Fixed Point Theory, 24(2023), No. 2, 583-594 DOI: 10.24193/fpt-ro.2023.2.08 http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

FIXED POINT THEOREMS FOR NONSELF OPERATORS ON A LARGE KASAHARA SPACE

ALEXANDRU-DARIUS FILIP

Babes-Bolyai University, Faculty of Economics and Business Administration, Department of Statistics-Forecasts-Mathematics, Teodor Mihali Street, No. 58-60, 400591 Cluj-Napoca, Romania. E-mail: darius.filip@econ.ubbcluj.ro

Abstract. In this paper we give some fixed point theorems for nonself operators on a large Kasahara space, which generalize some results given by I.A. Rus and M.-A. Serban (I.A. Rus, M.-A. Serban, Some fixed point theorems for nonself generalized contractions, Miskolc Math. Notes, 17(2016), no.2, 1021-1031) and by S. Reich and A.J. Zaslavski (S. Reich, A.J. Zaslavski, A note on Rakotch contractions, Fixed Point Theory, 9(2008), no.1, 267-273).

Key Words and Phrases: Large Kasahara space, nonself operator, fixed point, comparison function, diameter functional, maximal displacement functional.

2020 Mathematics Subject Classification: 47H09, 47H10, 54H25.

1. Introduction and preliminaries

There are several techniques in the fixed point theory for nonself operators on a complete metric space $([6], [18], [12], [15], [14], [2], [8], [19], \ldots)$. Some results are given in the case of Kasahara spaces $([3], [4], [13])$. By following the papers of S. Reich and A.J. Zaslavski $[8]$ and I.A. Rus and M.-A. Serban $[19]$ we give some fixed point theorems for nonself operators on a large Kasahara space.

In this paper we will use the notations and terminology given in [3] and [19]. The notions of comparison function, L-space and large Kasahara space are recalled below. **Definition 1.1.** Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be a function. If φ is monotone increasing, i.e., for all $t_1, t_2 \in \mathbb{R}_+$, $t_1 \le t_2$ implies $\varphi(t_1) \le \varphi(t_2)$, and the sequence $\varphi^n(t) \to 0$ as $n \to \infty$, for all $t \in \mathbb{R}_+$, then φ is a comparison function.

If φ is a continuous comparison function satisfying $t - \varphi(t) \to \infty$ as $t \to \infty$, then φ is called strict comparison function. In this case, we can define the function

$$
\theta_{\varphi}: \mathbb{R}_{+} \to \mathbb{R}_{+}, \ \theta_{\varphi}(t) = \sup\{s \in \mathbb{R}_{+} \mid s - \varphi(s) \leq t\}, \text{ for all } t \in \mathbb{R}_{+}
$$

which is increasing and has the property $\theta_{\varphi}(t) \to 0$ as $t \to 0$. We will use the function θ_{φ} to study the data dependence of the fixed points.

If φ is a comparison function satisfying \sum n∈N $\varphi^n(t) < \infty$, for all $t \in \mathbb{R}_+$, then φ is

called strong comparison function.

More consideration on comparison functions are given in [1] and [10].

The notion of L -space was given by M. Fréchet in 1906 (see [5]). **Definition 1.2.** Let X be a nonempty set. Let $s(X) := \{ \{x_n\}_{n \in \mathbb{N}} \mid x_n \in X, n \in \mathbb{N} \}.$ Let $c(X)$ be a subset of $s(X)$ and $Lim : c(X) \to X$ be an operator. By definition the triple $(X, c(X), Lim)$ is called an L-space (denoted also by $(X, \stackrel{F}{\rightarrow})$) if the following conditions are satisfied:

- (i) if $x_n = x$, for all $n \in \mathbb{N}$, then $\{x_n\}_{n \in \mathbb{N}} \in c(X)$ and $Lim\{x_n\}_{n \in \mathbb{N}} = x$.
- (*ii*) if $\{x_n\}_{n\in\mathbb{N}}\in c(X)$ and $Lim\{x_n\}_{n\in\mathbb{N}}=x$, then for all subsequences $\{x_{n_i}\}_{i\in\mathbb{N}}$
	- of $\{x_n\}_{n\in\mathbb{N}}$, we have that $\{x_{n_i}\}_{i\in\mathbb{N}} \in c(X)$ and $Lim\{x_{n_i}\}_{i\in\mathbb{N}} = x$.

By definition, an element $\{x_n\}_{n\in\mathbb{N}}$ of $c(X)$ is a convergent sequence,

$$
x = Lim\{x_n\}_{n \in \mathbb{N}}
$$

is the limit of this sequence and we also write $x_n \stackrel{F}{\to} x$ as $n \to \infty$.

Example 1.1. Let X be a nonempty set and $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in X which does not have a constant subsequence. Let $c_1(X)$ be the set of all constant sequences and $c_2(X)$ be the set of all subsequences of $\{x_n\}_{n\in\mathbb{N}}$. Let $c(X) := c_1(X) \cup c_2(X)$ and $z \in X$ be an arbitrary element. If $\{x_n\}_{n\in\mathbb{N}} \in c_1(X)$ then $Lim\{x_n\}_{n\in\mathbb{N}} = x$. If $\{y_n\}_{n\in\mathbb{N}} \in c_2(X)$ then $Lim\{y_n\}_{n\in\mathbb{N}}=z$. The triple $(X, c(X), Lim)$ is an L-space.

