀j = 1, 2..., n,

and dist(F ∩ A0, F ∩ B0) = dist(A,B). Then Γ is nonempty since A0 ∪ B0 ∈ Γ. By
a standard argument using Zorn’s lemma, there is a minimal element in Γ, namely
K. Let K1 = K ∩ A0 and K2 = K ∩ B0. Then (K1,K2) is a closed, bounded
and convex subset of (A,B) satisfying Tj(K1) ⊆ K2 and Tj(K2) ⊆ K1 for each
j = 1, 2..., n and dist(K1,K2) = dist(A,B). Also,(K1,K2) is proximinal. Define a
mapping G : K1 ∪K2 → K1 ∪K2 by

G(x) = T1 ◦ T2 · · · ◦ Tn(x),∀x ∈ K1 ∪K2.

Since Tj(K1) ⊆ K2 and Tj(K2) ⊆ K1 and n is odd, we conclude that G : K1 ∪K2 →
K1 ∪K2 is a cyclic relatively nonexpansive map. Put

W1 = {x ∈ K1 : d(x,G(x)) = dist(K1,K2)},
W2 = {y ∈ K2 : d(y,G(y)) = dist(K1,K2)}.

By Theorem 3.1, (W1,W2) ⊆ (K1,K2) is nonempty.
Claim 1. Tj(W1) ⊆W2 and Tj(W2) ⊆W1 for all j = 1, 2..., n.

Proof. If x ∈W1, then

d(x,G(x)) = dist(K1,K2) ≤ d(Tj(x), G(Tj(x)))

= d(Tj(x), Tj(G(x))) (by the commuting condition of S)

≤ d(x,G(x)) = dist(K1,K2).

This implies d(Tj(x), G(Tj(x))) = dist(K1,K2), for any j = 1, 2, ..., n. Hence Tj(x) ∈
W2 which implies Tj(W1) ⊆W2, for all j = 1, 2, ..., n. Similarly Tj(W2) ⊆W1 for any
j = 1, 2, ..., n.

Claim 2. G(W1) ⊆W2 and G(W2) ⊆W1.
Proof. It follows from the assumption that n is odd and Claim 1.
Claim 3. For each j ∈ {1, 2, ..., n}, Tj(W2) = W1 and Tj(W1) = W2.
Proof. Fix x ∈ W1 and j ∈ {1, 2, ..., n}. Then d(x,G(x)) = dist(K1,K2). Also since
G(x) ∈ K2 and G is relatively nonexpansive, we have

d(G(x), G2(x)) ≤ d(x,G(x)) = dist(K1,K2).

Therefore, d(G(x), G2(x)) = dist(K1,K2). Using the fact that X is strictly convex,
x = G2(x). Since S is a commuting family, we have

x = Tj(G(T1 ◦ T2 ◦ · · · ◦ Tj−1 ◦ Tj+1 ◦ · · · ◦ Tn))(x).

Take yj = G(T1 ◦T2 ◦ · · · ◦Tj−1 ◦Tj+1 ◦ · · · ◦Tn)(x). Then x = Tj(yj). Since the map

G(T1 ◦ T2 ◦ · · · ◦ Tj−1 ◦ Tj+1 ◦ · · · ◦ Tn),
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consists of an odd (2n − 1) numbers of relatively nonexpansive maps and together
with Claim 1 and Claim 2, we conclude that yj is in W2. Hence Tj(W2) = W1.
Equivalently, we can prove that Tj(W1) = W2.
Claim 4. (W1,W2) is proximinal and dist(W1,W2) = dist(K1,K2).
Proof. Since (W1,W2) ⊆ (K1,K2), for any x ∈W1 we have

dist(K1,K2) ≤ dist(W1,W2) ≤ d(x,G(x)) = dist(K1,K2).

