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1. Introduction and preliminaries

There are several techniques in the fixed point theory for nonself operators on a
complete metric space ([6], [18], [12], [15], [14], [2], [8], [19], . . .). Some results are
given in the case of Kasahara spaces ([3], [4], [13]). By following the papers of S.
Reich and A.J. Zaslavski [8] and I.A. Rus and M.-A. Şerban [19] we give some fixed
point theorems for nonself operators on a large Kasahara space.

In this paper we will use the notations and terminology given in [3] and [19]. The
notions of comparison function, L-space and large Kasahara space are recalled below.
Definition 1.1. Let ϕ : R+ → R+ be a function. If ϕ is monotone increasing, i.e., for
all t1, t2 ∈ R+, t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2), and the sequence ϕn(t)→ 0 as n→∞,
for all t ∈ R+, then ϕ is a comparison function.

If ϕ is a continuous comparison function satisfying t − ϕ(t) → ∞ as t → ∞, then
ϕ is called strict comparison function. In this case, we can define the function

θϕ : R+ → R+, θϕ(t) = sup{s ∈ R+ | s− ϕ(s) ≤ t}, for all t ∈ R+

which is increasing and has the property θϕ(t)→ 0 as t→ 0. We will use the function
θϕ to study the data dependence of the fixed points.

If ϕ is a comparison function satisfying
∑
n∈N

ϕn(t) < ∞, for all t ∈ R+, then ϕ is

called strong comparison function.
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More consideration on comparison functions are given in [1] and [10].

The notion of L-space was given by M. Fréchet in 1906 (see [5]).
Definition 1.2. Let X be a nonempty set. Let s(X) :=

{
{xn}n∈N | xn ∈ X, n ∈ N

}
.

Let c(X) be a subset of s(X) and Lim : c(X)→ X be an operator. By definition the

triple (X, c(X), Lim) is called an L-space (denoted also by (X,
F→)) if the following

conditions are satisfied:

(i) if xn = x, for all n ∈ N, then {xn}n∈N ∈ c(X) and Lim{xn}n∈N = x.
(ii) if {xn}n∈N ∈ c(X) and Lim{xn}n∈N = x, then for all subsequences {xni

}i∈N
of {xn}n∈N, we have that {xni

}i∈N ∈ c(X) and Lim{xni
}i∈N = x.

By definition, an element {xn}n∈N of c(X) is a convergent sequence,

x = Lim{xn}n∈N

is the limit of this sequence and we also write xn
F→ x as n→∞.

Example 1.1. Let X be a nonempty set and {xn}n∈N be a sequence in X which
does not have a constant subsequence. Let c1(X) be the set of all constant sequences
and c2(X) be the set of all subsequences of {xn}n∈N. Let c(X) := c1(X) ∪ c2(X)
and z ∈ X be an arbitrary element. If {xn}n∈N ∈ c1(X) then Lim{xn}n∈N = x. If
{yn}n∈N ∈ c2(X) then Lim{yn}n∈N = z. The triple (X, c(X), Lim) is an L-space.

More examples of L-spaces are given in [11].

The notion of large Kasahara space was given by I.A. Rus in [13], as follows:

Definition 1.3. Let X be a nonempty set,
F→ be an L-space structure on X,

(G,+,≤, G→) be an L-space ordered semigroup with unity, 0 be the least element

in (G,≤) and dG : X × X → G be an operator. The triple (X,
F→, dG) is a large

Kasahara space iff we have the following compatibility condition between
F→ and dG:

(i) xn ∈ X, (xn)n∈N a Cauchy sequence (in some sense) with respect to dG

implies that (xn)n∈N converges in (X,
F→).

The notion of large Kasahara space which will be used in this paper, is the following:

Definition 1.4. Let X be a nonempty set,
F→ be an L-space structure on X and

d : X ×X → R+ be a metric on X. The triple (X,
F→, d) is a large Kasahara space iff

we have the following compatibility conditions between
F→ and d:

(i) {xn}n∈N is a fundamental sequence in (X, d)⇒ {xn}n∈N converges in (X,
F→);

(ii) xn
F→ x∗, yn

F→ y∗ and d(xn, yn)→ 0 as n→∞ ⇒ x∗ = y∗.