More examples of *L*-spaces are given in [11].

The notion of large Kasahara space was given by I.A. Rus in [13], as follows:

Definition 1.3. Let X be a nonempty set, $\stackrel{F}{\rightarrow}$ be an L-space structure on X, $(G, +, \leq, \stackrel{G}{\rightarrow})$ be an *L*-space ordered semigroup with unity, 0 be the least element in (G, \leq) and $d_G: X \times X \to G$ be an operator. The triple $(X, \stackrel{F}{\to}, d_G)$ is a large Kasahara space iff we have the following compatibility condition between $\stackrel{F}{\rightarrow}$ and d_G :

(i) $x_n \in X$, $(x_n)_{n \in \mathbb{N}}$ a Cauchy sequence (in some sense) with respect to d_G implies that $(x_n)_{n \in \mathbb{N}}$ converges in $(X, \frac{F}{\rightarrow})$.

The notion of large Kasahara space which will be used in this paper, is the following: **Definition 1.4.** Let X be a nonempty set, $\stackrel{F}{\to}$ be an L-space structure on X and $d: X \times X \to \mathbb{R}_+$ be a metric on X. The triple $(X, \stackrel{F}{\to}, d)$ is a large Kasahara space iff we have the following compatibility conditions between $\stackrel{F}{\rightarrow}$ and d:

(i) $\{x_n\}_{n\in\mathbb{N}}$ is a fundamental sequence in $(X,d) \Rightarrow \{x_n\}_{n\in\mathbb{N}}$ converges in $(X,\stackrel{F}{\to})$; (*ii*) $x_n \stackrel{F}{\rightarrow} x^*$, $y_n \stackrel{F}{\rightarrow} y^*$ and $d(x_n, y_n) \rightarrow 0$ as $n \rightarrow \infty \Rightarrow x^* = y^*$.

Example 1.2. (See [9], [17], [4]). Let (X, ρ) be a complete metric space and (X, d) be a metric space. We suppose that there exists $c > 0$ such that $\rho(x, y) \leq cd(x, y)$, for all $x, y \in X$. Then, $(X, \frac{\rho}{\gamma}, d)$ is a large Kasahara space.

Example 1.3. We give here a counterexample of large Kasahara space, showing that the condition (ii) of the Definition 1.4. is necessary.

Let $X := \mathbb{R}, c(\mathbb{R}) := c_1(\mathbb{R}) \cup c_2(\mathbb{R}) \cup c_3(\mathbb{R}),$ where $c_1(\mathbb{R})$ is the set of all convergent sequences with respect to the metric $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$, defined by $d(x, y) = |x - y|$, for all $x, y \in \mathbb{R}$ and, on $c_1(\mathbb{R})$, we consider $\stackrel{F}{\rightarrow} := \stackrel{d}{\rightarrow}$; $c_2(\mathbb{R})$ is the set of all subsequences

 ${x_n}_{n\in\mathbb{N}}$ of ${n}_{n\in\mathbb{N}}$ with $Lim{x_n}_{n\in\mathbb{N}}=0$; $c_3(\mathbb{R})$ be the set of all subsequences ${y_n}_{n\in\mathbb{N}}$ of ${n+\frac{1}{n+1}}_{n\in\mathbb{N}}$ with $Lim{y_n}_{n\in\mathbb{N}}=1$. Notice that $(\mathbb{R}, c(\mathbb{R}), Lim)$ is an L-space. But the triple $(\mathbb{R}, \stackrel{F}{\rightarrow}, d)$ is not a large Kasahara space. The condition (*i*) of Definition 1.4. is satisfied, but the condition (ii) is not. Indeed, let

$$
x_n := n
$$
 and $y_n := n + \frac{1}{n+1}$,

for all $n \in \mathbb{N}$. For these two sequences we have $x_n \stackrel{F}{\to} 0$, $y_n \stackrel{F}{\to} 1$ and $d(x_n, y_n) \to 0$ as $n \to \infty$.

Remark 1.1. Let $(X, \frac{F}{\gamma}, d)$ be a large Kasahara space. Then for any sequence ${x_n}_{n \in \mathbb{N}^*} \subset X$ with $x_n \stackrel{d}{\to} x^*$ as $n \to \infty$, we have $x_n \stackrel{F}{\to} x^*$ as $n \to \infty$. This implies that for any subset $A \subset X$, with A closed in $(X, \frac{F}{\epsilon})$, A is closed in (X, d) .

2. The case of l-contractions

We give here one of the main results of this paper, concerning the existence and uniqueness of fixed points for nonself l-contractions, in the context of a large Kasahara space. The data dependence of the fixed point is also discussed (see [16]).

Theorem 2.1. Let $(X, \frac{F}{\epsilon}, d)$ be a large Kasahara space, $Y \subset X$ be a closed subset of $(X, \stackrel{F}{\rightarrow})$ and $f: Y \rightarrow X$ be an operator. We suppose that:

- (i) there exists $y_n \in Y$, for all $n \in \mathbb{N}^*$, such that the set $\{y_n \mid n \in \mathbb{N}^*\}$ is bounded and $f^{i}(y_n)$ is defined for $i = \overline{1,n}$, $n \in \mathbb{N}^*$;
- (*ii*) f is continuous in $(X, \frac{F}{\gamma})$;
- (*iii*) f is an *l*-contraction w.r.t. the metric d .