Hence dist(W1,W2) = dist(K1,K2). Also, for any (x, y) ∈ W1 × W2, we have
(G(y), G(x)) ∈W1 ×W2 and

d(x,G(x)) = d(y,G(y)) = dist(K1,K2) = dist(W1,W2),

which ensures that (W1,W2) is a proximinal pair in (K1,K2). Notice that if

dist(W1,W2) = δ(W1,W2), then

d(x, Tj(x)) = dist(K1,K2) = dist(A,B), ∀x ∈W1, ∀j ∈ {1, 2, ..., n},
and the proof is completed. So we assume that

dist(W1,W2) < δ(W1,W2).

Set
H1 = con(W1), H2 = con(W2).

By Lemma 2.2 we have (H1, H2) is a nonempty, bounded, closed, convex and prox-
iminal pair in (K1,K2) so that

dist(H1, H2) = dist(W1,W2)

< δ(W1,W2) = δ(H1, H2) (Lemma 2.6 of [17]).

In view of the fact that (A,B) has the PNS, there exist (x1, x2) ∈ H1 × H2 and
β ∈ (0, 1) such that

max{δx1
(H2), δx2

(H1)} ≤ βδ(H1, H2).

Since (H1, H2) is a proximinal pair, there exists (x′1, x
′
2) ∈ H1 × H2 such that

d(x1, x
′
2) = d(x′1, x2) = dist(H1, H2). Now for any z ∈ H2 , using the convexity

of the metric,

d(
1

2
x1 ⊕

1

2
x′1, z) ≤

1

2
d(x1, z) +

1

2
d(x′1, z)

≤ β

2
δ(H1, H2) +

1

2
δ(H1, H2) = αδ(H1, H2),

where α := (1+β)
2 ∈ (0, 1). Suppose x0 := 1

2x1 ⊕ 1
2x
′
1 and y0 := 1

2x
′
2 ⊕ 1

2x2. Then
(x0, y0) ∈ H1 ×H2 and

δx0(H2) ≤ αδ(H1, H2), δy0(H1) ≤ αδ(H1, H2),

and that d(x0, y0) = dist(H1, H2). Define

L1 = {x ∈ H1 : δx(H2) ≤ αδ(H1, H2)},
L2 = {y ∈ H2 : δy(H1) ≤ αδ(H1, H2)}.

Then (L1, L2) is a nonempty, closed, and convex subset of (H1, H2) and since
(x0, y0) ∈ L1×L2, we have dist(L1, L2) = dist(H1, H2)(= dist(W1,W2) = dist(A,B)).
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We show that if x ∈ L1, then Tj(x) ∈ L2 or equivalently, δTj(x)(H1) ≤ αδ(H1, H2), for
all j ∈ {1, 2, ..., n}. Let w ∈ W1 be an arbitrary element. Then there exists wj ∈ W2

such that w = Tj(wj). We now have

d(Tj(x), w) = d(Tj(x), Tj(wj)) ≤ d(x,wj) ≤ δx(W2) ≤ δx(H2) ≤ αδ(H1, H2).

Thereby, δTj(x)(W1) ≤ αδ(H1, H2), that is, Tj(L1) ⊆ L2. By a similar manner, we can
see that Tj(L2) ⊆ L1 for any j = 1, 2..., n. Hence, L1 ∪ L2 ∈ Γ. On the other hand,
δ(L1, L2) ≤ αδ(H1, H2) < δ(K1,K2), which is a contradiction by the minimality of
(K1,K2).

The following results can be concluded, immediately.

Corollary 3.1. Let (A,B) be a nonempty, compact and convex pair in a Busemann
convex (X, d). If S = {T1, T2, ..., Tn} is a commuting family of cyclic relatively non-
expansive mappings, then S has a common best proximity point.

Corollary 3.2. Let (A,B) be a nonempty, bounded, closed and convex pair in a
Busemann convex (X, d) which is uniformly convex in the sense of Definition 2.2. If
S = {T1, T2, ..., Tn} is a commuting family of cyclic relatively nonexpansive mappings,
then S has a common best proximity point.