Example 1.2. (See [9], [17], [4]). Let (X, ρ) be a complete metric space and (X, d)
be a metric space. We suppose that there exists c > 0 such that ρ(x, y) ≤ cd(x, y),

for all x, y ∈ X. Then, (X,
ρ→, d) is a large Kasahara space.

Example 1.3. We give here a counterexample of large Kasahara space, showing that
the condition (ii) of the Definition 1.4. is necessary.

Let X := R, c(R) := c1(R)∪ c2(R)∪ c3(R), where c1(R) is the set of all convergent
sequences with respect to the metric d : R×R→ R+, defined by d(x, y) = |x− y|, for

all x, y ∈ R and, on c1(R), we consider
F→:=

d→; c2(R) is the set of all subsequences
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{xn}n∈N of {n}n∈N with Lim{xn}n∈N = 0; c3(R) be the set of all subsequences
{yn}n∈N of {n + 1

n+1}n∈N with Lim{yn}n∈N = 1. Notice that (R, c(R), Lim) is an

L-space. But the triple (R, F→, d) is not a large Kasahara space. The condition (i) of
Definition 1.4. is satisfied, but the condition (ii) is not. Indeed, let

xn := n and yn := n+
1

n+ 1
,

for all n ∈ N. For these two sequences we have xn
F→ 0, yn

F→ 1 and d(xn, yn)→ 0 as
n→∞.
Remark 1.1. Let (X,

F→, d) be a large Kasahara space. Then for any sequence

{xn}n∈N∗ ⊂ X with xn
d→ x∗ as n → ∞, we have xn

F→ x∗ as n → ∞. This implies

that for any subset A ⊂ X, with A closed in (X,
F→), A is closed in (X, d).

2. The case of l-contractions

We give here one of the main results of this paper, concerning the existence and
uniqueness of fixed points for nonself l-contractions, in the context of a large Kasahara
space. The data dependence of the fixed point is also discussed (see [16]).

Theorem 2.1. Let (X,
F→, d) be a large Kasahara space, Y ⊂ X be a closed subset of

(X,
F→) and f : Y → X be an operator. We suppose that:

(i) there exists yn ∈ Y , for all n ∈ N∗, such that the set {yn | n ∈ N∗} is bounded
and f i(yn) is defined for i = 1, n, n ∈ N∗;

(ii) f is continuous in (X,
F→);

(iii) f is an l-contraction w.r.t. the metric d.

Then:

(1) Ff = {x∗};
(2) fn(yn)

F→ x∗ as n→∞;

(3) fn(yn)
d→ x∗ as n→∞;

(4) d(x, x∗) ≤ 1
1−ld(x, f(x)), for all x ∈ Y ;

(5) if the operator g : Y → X is such that
(j) there exists η > 0 such that d(f(x), g(x)) ≤ η, for all x ∈ Y ;

(jj) Fg 6= ∅
then d(x∗, y∗) ≤ η

1−l , for all y∗ ∈ Fg.

Proof. (1) + (2). First, we remark that

{f i(yn) | i = 0, n− 1, n ∈ N∗}

is a bounded set. Indeed, since the set {yn | n ∈ N∗} is bounded, for a given y0 ∈ Y
there exists a constant R > 0 such that d(y0, yn) ≤ R, for all n ∈ N∗.

By the assumption (iii), we have the following estimations

d(y0, f(yn)) ≤ d(y0, f(y0)) + d(f(y0), f(yn)) ≤ d(y0, f(y0)) + lR, for all n ∈ N∗.
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On the other hand, for any i ≥ 2, we have

d(y0, f
i(yn)) ≤ d(y0, f(y0)) + d(f(y0), f i(yn))

≤ d(y0, f(y0)) + d(f(y0), f(yn)) + d(f(yn), f i(yn))

≤ d(y0, f(y0)) + lR+

i−1∑
j=1

d(f j(yn), f j+1(yn))

≤ d(y0, f(y0)) + lR+
l

1− l
d(yn, f(yn)), for all n ∈ N∗

and

d(yn, f(yn)) ≤ d(yn, y0) + d(y0, f(yn)) ≤ R+ lR+ d(y0, f(y0)).