Then:

(1)
$$
F_f = \{x^*\};
$$

(2)
$$
f^{n}(y_{n}) \stackrel{F}{\rightarrow} x^{*}
$$
 as $n \rightarrow \infty$;

(3) $f^n(y_n) \stackrel{d}{\to} x^*$ as $n \to \infty$;

- (4) $d(x, x^*) \leq \frac{1}{1-l} d(x, f(x))$, for all $x \in Y$;
- (5) if the operator $g: Y \to X$ is such that (j) there exists $\eta > 0$ such that $d(f(x), g(x)) \leq \eta$, for all $x \in Y$; (jj) $F_g \neq \emptyset$ then $d(x^*, y^*) \leq \frac{\eta}{1-l}$, for all $y^* \in F_g$.

Proof. $(1) + (2)$. First, we remark that

$$
\{f^i(y_n) \mid i = \overline{0, n-1}, \ n \in \mathbb{N}^*\}
$$

is a bounded set. Indeed, since the set $\{y_n \mid n \in \mathbb{N}^*\}$ is bounded, for a given $y_0 \in Y$ there exists a constant $R > 0$ such that $d(y_0, y_n) \leq R$, for all $n \in \mathbb{N}^*$.

By the assumption (iii) , we have the following estimations

$$
d(y_0, f(y_n)) \le d(y_0, f(y_0)) + d(f(y_0), f(y_n)) \le d(y_0, f(y_0)) + lR, \text{ for all } n \in \mathbb{N}^*.
$$

On the other hand, for any $i \geq 2$, we have

$$
d(y_0, f^i(y_n)) \le d(y_0, f(y_0)) + d(f(y_0), f^i(y_n))
$$

\n
$$
\le d(y_0, f(y_0)) + d(f(y_0), f(y_n)) + d(f(y_n), f^i(y_n))
$$

\n
$$
\le d(y_0, f(y_0)) + lR + \sum_{j=1}^{i-1} d(f^j(y_n), f^{j+1}(y_n))
$$

\n
$$
\le d(y_0, f(y_0)) + lR + \frac{l}{1 - l} d(y_n, f(y_n)), \text{ for all } n \in \mathbb{N}^*
$$

and

$$
d(y_n, f(y_n)) \le d(y_n, y_0) + d(y_0, f(y_n)) \le R + lR + d(y_0, f(y_0)).
$$

So, there exists

$$
\tilde{R} := \frac{1}{1-l}d(y_0, f(y_0)) + \frac{2lR}{1-l} > 0
$$

such that $d(y_0, f^i(y_n)) \leq \tilde{R}$, for all $n \in \mathbb{N}^*$ and $i = \overline{0, n-1}$. Thus, the set

$$
\{f^i(y_n) \mid i = \overline{0, n-1}, \ n \in \mathbb{N}^*\}
$$

is bounded.

Let $A \in P_b(Y)$ be such that $\{f^i(y_n) \mid i = \overline{0, n-1}, n \in \mathbb{N}^*\} \subset A$. (The authors of the paper [19] informed me that in their paper, the condition $\{y_n \mid n \in \mathbb{N}\}\subset A$ must be replaced with $\{f^i(y_n) \mid i = \overline{0, n-1}, n \in \mathbb{N}\} \subset A$.

Let $A_1 := f(A)$, $A_2 := f(A_1 \cap A)$, ..., $A_{n+1} := f(A_n \cap A)$, for all $n \in \mathbb{N}^*$. By this construction, we obtain the sequence of sets $\{A_n\}_{n\in\mathbb{N}^*}$ with the following properties: $A_{n+1} \subset A_n$, for all $n \in \mathbb{N}^*$, and $f^n(y_n) \in A_n$, for all $n \in \mathbb{N}^*$.

Since the operator f is an *l*-contraction w.r.t. the metric d , there exists a constant $l \in [0, 1)$ such that $d(f(x), f(y)) \leq ld(x, y)$, for all $x, y \in Y$. By taking the supremum over $x, y \in Y$ in the contraction condition, we get that

$$
\delta(f(B)) \le l\delta(B), \text{ for all } B \in P_b(Y).
$$

By using the properties of the diameter functional δ and the contraction condition of the operator f , we have

$$
\delta(A_{n+1}) = \delta(f(A_n \cap A)) \le \delta(f(A_n)) \le l\delta(A_n), \text{ for all } n \in \mathbb{N}^*.
$$

By mathematical induction over $n \in \mathbb{N}^*$, it follows that

$$
\delta(A_{n+1}) \le l^{n+1}\delta(A), \text{ for all } n \in \mathbb{N}^*.
$$

By letting $n \to \infty$, we get that $\delta(A_{n+1}) \to 0$.

Since $f^{n}(y_{n}) \in A_{n}, f^{n-1}(y_{n}) \in A_{n-1} \cap A$ and $\delta(A_{n-1}) \to 0$ as $n \to \infty$, we get that ${f^n(y_n)}_{n \in \mathbb{N}^*}$ and ${f^{n-1}(y_n)}_{n \in \mathbb{N}^*}$ are fundamental sequences in (X, d) .