Example 3.1. Let X = R2 and d be the river metric on X defined with

d((x1, y1), (x2, y2)) =

{
|y1 − y2|, if x1 = x2,

|x1 − x2|+ |y1|+ |y2|, if x1 6= x2.

It is well known that (R2, d) is a complete R-tree and so, is a reflexive and Busemann
convex space (see [7]). Suppose A = {(0, y) : 0 ≤ y ≤ 1} and B = {(1, y) : 0 ≤ y ≤ 1}.
Then (A,B) is compact and convex and so has the PNS with dist(A,B) = 1. Define
a pair of mappings T, S : A ∪B → A ∪B by

T (x, y) =


(1, y2 ) if x = 0, y ∈ Q ∩ [0, 1],

(1, 0) if x = 0, y ∈ Qc ∩ [0, 1],

(0, y2 ) if x = 1, y ∈ Q ∩ [0, 1],

(0, 0) if x = 1, y ∈ Qc ∩ [0, 1],

Sx =


(1, y4 ) if x = 0, y ∈ Q ∩ [0, 1],

(1, 0) if x = 0, y ∈ Qc ∩ [0, 1],

(0, y4 ) if x = 1, y ∈ Q ∩ [0, 1],

(0, 0) if x = 1, y ∈ Qc ∩ [0, 1].

Then T, S are commuting mappings that are cyclic and relatively nonexpansive.
Therefore, all of the assumptions of Theorem 3.2 hold. It is worth noticing that
the points (0, 0) and (1, 0) are best proximity points for the mappings T and S.

We can apply Theorem 3.2 to establish the existence of a common best proximity
pairs for noncyclic relatively nonexpansive mappings as follows. To this end, we need
the following geometric concept.
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Definition 3.1. [14] Let (A,B) be a nonempty pair of subsets of a metric space (X, d)
such that A0 is nonempty. We say that the pair (A,B) has the diagonal property
provided that {

d(x1, y1) = dist(A,B),

d(x2, y2) = dist(A,B),
⇒ d(x1, y2) = d(x2, y1),

for any x1, x2 ∈ A0 and y1, y2 ∈ B0.
For instance if (A,B) is a pair of nonempty subsets of a metric space (X, d) such

that dist(A,B) = 0, then (A,B) has the diagonal property.
Also, every two parallel segments in the Euclidian plan R2 has the diagonal property.
In more general, every nonempty, closed and convex pair in Hilbert spaces has the
diagonal property.

Theorem 3.3. Let (A,B) be a nonempty, bounded, closed and convex pair in a
reflexive Busemann convex space (X, d) such that (A,B) has both the PNS and the
diagonal property. Suppose S = {H1, H2, ...,Hn} is a finite commuting family of
noncyclic relatively nonexpansive mappings on A ∪ B. Then S has a common best
proximity pair, that is, there is a point (p, q) ∈ A×B such that

Hjp = p, Hjq = q, d(p, q) = dist(A,B), ∀j ∈ {1, 2, ..., n}.
Proof. It follows from Proposition 2.1 that (A0, B0) is nonempty and it is also closed
and convex. For any j ∈ {1, 2, ..., n} put

Tj := HjP : A0 ∪B0 → A0 ∪B0,

where P is a projection mapping defined by (2.1). Since P is cyclic on A0 ∪ B0, we
obtain Tj is cyclic for any j ∈ {1, 2, ..., n}. Moreover, by the statement (vi) from the
Proposition 2.2, the mappings Hj and P commute on A0 ∪ B0. In view of the fact
that the family S is commuting, for any i, j ∈ {1, 2, ..., n} we have

Ti ◦ Tj = (HiP) ◦ (HjP) = Hi ◦ (P ◦Hj) ◦ P = Hi ◦ (Hj ◦ P) ◦ P
= Hj ◦ (Hi ◦ P) ◦ P = (Hj ◦ P) ◦ (Hi ◦ P) = Tj ◦ Ti,

that is, Ti and Tj commutes. Furthermore, for any j ∈ {1, 2, ..., n},
Tj(A0) = HjP(A0) = Hj(B0) ⊆ B0,