So, there exists

R̃ :=
1

1− l
d(y0, f(y0)) +

2lR

1− l
> 0

such that d(y0, f
i(yn)) ≤ R̃, for all n ∈ N∗ and i = 0, n− 1. Thus, the set

{f i(yn) | i = 0, n− 1, n ∈ N∗}

is bounded.
Let A ∈ Pb(Y ) be such that {f i(yn) | i = 0, n− 1, n ∈ N∗} ⊂ A. (The authors of

the paper [19] informed me that in their paper, the condition {yn | n ∈ N} ⊂ A must
be replaced with {f i(yn) | i = 0, n− 1, n ∈ N} ⊂ A).

Let A1 := f(A), A2 := f(A1 ∩A), . . ., An+1 := f(An ∩A), for all n ∈ N∗. By this
construction, we obtain the sequence of sets {An}n∈N∗ with the following properties:
An+1 ⊂ An, for all n ∈ N∗, and fn(yn) ∈ An, for all n ∈ N∗.

Since the operator f is an l-contraction w.r.t. the metric d, there exists a constant
l ∈ [0, 1) such that d(f(x), f(y)) ≤ ld(x, y), for all x, y ∈ Y . By taking the supremum
over x, y ∈ Y in the contraction condition, we get that

δ(f(B)) ≤ lδ(B), for all B ∈ Pb(Y ).

By using the properties of the diameter functional δ and the contraction condition
of the operator f , we have

δ(An+1) = δ(f(An ∩A)) ≤ δ(f(An)) ≤ lδ(An), for all n ∈ N∗.

By mathematical induction over n ∈ N∗, it follows that

δ(An+1) ≤ ln+1δ(A), for all n ∈ N∗.

By letting n→∞, we get that δ(An+1)→ 0.
Since fn(yn) ∈ An, fn−1(yn) ∈ An−1∩A and δ(An−1)→ 0 as n→∞, we get that

{fn(yn)}n∈N∗ and {fn−1(yn)}n∈N∗ are fundamental sequences in (X, d).
By the condition (i) of Definition 1.4. we have that

fn−1(yn)
F→ u∗ and fn(yn)

F→ v∗ as n→∞.

On the other hand, d(fn−1(yn), fn(yn))→ 0 as n→∞.
By the condition (ii) of Definition 1.4. we have that u∗ = v∗ =: x∗.
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Since f is continuous, we have

fn(yn) = f(fn−1(yn))
F→ f(x∗) as n→∞.

So, f(x∗) = x∗. Hence Ff = {x∗}.
(3). By (iii),

d(fn(yn), x∗) = d(fn(yn), fn(x∗)) ≤ ld(fn−1(yn), fn−1(x∗)) ≤ . . . ≤ lnd(yn, x
∗)→ 0

as n→∞. So, fn(yn)
d→ x∗ as n→∞.

(4). Let x ∈ Y . By using the triangle inequality of the metric d and the assumption
(iii), we have

d(x, x∗) ≤ d(x, f(x)) + d(f(x), f(x∗)) ≤ d(x, f(x)) + ld(x, x∗).

So, d(x, x∗) ≤ 1
1−ld(x, f(x)), for all x ∈ Y .

(5). Let y∗ ∈ Fg. Then, by choosing x := y∗ in the conclusion (4), we get

d(y∗, x∗) ≤ 1

1− l
d(y∗, f(y∗)) =

1

1− l
d(g(y∗), f(y∗)).

By the symmetry of the metric d and by condition (j), it follows that

d(x∗, y∗) ≤ η

1− l
, for all y∗ ∈ Fg.