By the condition (i) of Definition 1.4. we have that

$$
f^{n-1}(y_n) \stackrel{F}{\to} u^*
$$
 and $f^n(y_n) \stackrel{F}{\to} v^*$ as $n \to \infty$.

On the other hand, $d(f^{n-1}(y_n), f^n(y_n)) \to 0$ as $n \to \infty$. By the condition (*ii*) of Definition 1.4. we have that $u^* = v^* =: x^*$.

Since f is continuous, we have

 $So,$

 $(3).$

$$
f^{n}(y_{n}) = f(f^{n-1}(y_{n})) \xrightarrow{F} f(x^{*}) \text{ as } n \to \infty.
$$

$$
f(x^{*}) = x^{*}.
$$
 Hence $F_{f} = \{x^{*}\}.$
By *(iii),*

$$
f^{n}(y_{n}) = f(f^{n}(y_{n-1}) f^{n}(y_{n-1})) \leq Id(f^{n-1}(y_{n-1}) f^{n-1}(y_{n+1})) \leq \lim_{n \to \infty} Id(f^{n}(y_{n-1}) f^{n}(y_{n-1})) \leq \lim_{n \to \infty} Id(f^{n}(y_{n-1}) f^{n}(y_{n-1})) \leq \lim_{n \to \infty} Id(f^{n}(y_{n-1})) \leq \
$$

$$
d(f^{n}(y_{n}), x^{*}) = d(f^{n}(y_{n}), f^{n}(x^{*})) \leq ld(f^{n-1}(y_{n}), f^{n-1}(x^{*})) \leq \ldots \leq l^{n}d(y_{n}, x^{*}) \to 0
$$

as $n \to \infty$. So, $f^{n}(y_n) \stackrel{d}{\to} x^*$ as $n \to \infty$.

(4). Let $x \in Y$. By using the triangle inequality of the metric d and the assumption (iii) , we have

$$
d(x,x^*) \leq d(x,f(x)) + d(f(x),f(x^*)) \leq d(x,f(x)) + ld(x,x^*).
$$

So, $d(x, x^*) \leq \frac{1}{1-l} d(x, f(x))$, for all $x \in Y$.

(5). Let
$$
y^* \in F_g
$$
. Then, by choosing $x := y^*$ in the conclusion (4), we get

$$
d(y^*, x^*) \le \frac{1}{1 - l} d(y^*, f(y^*)) = \frac{1}{1 - l} d(g(y^*), f(y^*)).
$$

By the symmetry of the metric d and by condition (j) , it follows that

$$
d(x^*, y^*) \le \frac{\eta}{1 - l}, \text{ for all } y^* \in F_g.
$$

3. THE CASE OF φ -CONTRACTIONS

The following theorem generalizes Theorem 1 and Theorem 3 given by I.A. Rus and M.-A. Serban in [19], for φ -contractions in the context of complete metric spaces, and Theorem 1, given by S. Reich and A.J. Zaslavski in [8], for Rakotch contractions, in the same context.

Theorem 3.1. Let $(X, \frac{F}{\epsilon}, d)$ be a large Kasahara space, $Y \subset X$ be a closed subset of $(X, \stackrel{F}{\rightarrow})$ and $f: Y \rightarrow X$ be an operator. We suppose that:

- (i) there exists $y_n \in Y$, for all $n \in \mathbb{N}^*$, such that the set $\{y_n \mid n \in \mathbb{N}^*\}$ is bounded and $f^{i}(y_n)$ is defined for $i = \overline{1,n}$, $n \in \mathbb{N}^*$;
- (*ii*) f is continuous in $(X, \stackrel{F}{\rightarrow})$;
- (iii) f is a φ -contraction w.r.t. the metric d, where φ is a strict and strong comparison function.

Then:

(1)
$$
F_f = \{x^*\};
$$

(2)
$$
f^{n}(y_n) \stackrel{F}{\to} x^*
$$
 as $n \to \infty$;

$$
(3) fn(yn) \stackrel{d}{\to} x^* \text{ as } n \to \infty;
$$

- (4) $d(f^n(y_n), x^*) \leq \varphi(d(y_n, x^*)),$ for all $n \in \mathbb{N}^*$;
- (5) $d(x, x^*) \leq \theta_{\varphi}(d(x, f(x)))$, for all $x \in Y$;
- (6) if $g: Y \to X$ is such that (j) there exists $\eta > 0$ such that $d(f(x), g(x)) \leq \eta$, for all $x \in Y$; (jj) $F_q \neq \emptyset$ then $d(x^*, y^*) \leq \theta_\varphi(\eta)$, for all $y^* \in F_g$.

Proof. (1) + (2). First, we remark that $\{f^{i}(y_n) \mid i = \overline{0, n-1}, n \in \mathbb{N}^*\}$ is a bounded set. Indeed, since the set $\{y_n \mid n \in \mathbb{N}^*\}$ is bounded, for a given $y_0 \in Y$ there exists a constant $R > 0$ such that $d(y_0, y_n) \leq R$, for all $n \in \mathbb{N}^*$.