Tj(B0) = H1P(B0) = Hj(B0) ⊆ A0,

and so Tj is cyclic on A0∪B0. By Proposition 1.3 of [14] that P is relatively isometry,
and so for any (x, y) ∈ A0 ×B0 we have

d(Tjx, Tjy) = d(HjPx,HjPy) ≤ d(Px,Py) = d(x, y),

which deduces that Tj is a relatively nonexpansive mapping for any j ∈ {1, 2, ..., n}. It
now follows from Theorem 3.2 that the family {Tj}nj=1 has a common best proximity
point, that is, there exists a point p ∈ A0 for which

d(p, Tjp) = dist(A,B), ∀j ∈ {1, 2, ..., n}.
Therefore,

dist(A,B) = d(p,HjPp) = d(p,PHjp) = d(Hjp,PHjp),
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and by the fact that (A,B) has the P-property, we must have Hjp = p for any
j ∈ {1, 2, ..., n}. This implies that

HjPp = PHjp = Pp.
Hence, (p,Pp) ∈ A0 × B0 is a common best proximity pair of the family S and the
proof is completed.

The following corollaries are straightforward consequence of Theorem 3.3.

Corollary 3.3. Let (A,B) be a nonempty, compact and convex pair in a Busemann
convex (X, d). If S = {H1, H2, ...,Hn} is a commuting family of noncyclic relatively
nonexpansive mappings, then S has a common best proximity pair.

Corollary 3.4. Let (A,B) be a nonempty, bounded, closed and convex pair in a
Busemann convex (X, d) which is uniformly convex in the sense of Definition 2.2.
If S = {H1, H2, ...,Hn} is a commuting family of noncyclic relatively nonexpansive
mappings, then S has a common best proximity pair.

4. Convergence of common best proximity points

In this section, we prove a strong convergence theorem for a common best proximity
point for two cyclic mappings by using Ishikawa iterative method ([20]).

Let (A,B) be a nonempty pair in a metric space X and T be a cyclic mapping
on A ∪ B. In what follows the set of all best proximity points of T in A is denoted
by BestA(T ) and the set of all fixed points of the self-mapping T 2 : A → A well be
denoted with FixA(T 2).

Theorem 4.1. Let (A,B) be a nonempty, disjoint, bounded, closed and convex pair
in a uniformly convex Banach space X and S, T : A ∪B → A ∪B be two commuting
cyclic mappings such that

‖Tx− Sy‖ ≤ ‖x− y‖, ∀(x, y) ∈ (A×B) ∪ (B ×A).

Let x0 ∈ A and define {
xn+1 = (1− αn)xn + αnT

2yn,

yn = (1− βn)xn + βnS
2xn,

(4.1)

for all n ∈ N ∪ {0}, where αn, βn ∈ (ε, 1− ε) and ε ∈ (0, 1
2 ). If moreover, T satisfies

the condition

‖T 2x− Tx‖ < ‖x− Tx‖ whenever ‖x− Tx‖ > dist(A,B), ∀x ∈ A0 ∪B0, (4.2)

then T and S has a common best proximity point, and ‖xn − S2xn‖ −→ 0. Also, if
S2(A) lies in a compact set and dist(xn, A0) −→ 0, then {xn} converges strongly to
an element, namely x?, for which

x? ∈ FixA(T 2) ∩ FixA(S2) ∩ BestA(T ) ∩ BestA(S).

Proof. Define H1, H2 : A ∪B → A ∪B with

H1x =

{
T 2x if x ∈ A,
S2x if x ∈ B,

& H2x =

{
S2x if x ∈ A,
T 2x if x ∈ B,
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Then for any (x, y) ∈ A×B we have

H1(A) = T 2(A) ⊆ A, H1(B) = S2(B) ⊆ B,

H2(A) = S2(A) ⊆ A, H2(B) = T 2(B) ⊆ B.
Also,

‖H1x−H1y‖ = ‖T 2x− S2y‖ ≤ ‖x− y‖, ‖H2x−H2y‖ = ‖S2x− T 2y‖ ≤ ‖x− y‖.