3. The case of ϕ-contractions

The following theorem generalizes Theorem 1 and Theorem 3 given by I.A. Rus
and M.-A. Şerban in [19], for ϕ-contractions in the context of complete metric spaces,
and Theorem 1, given by S. Reich and A.J. Zaslavski in [8], for Rakotch contractions,
in the same context.

Theorem 3.1. Let (X,
F→, d) be a large Kasahara space, Y ⊂ X be a closed subset of

(X,
F→) and f : Y → X be an operator. We suppose that:

(i) there exists yn ∈ Y , for all n ∈ N∗, such that the set {yn | n ∈ N∗} is bounded
and f i(yn) is defined for i = 1, n, n ∈ N∗;

(ii) f is continuous in (X,
F→);

(iii) f is a ϕ-contraction w.r.t. the metric d, where ϕ is a strict and strong com-
parison function.

Then:

(1) Ff = {x∗};
(2) fn(yn)

F→ x∗ as n→∞;

(3) fn(yn)
d→ x∗ as n→∞;

(4) d(fn(yn), x∗) ≤ ϕ(d(yn, x
∗)), for all n ∈ N∗;

(5) d(x, x∗) ≤ θϕ(d(x, f(x))), for all x ∈ Y ;
(6) if g : Y → X is such that

(j) there exists η > 0 such that d(f(x), g(x)) ≤ η, for all x ∈ Y ;
(jj) Fg 6= ∅
then d(x∗, y∗) ≤ θϕ(η), for all y∗ ∈ Fg.
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Proof. (1) + (2). First, we remark that {f i(yn) | i = 0, n− 1, n ∈ N∗} is a bounded
set. Indeed, since the set {yn | n ∈ N∗} is bounded, for a given y0 ∈ Y there exists a
constant R > 0 such that d(y0, yn) ≤ R, for all n ∈ N∗.

Since ϕ : R+ → R+ is a comparison function, we have ϕ(t) ≤ t, for all t ≥ 0.
By (iii) we have the following estimations

d(y0, f(yn)) ≤ d(y0, f(y0)) + d(f(y0), f(yn)) ≤ d(y0, f(y0)) + ϕ(d(y0, yn))

≤ d(y0, f(y0)) +R, for all n ∈ N∗.

On the other hand, for any i ≥ 2, we have

d(y0, f
i(yn)) ≤ d(y0, f(y0)) + d(f(y0), f i(yn))

≤ d(y0, f(y0)) + d(f(y0), f(yn)) + d(f(yn), f i(yn))

≤ d(y0, f(y0)) +R+

i−1∑
j=1

d(f j(yn), f j+1(yn))

≤ d(y0, f(y0)) +R+

∞∑
j=1

ϕj(d(yn, f(yn))), for all n ∈ N∗.

Since ϕ is a strong comparison function, it follows that

∞∑
j=1

ϕj(d(yn, f(yn))) <∞.

So, there exists a number Φ ∈ R+ such that d(y0, f
i(yn)) ≤ d(y0, f(y0)) + R + Φ,

for all n ∈ N∗. Thus, the set {f i(yn) | i = 0, n− 1, n ∈ N∗} is bounded.
Let A ∈ Pb(Y ) be such that {f i(yn) | i = 0, n− 1, n ∈ N∗} ⊂ A.
Let A1 := f(A), A2 := f(A1 ∩A), . . ., An+1 := f(An ∩A), for all n ∈ N∗. By this

construction, we obtain the sequence of sets {An}n∈N∗ with the following properties:
An+1 ⊂ An, for all n ∈ N∗, and fn(yn) ∈ An, for all n ∈ N∗.

Since the operator f is a ϕ-contraction w.r.t. the metric d,

d(f(x), f(y)) ≤ ϕ(d(x, y)), for all x, y ∈ Y.

By taking the supremum over x, y ∈ Y in the contraction condition, we get that

δ(f(B)) ≤ ϕ(δ(B)), for all B ∈ Pb(Y ).

By using the properties of the diameter functional δ and by taking into account
the assumption (iii), we have

δ(An+1) = δ(f(An ∩A)) ≤ δ(f(An)) ≤ ϕ(δ(An)), for all n ∈ N∗.