Since $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function, we have $\varphi(t) \leq t$, for all $t \geq 0$. By (iii) we have the following estimations

$$
d(y_0, f(y_n)) \le d(y_0, f(y_0)) + d(f(y_0), f(y_n)) \le d(y_0, f(y_0)) + \varphi(d(y_0, y_n))
$$

$$
\le d(y_0, f(y_0)) + R, \text{ for all } n \in \mathbb{N}^*.
$$

On the other hand, for any $i \geq 2$, we have

$$
d(y_0, f^i(y_n)) \le d(y_0, f(y_0)) + d(f(y_0), f^i(y_n))
$$

\n
$$
\le d(y_0, f(y_0)) + d(f(y_0), f(y_n)) + d(f(y_n), f^i(y_n))
$$

\n
$$
\le d(y_0, f(y_0)) + R + \sum_{j=1}^{i-1} d(f^j(y_n), f^{j+1}(y_n))
$$

\n
$$
\le d(y_0, f(y_0)) + R + \sum_{j=1}^{\infty} \varphi^j(d(y_n, f(y_n))), \text{ for all } n \in \mathbb{N}^*.
$$

Since φ is a strong comparison function, it follows that

$$
\sum_{j=1}^{\infty} \varphi^j(d(y_n, f(y_n))) < \infty.
$$

So, there exists a number $\Phi \in \mathbb{R}_+$ such that $d(y_0, f^i(y_n)) \leq d(y_0, f(y_0)) + R + \Phi$, for all $n \in \mathbb{N}^*$. Thus, the set $\{f^i(y_n) \mid i = \overline{0, n-1}, n \in \mathbb{N}^*\}$ is bounded.

Let $A \in P_b(Y)$ be such that $\{f^i(y_n) \mid i = \overline{0, n-1}, n \in \mathbb{N}^*\} \subset A$.

Let $A_1 := f(A), A_2 := f(A_1 \cap A), \ldots, A_{n+1} := f(A_n \cap A)$, for all $n \in \mathbb{N}^*$. By this construction, we obtain the sequence of sets $\{A_n\}_{n\in\mathbb{N}^*}$ with the following properties: $A_{n+1} \subset A_n$, for all $n \in \mathbb{N}^*$, and $f^n(y_n) \in A_n$, for all $n \in \mathbb{N}^*$.

Since the operator f is a φ -contraction w.r.t. the metric d,

$$
d(f(x), f(y)) \leq \varphi(d(x, y)),
$$
 for all $x, y \in Y$.

By taking the supremum over $x, y \in Y$ in the contraction condition, we get that

$$
\delta(f(B)) \le \varphi(\delta(B)), \text{ for all } B \in P_b(Y).
$$

By using the properties of the diameter functional δ and by taking into account the assumption (iii) , we have

$$
\delta(A_{n+1}) = \delta(f(A_n \cap A)) \le \delta(f(A_n)) \le \varphi(\delta(A_n)), \text{ for all } n \in \mathbb{N}^*.
$$

By mathematical induction over $n \in \mathbb{N}^*$, it follows that

$$
\delta(A_{n+1}) \le \varphi^{n+1}(\delta(A)), \text{ for all } n \in \mathbb{N}^*.
$$

By letting $n \to \infty$, we get that $\delta(A_{n+1}) \to 0$.

Since $f^{n}(y_{n}) \in A_{n}, f^{n-1}(y_{n}) \in A_{n-1} \cap A$ and $\delta(A_{n-1}) \to 0$ as $n \to \infty$, we get that ${f^n(y_n)}_{n \in \mathbb{N}^*}$ and ${f^{n-1}(y_n)}_{n \in \mathbb{N}^*}$ are fundamental sequences in (X, d) .

By the condition (i) of Definition 1.4. we have that

$$
f^{n-1}(y_n) \stackrel{F}{\to} u^*
$$
 and $f^n(y_n) \stackrel{F}{\to} v^*$ as $n \to \infty$.

On the other hand, $d(f^{n-1}(y_n), f^n(y_n)) \to 0$ as $n \to \infty$. By the condition (*ii*) of Definition 1.4. we have that $u^* = v^* =: x^*$. Since f is continuous, we have

$$
f^{n}(y_{n}) = f(f^{n-1}(y_{n})) \stackrel{F}{\rightarrow} f(x^{*})
$$
 as $n \rightarrow \infty$.

So, $f(x^*) = x^*$. Hence $F_f = \{x^*\}.$

 $(3) + (4)$. By using the assumption *(iii)*, we have

 $d(f^{n}(y_{n}), x^{*}) = d(f^{n}(y_{n}), f^{n}(x^{*})) \leq \varphi(d(f^{n-1}(y_{n}), f^{n-1}(x^{*}))) \leq \ldots \leq \varphi^{n}(d(y_{n}, x^{*})),$ for all $n \in \mathbb{N}^*$. Since $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function, we have that $\varphi^n(d(y_n, x^*)) \to 0$ as $n \to \infty$. So, $f^n(y_n) \stackrel{d}{\to} x^*$ as $n \to \infty$. On the other hand, φ is an increasing function on \mathbb{R}_+ and $\varphi(t) \leq t$, for all $t \in \mathbb{R}_+$, with equality when $t = 0$. By mathematical induction over $n \in \mathbb{N}^*$ we have

$$
d(f^{n}(y_n), x^*) \leq \varphi^{n}(d(y_n, x^*)) \leq \ldots \leq \varphi(d(y_n, x^*)),
$$
 for all $n \in \mathbb{N}^*$.