This implies that both H1 and H2 are noncyclic relatively nonexpansive mappings.
Since T and S commutes, it is easy to see that H1 and H2 commutes too. It now
follows from corollary 3 that H1 and H2 have a common best proximity pair, namely
(p, q) ∈ A×B, for which{

p = H1p = T 2p, q = H1q = S2q,

p = H2p = S2p, q = H2q = T 2q,
& ‖p− q‖ = dist(A,B).

Notice that if ‖p− Tp‖ > dist(A,B), then by the condition (4.2) we obtain

‖p− Tp‖ = ‖T 2p− Tp‖ < ‖p− Tp‖,

which is impossible. Thus p ∈ A is a best proximity point for the mapping T . Besides,

‖p− Tp‖ = ‖S2p− Tp‖ ≤ ‖Sp− p‖ = ‖Sp− T 2p‖ ≤ ‖p− Tp‖,

which concludes that p is a best proximity point for the mapping S. Therefore,

p ∈ BestA(T ) ∩ BestA(S).

In view of the fact that ‖p − Tp‖ = dist(A,B) = ‖p − q‖ and that (A,B) has the
P-property, we must have Tp = q. Hence

‖q − Sq‖ = ‖Tp− Sq‖ ≤ ‖p− q‖ = dist(A,B),

that is, q ∈ B is a best proximity point for the mapping S. Thereby,

‖q − Tq‖ = ‖S2q − Tq‖ ≤ ‖Sq − q‖ = dist(A,B),

which ensures that

q ∈ BestB(T ) ∩ BestB(S).

We now have

‖xn+1 − q‖ = ‖(1− αn)xn + αnT
2yn − (1− αn)q − αnT 2q‖

≤ (1− αn)‖xn − q‖+ αn‖T 2yn − T 2q‖
≤ (1− αn)‖xn − q‖+ αn‖yn − q‖
= (1− αn)‖xn − q‖+ αn‖(1− βn)xn + βnS

2xn − q‖
≤ (1− αn)‖xn − q‖+ αn(1− βn)‖xn − q‖+ αnβn‖xn − q‖
= ‖xn − q‖.

This deduces that the sequence {‖xn − q‖} is decreasing. Assume that

lim
n→∞

‖xn − q‖ = r ≥ dist(A,B).
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Using Lemma 2.3 there exists a strictly increasing and continuous function
ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0, for which

‖yn − q‖2 = ‖(1− βn)xn + βnS
2xn − (1− βn)q − βnT 2q‖2

= ‖(1− βn)(xn − q) + βn(S2xn − T 2q)‖2

≤ (1− βn)‖xn − q‖2 + βn‖S2xn − T 2q‖2 − βn(1− βn)ϕ(‖xn − S2xn‖)
≤ ‖xn − q‖2 − βn(1− βn)ϕ(‖xn − S2xn‖).

Thus

ε2ϕ(‖xn − S2xn‖) < βn(1− βn)ϕ(‖xn − S2xn‖) ≤ ‖xn − q‖2 − ‖yn − q‖2. (4.3)

Also for all n ∈ N
‖xn+1 − q‖ − ‖xn − q‖+ αn(‖xn − q‖ − ‖yn − q‖) ≤ 0,

and so,
lim sup
n→∞

(‖xn − q‖ − ‖yn − q‖) ≤ 0.

It now follows from the inequality (4.3) and the property of the function ϕ that

lim
n→∞

‖xn − S2xn‖ = 0.