By mathematical induction over n ∈ N∗, it follows that

δ(An+1) ≤ ϕn+1(δ(A)), for all n ∈ N∗.

By letting n→∞, we get that δ(An+1)→ 0.
Since fn(yn) ∈ An, fn−1(yn) ∈ An−1∩A and δ(An−1)→ 0 as n→∞, we get that

{fn(yn)}n∈N∗ and {fn−1(yn)}n∈N∗ are fundamental sequences in (X, d).
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By the condition (i) of Definition 1.4. we have that

fn−1(yn)
F→ u∗ and fn(yn)

F→ v∗ as n→∞.
On the other hand, d(fn−1(yn), fn(yn))→ 0 as n→∞.
By the condition (ii) of Definition 1.4. we have that u∗ = v∗ =: x∗.
Since f is continuous, we have

fn(yn) = f(fn−1(yn))
F→ f(x∗) as n→∞.

So, f(x∗) = x∗. Hence Ff = {x∗}.
(3) + (4). By using the assumption (iii), we have

d(fn(yn), x∗) = d(fn(yn), fn(x∗)) ≤ ϕ(d(fn−1(yn), fn−1(x∗))) ≤ . . . ≤ ϕn(d(yn, x
∗)),

for all n ∈ N∗. Since ϕ : R+ → R+ is a comparison function, we have that

ϕn(d(yn, x
∗)) → 0 as n → ∞. So, fn(yn)

d→ x∗ as n → ∞. On the other hand,
ϕ is an increasing function on R+ and ϕ(t) ≤ t, for all t ∈ R+, with equality when
t = 0. By mathematical induction over n ∈ N∗ we have

d(fn(yn), x∗) ≤ ϕn(d(yn, x
∗)) ≤ . . . ≤ ϕ(d(yn, x

∗)), for all n ∈ N∗.
(5). Since d(x, x∗) ≤ d(x, f(x)) + d(f(x), x∗) ≤ d(x, f(x)) + ϕ(d(x, x∗)), for all

x ∈ Y , it follows that d(x, x∗)−ϕ(d(x, x∗)) ≤ d(x, f(x)), for all x ∈ Y . We have next

d(x, x∗) ≤ sup
d(x,x∗)−ϕ(d(x,x∗))≤d(x,f(x))

d(x, x∗) = θϕ(d(x, f(x))), for all x ∈ Y.

(6). Let y∗ ∈ Fg. Then, from the conclusion (5) we have

d(x∗, y∗) = d(y∗, x∗) ≤ θϕ(d(y∗, f(y∗))) = θϕ(d(g(y∗), f(y∗))) ≤ θϕ(η).

4. The case of Kannan operators

Let us recall first the notion of α-Kannan nonself operator.
Definition 4.1. Let (X, d) be a metric space and Y ∈ P (X). The operator f : Y →
X is an α-Kannan operator, if there exists a constant α ∈ [0, 12 ) such that

d(f(x), f(y)) ≤ α[d(x, f(x)) + d(y, f(y))], for all x, y ∈ Y.

In the proof of the main result of this section, we will use the maximal displacement
functional, also recalled below.
Definition 4.2. Let (X, d) be a metric space, Y ∈ Pcl(X) and f : Y → X be a
continuous nonself operator. By the maximal displacement functional corresponding
to f , we understand the functional Ef : P (Y )→ R+ ∪ {+∞} defined by

Ef (A) := sup{d(x, f(x)) | x ∈ A}, for all A ∈ P (Y ).

The maximal displacement functional has the following properties:
(i) A,B ∈ P (Y ), A ⊂ B imply Ef (A) ≤ Ef (B);

(ii) Ef (A) = Ef (A), for all A ∈ P (Y ).

Lemma 4.1. Let (X, d) be a metric space, Y ∈ Pcl(X) and f : Y → X be a
continuous α-Kannan operator. Then:

(1) Ef (f(A)) ≤ α
1−αEf (A), for all A ∈ Y with f(A) ⊂ Y ;
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(2) Ef (f(A) ∩ Y ) ≤ α
1−αEf (A), for all A ∈ Y with f(A) ∩ Y 6= ∅.