(5). Since $d(x, x^*) \leq d(x, f(x)) + d(f(x), x^*) \leq d(x, f(x)) + \varphi(d(x, x^*))$, for all $x \in Y$, it follows that $d(x, x^*) - \varphi(d(x, x^*)) \leq d(x, f(x))$, for all $x \in Y$. We have next

$$
d(x, x^*) \le \sup_{d(x, x^*) - \varphi(d(x, x^*)) \le d(x, f(x))} d(x, x^*) = \theta_{\varphi}(d(x, f(x))), \text{ for all } x \in Y.
$$

(6). Let $y^* \in F_g$. Then, from the conclusion (5) we have

$$
d(x^*,y^*) = d(y^*,x^*) \leq \theta_{\varphi}(d(y^*,f(y^*))) = \theta_{\varphi}(d(g(y^*),f(y^*))) \leq \theta_{\varphi}(\eta).
$$

4. The case of Kannan operators

Let us recall first the notion of α -Kannan nonself operator. **Definition 4.1.** Let (X, d) be a metric space and $Y \in P(X)$. The operator $f: Y \rightarrow Y$ X is an α -Kannan operator, if there exists a constant $\alpha \in [0, \frac{1}{2})$ such that

$$
d(f(x), f(y)) \le \alpha [d(x, f(x)) + d(y, f(y))],
$$
 for all $x, y \in Y$.

In the proof of the main result of this section, we will use the maximal displacement functional, also recalled below.

Definition 4.2. Let (X,d) be a metric space, $Y \in P_{cl}(X)$ and $f: Y \to X$ be a continuous nonself operator. By the maximal displacement functional corresponding to f, we understand the functional $E_f: P(Y) \to \mathbb{R}_+ \cup \{+\infty\}$ defined by

$$
E_f(A) := \sup \{ d(x, f(x)) \mid x \in A \},
$$
 for all $A \in P(Y)$.

The maximal displacement functional has the following properties:

(i)
$$
A, B \in P(Y), A \subset B
$$
 imply $E_f(A) \le E_f(B)$;

(ii)
$$
E_f(A) = E_f(\overline{A})
$$
, for all $A \in P(Y)$.

Lemma 4.1. Let (X,d) be a metric space, $Y \in P_{cl}(X)$ and $f: Y \to X$ be a continuous α -Kannan operator. Then:

(1) $E_f(f(A)) \leq \frac{\alpha}{1-\alpha} E_f(A)$, for all $A \in Y$ with $f(A) \subset Y$;

(2) $E_f(f(A) \cap Y) \leq \frac{\alpha}{1-\alpha} E_f(A)$, for all $A \in Y$ with $f(A) \cap Y \neq \emptyset$.

Proof. (1). From the definition of the maximal displacement functional corresponding to f we have that

$$
E_f(f(A)) = \sup \{d(x, f(x)) \mid x \in f(A)\} = \sup \{d(f(u), f^2(u)) \mid u \in A\}.
$$

Since f is an α -Kannan operator, we have

$$
d(f(u), f^{2}(u)) \le \alpha[d(u, f(u)) + d(f(u), f^{2}(u))]
$$
, for all $u \in A$.

It follows that $d(f(u), f^2(u)) \leq \frac{\alpha}{1-\alpha} d(u, f(u))$, for all $u \in A$. Hence

$$
E_f(f(A)) \le \frac{\alpha}{1-\alpha} \sup \{d(u, f(u)) \mid u \in A\} = \frac{\alpha}{1-\alpha} E_f(A),
$$

for all $A \in Y$ with $f(A) \subset Y$.

(2). Taking into consideration that f is an α -Kannan operator, we have that

$$
E_f(f(A) \cap Y) = \sup \{d(x, f(x)) \mid x \in f(A) \cap Y\}
$$

=
$$
\sup \{d(f(u), f^2(u)) \mid u \in A, f(u) \in Y\}
$$

$$
\leq \frac{\alpha}{1-\alpha} \sup \{d(u, f(u)) \mid u \in A\}
$$

=
$$
\frac{\alpha}{1-\alpha} E_f(A),
$$

for all $A \in Y$ with $f(A) \cap Y \neq \emptyset$.

The following result generalizes Theorem 4 given by I.A. Rus and M.-A. Serban in [19] for Kannan operators in the context of complete metric spaces.

Theorem 4.1. Let $(X, \frac{F}{\epsilon}, d)$ be a large Kasahara space, $Y \subset X$ be a closed subset of $(X, \stackrel{F}{\rightarrow})$ and $f: Y \rightarrow X$ be an operator. We suppose that:

- (i) there exists $y_n \in Y$, for all $n \in \mathbb{N}^*$, such that the set $\{y_n \mid n \in \mathbb{N}^*\}$ is bounded and $f^{i}(y_n)$ is defined for $i = \overline{1,n}$, $n \in \mathbb{N}^*$;
- (*ii*) f is continuous in $(X, \stackrel{F}{\rightarrow})$;
- (iii) f is an α -Kannan operator w.r.t. the metric d;
- (iv) $E_f(Y) < \infty$.