Since S2(A) lies in a compact set, {S2xn}n≥1 has a convergent subsequence
{S2xnk

}k≥1, converging to a point x? ∈ A. Therefore,

‖xnk
− x?‖ ≤ ‖xnk

− S2xnk
‖+ ‖S2xnk

− x?‖ → 0,

that is, xnk
→ x?. By the assumption since dist(xn, A0)→ 0, there exists a sequence

{an} ⊆ A0 for which ‖xn − an‖ → 0 and so, ank
→ x?. Closedness of the set A0

implies that x? ∈ A0. On the other hand, for each x ∈ A0 we have

dist(A,B) ≤ ‖SPx− Tx‖ ≤ ‖Px− x‖ = dist(A,B) = ‖PTx− Tx‖,
and by this reality that (A,B) has the P-property we must have

PTx = SPx, ∀x ∈ A0.

Similarly, we can see that TPx = PSx for any x ∈ A0. Furthermore, T 2Px = PS2x
for all x ∈ A0. Hence,

‖S2xnk
− PS2x?‖ = ‖S2xnk

− T 2Px?‖ ≤ ‖xnk
− Px?‖.

If k →∞, in above relation, then

‖x? − PS2x?‖ ≤ ‖x? − Px?‖ = dist(A,B).

In view of the fact that (A,B) has the P-property and ‖S2x?−PS2x?‖ = dist(A,B),
we obtain S2x? = x?. We now have

dist(A,B) = ‖x? − Px?‖ = ‖S2x? − PS2x?‖ = ‖x? − T 2Px?‖,
which ensures that Px? = T 2Px?, that is, Px? ∈ B0 is a fixed point of T 2 and so,

lim
n→∞

‖xn − Px?‖

exists. Thus

lim
n→∞

‖xn − Px?‖ = lim
k→∞

‖xnk
− Px?‖ = ‖x? − Px?‖ = dist(A,B).
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It now follows from Lemma 2.4 that xn → x?. Here we prove that x? is a common
best proximity point for the mappings S and T . Since Px? = T 2Px?, we conclude
that

‖Px? − TPx?‖ = dist(A,B) = ‖Px? − x?‖
which implies that TPx? = x?. Thereby,

Px? = T 2Px? = T (TPx?) = Tx?,

and then

‖x? − Tx?‖ = ‖x? − Px?‖ = dist(A,B),

that is, x? is a best proximity point for the mapping T .
Moreover, since PTx? = SPx?,

dist(A,B) = ‖Sx? − PSx?‖ = ‖Sx? − TPx?‖ = ‖Sx? − x?‖,

i.e. x? is a best proximity point for the mapping S. Therefore,

x? ∈ BestA(T ) ∩ BestA(S).

Finally, from the above discussion we have

T 2x? = T (Tx?) = TPx? = x?.

Thus

x? ∈ FixA(T 2) ∩ FixA(S2) ∩ BestA(T ) ∩ BestA(S),

and this completes the proof.
Let us illustrate this reality with the following example.

Example 4.1. Consider X = R with the Euclidean norm and let A = [−1, 0] ,
B = [0, 1]. Suppose S, T : A ∪B → A ∪B are defined as

Tx =

{
−x
2 if x ∈ Q ∩ (A ∪B),

0 if x ∈ Qc ∩ (A ∪B),
& Sx =

{
−x
3 if x ∈ Qc ∩ (A ∪B),

0 if x ∈ Q ∩ (A ∪B).

It is easy to check that S and T are cyclic and commuting mappings which satisfy
|Tx− Sy| ≤ |x− y| for any (x, y) ∈ (A×B) ∪ (B ×A). Moreover, for any x 6= 0, we
have

|T 2x− Tx| =

{
−3x

4 if x ∈ Q ∩ (A ∪B),

0 if x ∈ Qc ∩ (A ∪B)

<

{
−3x

2 if x ∈ Q ∩ (A ∪B),

−x if x ∈ Qc ∩ (A ∪B)

= |x− Tx|,

which ensures that the relation (4.2) satisfies. We note that the point x? = 0 is a
common best proximity point of the mapping T and S which is a common fixed point
of T and S in this case.
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