Proof. (1). From the definition of the maximal displacement functional corresponding
to f we have that

Ef (f(A)) = sup{d(x, f(x)) |x ∈ f(A)} = sup{d(f(u), f2(u)) |u ∈ A}.

Since f is an α-Kannan operator, we have

d(f(u), f2(u)) ≤ α[d(u, f(u)) + d(f(u), f2(u))], for all u ∈ A.

It follows that d(f(u), f2(u)) ≤ α
1−αd(u, f(u)), for all u ∈ A. Hence

Ef (f(A)) ≤ α

1− α
sup{d(u, f(u)) | u ∈ A} =

α

1− α
Ef (A),

for all A ∈ Y with f(A) ⊂ Y .
(2). Taking into consideration that f is an α-Kannan operator, we have that

Ef (f(A) ∩ Y ) = sup{d(x, f(x)) | x ∈ f(A) ∩ Y }
= sup{d(f(u), f2(u)) | u ∈ A, f(u) ∈ Y }

≤ α

1− α
sup{d(u, f(u)) | u ∈ A}

=
α

1− α
Ef (A),

for all A ∈ Y with f(A) ∩ Y 6= ∅.

The following result generalizes Theorem 4 given by I.A. Rus and M.-A. Şerban in
[19] for Kannan operators in the context of complete metric spaces.

Theorem 4.1. Let (X,
F→, d) be a large Kasahara space, Y ⊂ X be a closed subset of

(X,
F→) and f : Y → X be an operator. We suppose that:

(i) there exists yn ∈ Y , for all n ∈ N∗, such that the set {yn | n ∈ N∗} is bounded
and f i(yn) is defined for i = 1, n, n ∈ N∗;

(ii) f is continuous in (X,
F→);

(iii) f is an α-Kannan operator w.r.t. the metric d;
(iv) Ef (Y ) <∞.

Then:

(1) Ff = {x∗};
(2) fn(yn)

F→ x∗ as n→∞;

(3) fn(yn)
d→ x∗ as n→∞;

(4) d(x, x∗) ≤ (1 + α)d(x, f(x)), for all x ∈ Y ;

(5) d(fn−1(xn), x∗) ≤ (1 + α)
(

α
1−α

)n−1
d(xn, f(xn)), for all n ∈ N∗;

(6) if g : Y → X is such that
(j) there exists η > 0 such that d(f(x), g(x)) ≤ η, for all x ∈ Y ;

(jj) Fg 6= ∅
then d(x∗, y∗) ≤ (1 + α)η, for all y∗ ∈ Fg.
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Proof. (1) + (2). First, we remark that {f i(yn) | i = 0, n− 1, n ∈ N∗} is a bounded
set. Indeed, since the set {yn | n ∈ N∗} is bounded, for a given y0 ∈ Y there exists a
constant R > 0 such that d(y0, yn) ≤ R, for all n ∈ N∗.

By (iii) we have the following estimations

d(y0, f(yn)) ≤ d(y0, f(y0)) + d(f(y0), f(yn))

≤ d(y0, f(y0)) + α[d(y0, f(y0)) + d(yn, f(yn))]

≤ (1 + α)d(y0, f(y0)) + αd(yn, y0) + αd(y0, f(yn)), for all n ∈ N∗.

It follows that

d(y0, f(yn)) ≤ 1 + α

1− α
d(y0, f(y0)) +

α

1− α
R, for all n ∈ N∗.

On the other hand, for any i ≥ 2, we have

d(y0,f
i(yn)) ≤ d(y0, f(y0)) + d(f(y0), f i(yn))

≤ d(y0, f(y0)) + d(f(y0), f(yn)) + d(f(yn), f i(yn))

≤ d(y0, f(y0)) + α[d(y0, f(y0)) + d(yn, f(yn))] +

i−1∑
j=1

d(f j(yn), f j+1(yn))

≤ (1 + α)d(y0, f(y0)) + α[d(yn, y0) + d(y0, f(yn))] +

i−1∑
j=1

(
α

1− α

)j
d(yn, f(yn))

≤ (1 + α)d(y0, f(y0)) + αR+ αd(y0, f(yn)) +
α

1− 2α
[d(yn, y0) + d(y0, f(yn))]

≤ (1 + α)d(y0, f(y0)) + 2α
1− α
1− 2α

[R+ d(y0, f(yn))]

≤ 1 + α

1− 2α
d(y0, f(y0)) +

2α

1− 2α
R, for all n ∈ N∗.