Then:

$$
(1) \ \ F_f = \{x^*\};
$$

- (2) $f^n(y_n) \stackrel{F}{\to} x^*$ as $n \to \infty$;
- (3) $f^n(y_n) \stackrel{d}{\to} x^*$ as $n \to \infty$;
- (4) $d(x, x^*) \le (1 + \alpha) d(x, f(x))$, for all $x \in Y$;
- (5) $d(f^{n-1}(x_n), x^*) \le (1+\alpha) \left(\frac{\alpha}{1-\alpha}\right)^{n-1} d(x_n, f(x_n)),$ for all $n \in \mathbb{N}^*$;
- (6) if $g: Y \to X$ is such that (j) there exists $\eta > 0$ such that $d(f(x), g(x)) \leq \eta$, for all $x \in Y$; (jj) $F_q \neq \emptyset$ then $d(x^*, y^*) \leq (1 + \alpha)\eta$, for all $y^* \in F_g$.

Proof. (1) + (2). First, we remark that $\{f^{i}(y_n) \mid i = \overline{0, n-1}, n \in \mathbb{N}^*\}$ is a bounded set. Indeed, since the set $\{y_n \mid n \in \mathbb{N}^*\}$ is bounded, for a given $y_0 \in Y$ there exists a constant $R > 0$ such that $d(y_0, y_n) \leq R$, for all $n \in \mathbb{N}^*$.

By (iii) we have the following estimations

$$
d(y_0, f(y_n)) \le d(y_0, f(y_0)) + d(f(y_0), f(y_n))
$$

\n
$$
\le d(y_0, f(y_0)) + \alpha[d(y_0, f(y_0)) + d(y_n, f(y_n))]
$$

\n
$$
\le (1 + \alpha)d(y_0, f(y_0)) + \alpha d(y_n, y_0) + \alpha d(y_0, f(y_n)), \text{ for all } n \in \mathbb{N}^*.
$$

It follows that

$$
d(y_0, f(y_n)) \le \frac{1+\alpha}{1-\alpha}d(y_0, f(y_0)) + \frac{\alpha}{1-\alpha}R
$$
, for all $n \in \mathbb{N}^*$.

On the other hand, for any $i \geq 2$, we have

$$
d(y_0, f^i(y_n)) \leq d(y_0, f(y_0)) + d(f(y_0), f^i(y_n))
$$

\n
$$
\leq d(y_0, f(y_0)) + d(f(y_0), f(y_n)) + d(f(y_n), f^i(y_n))
$$

\n
$$
\leq d(y_0, f(y_0)) + \alpha[d(y_0, f(y_0)) + d(y_n, f(y_n))] + \sum_{j=1}^{i-1} d(f^j(y_n), f^{j+1}(y_n))
$$

\n
$$
\leq (1 + \alpha)d(y_0, f(y_0)) + \alpha[d(y_n, y_0) + d(y_0, f(y_n))] + \sum_{j=1}^{i-1} \left(\frac{\alpha}{1 - \alpha}\right)^j d(y_n, f(y_n))
$$

\n
$$
\leq (1 + \alpha)d(y_0, f(y_0)) + \alpha R + \alpha d(y_0, f(y_n)) + \frac{\alpha}{1 - 2\alpha}[d(y_n, y_0) + d(y_0, f(y_n))]
$$

\n
$$
\leq (1 + \alpha)d(y_0, f(y_0)) + 2\alpha \frac{1 - \alpha}{1 - 2\alpha}[R + d(y_0, f(y_n))]
$$

\n
$$
\leq \frac{1 + \alpha}{1 - 2\alpha}d(y_0, f(y_0)) + \frac{2\alpha}{1 - 2\alpha}R, \text{ for all } n \in \mathbb{N}^*.
$$

Thus, the set $\{f^{i}(y_n) \mid i = \overline{0, n-1}, n \in \mathbb{N}^*\}$ is bounded.

Let $A \in P_b(Y)$ be such that $\{f^i(y_n) \mid i = \overline{0, n-1}, n \in \mathbb{N}^*\} \subset A$.

Let $A_1 := f(A), A_2 := f(A_1 \cap A), \ldots, A_{n+1} := f(A_n \cap A)$, for all $n \in \mathbb{N}^*$. By this construction, we obtain the sequence of sets $\{A_n\}_{n\in\mathbb{N}^*}$ with the following properties: $A_{n+1} \subset A_n$, for all $n \in \mathbb{N}^*$, and $f^n(y_n) \in A_n$, for all $n \in \mathbb{N}^*$.

By the definitions of the diameter functional δ and maximal displacement functional E_f and taking into account the properties stated in Lemma 4.1., we have

$$
\delta(A_{n+1}) = \delta(f(A_n \cap A)) \le 2\alpha E_f(A_n \cap A) = 2\alpha E_f(f(A_{n-1} \cap A) \cap A)
$$

$$
\le \frac{2\alpha^2}{1-\alpha} E_f(A_{n-1} \cap A) \le \dots \le \frac{2\alpha^{n+1}}{(1-\alpha)^n} E_f(A) \to 0 \text{ as } n \to \infty.
$$

By following the proof of Theorem 2.1., the conclusions follow.