Thus, the set {f i(yn) | i = 0, n− 1, n ∈ N∗} is bounded.
Let A ∈ Pb(Y ) be such that {f i(yn) | i = 0, n− 1, n ∈ N∗} ⊂ A.
Let A1 := f(A), A2 := f(A1 ∩A), . . ., An+1 := f(An ∩A), for all n ∈ N∗. By this

construction, we obtain the sequence of sets {An}n∈N∗ with the following properties:
An+1 ⊂ An, for all n ∈ N∗, and fn(yn) ∈ An, for all n ∈ N∗.

By the definitions of the diameter functional δ and maximal displacement func-
tional Ef and taking into account the properties stated in Lemma 4.1., we have

δ(An+1) = δ(f(An ∩A)) ≤ 2αEf (An ∩A) = 2αEf (f(An−1 ∩A) ∩A)

≤ 2α2

1− α
Ef (An−1 ∩A) ≤ . . . ≤ 2αn+1

(1− α)n
Ef (A)→ 0 as n→∞.

By following the proof of Theorem 2.1., the conclusions follow.
(3). Follows from the proof of (5).
(4). Let x ∈ Y . By using the assumption (iii), we have

d(x, x∗) ≤ d(x, f(x)) + d(f(x), f(x∗)) ≤ d(x, f(x)) + α[d(x, f(x)) + d(x∗, f(x∗))].

It follows that d(x, x∗) ≤ (1 + α)d(x, f(x)), for all x ∈ Y .
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(5). Let x := fn−1(xn) in the conclusion (4). Then we have

d(fn−1(xn), x∗) ≤ (1 + α)d(fn−1(xn), fn(xn))

≤ (1 + α)
α

1− α
d(fn−2(xn), fn−1(xn))

...

≤ (1 + α)

(
α

1− α

)n−1
d(xn, f(xn)), for all n ∈ N∗.

(6). Let y∗ ∈ Fg. By letting x := y∗ in the conclusion (4) we have

d(y∗, x∗) ≤ (1 + α)d(y∗, f(y∗)).

Hence d(x∗, y∗) ≤ (1 + α)d(g(y∗), f(y∗)) ≤ (1 + α)η, for all y∗ ∈ Fg.

5. Some problems

The above considerations give rise to the following problems.
Problem 5.1. Let (X, d) be a metric space, Y ⊂ X be a nonempty closed subset and
{yn}n∈N ⊂ Y be a bounded sequence. For which generalized contractions ([10], [18],
[1], [7]) f : Y → X, the following implication holds: f i(yn) is defined for i = 1, n,
n ∈ N∗ implies that the set {f i(yn) | i = 1, n, n ∈ N∗} is bounded ?
Problem 5.2. If f is a solution of Problem 5.1. in which conditions we have that:

(i) Ff = {x∗};
(ii) fn(yn)→ x∗ as n→∞ ?

Problem 5.3. Let (X,
F→, d) be a large Kasahara space, Y ⊂ X be a closed subset

of (X,
F→) and f : Y → X be an operator. We suppose that:

(i) there exists a bounded sequence {yn}n∈N ⊂ Y such that f i(yn) is defined for
i = 1, n, n ∈ N∗;

(ii) f is continuous in (X,
F→).

The problem is to find those generalized contractions f , satisfying the above condi-
tions, for which we have that:

(1) Ff = {x∗};
(2) fn(yn)

F→ x∗ as n→∞.
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An. Univ. Vest Timişoara, Ser. Mat.-Inform., 57(2019), 66-76.
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