- (3). Follows from the proof of (5).
- (4). Let $x \in Y$. By using the assumption *(iii)*, we have

$$
\begin{split} & d(x,x^*) \leq d(x,f(x)) + d(f(x),f(x^*)) \leq d(x,f(x)) + \alpha [d(x,f(x)) + d(x^*,f(x^*))].\\ & \text{It follows that } d(x,x^*) \leq (1+\alpha)d(x,f(x)), \, \text{for all}\,\, x\in Y. \end{split}
$$

592 ALEXANDRU-DARIUS FILIP

(5). Let $x := f^{n-1}(x_n)$ in the conclusion (4). Then we have

$$
d(f^{n-1}(x_n), x^*) \le (1+\alpha)d(f^{n-1}(x_n), f^n(x_n))
$$

\n
$$
\le (1+\alpha)\frac{\alpha}{1-\alpha}d(f^{n-2}(x_n), f^{n-1}(x_n))
$$

\n
$$
\vdots
$$

\n
$$
\le (1+\alpha)\left(\frac{\alpha}{1-\alpha}\right)^{n-1}d(x_n, f(x_n)), \text{ for all } n \in \mathbb{N}^*.
$$

(6). Let $y^* \in F_g$. By letting $x := y^*$ in the conclusion (4) we have

$$
d(y^*, x^*) \le (1 + \alpha)d(y^*, f(y^*)).
$$

Hence $d(x^*, y^*) \le (1 + \alpha) d(g(y^*), f(y^*)) \le (1 + \alpha)\eta$, for all $y^* \in F_g$.

5. Some problems

The above considerations give rise to the following problems.

Problem 5.1. Let (X, d) be a metric space, $Y \subset X$ be a nonempty closed subset and ${y_n}_{n\in\mathbb{N}}\subset Y$ be a bounded sequence. For which generalized contractions ([10], [18], [1], [7]) $f: Y \to X$, the following implication holds: $f^{i}(y_n)$ is defined for $i = \overline{1,n}$, $n \in \mathbb{N}^*$ implies that the set $\{f^i(y_n) \mid i = \overline{1,n}, n \in \mathbb{N}^*\}$ is bounded ?

Problem 5.2. If f is a solution of Problem 5.1. in which conditions we have that:

- (*i*) $F_f = \{x^*\};$
- $(ii) f^{n}(y_{n}) \rightarrow x^{*}$ as $n \rightarrow \infty$?

Problem 5.3. Let $(X, \frac{F}{\epsilon}, d)$ be a large Kasahara space, $Y \subset X$ be a closed subset of $(X, \stackrel{F}{\rightarrow})$ and $f: Y \rightarrow X$ be an operator. We suppose that:

- (i) there exists a bounded sequence $\{y_n\}_{n\in\mathbb{N}}\subset Y$ such that $f^i(y_n)$ is defined for $i=\overline{1,n}, n \in \mathbb{N}^*;$
- (*ii*) f is continuous in $(X, \frac{F}{\rightarrow})$.

The problem is to find those generalized contractions f , satisfying the above conditions, for which we have that:

- (1) $F_f = \{x^*\};$
- (2) $f^{n}(y_{n}) \stackrel{F}{\rightarrow} x^{*}$ as $n \rightarrow \infty$.

REFERENCES

- [1] V. Berinde, *Iterative Approximation of Fixed Points*, Springer-Verlag, Berlin Heidelberg, 2007.
- [2] A. Chiş-Novac, R. Precup, I.A. Rus, Data dependence of fixed points for non-self generalized contractions, Fixed Point Theory, 10(2009), 73-87.
- [3] A.-D. Filip, Fixed Point Theory in Kasahara Spaces, Casa Cărții de Știință, Cluj-Napoca, 2015.
- [4] A.-D. Filip, I.A. Rus, Fixed point theory for nonself generalized contractions in Kasahara spaces, An. Univ. Vest Timişoara, Ser. Mat.-Inform., 57(2019), 66-76.
- [5] M. Fréchet, Les Espaces Abstraits, Gauthier-Villars, Paris, 1928.
- [6] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
- [7] G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16(1973), 201-206.

- [8] S. Reich, A.J. Zaslavski, A note on Rakotch contractions, Fixed Point Theory, 9(2008), no. 1, 267-273.
- [9] I.A. Rus, Basic problem for Maia's theorem, Sem. Fixed Point Theory, (1981), 112-115.
- [10] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
- [11] I.A. Rus, Picard operators and applications, Sci. Math. Jpn., $58(2003)$, 191-219.
- [12] I.A. Rus, Fixed Point Structure Theory, Cluj University Press, 2006.
- [13] I.A. Rus, *Kasahara spaces*, Sci. Math. Jpn., **72**(2010), no. 1, 101-110.
- [14] I.A. Rus, Five open problems in fixed point theory in terms of fixed point structures (I): Single valued operators, Proceedings of the 10^{th} IC-FPTA, 39-60, July 9-18 Cluj-Napoca, Romania, House of the Book of Science 2013, Cluj-Napoca.
- [15] I.A. Rus, The generalized retraction methods in fixed point theory for nonself operators, Fixed Point Theory, 15(2014), no. 2, 559-578.
- [16] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeş-Bolyai Math., $61(2016)$, 343-358.
- [17] I.A. Rus, A. Mureşan, V. Mureşan, Weakly Picard operators on a set with two metrics, Fixed Point Theory, 6(2005), no. 2, 323-331.
- [18] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, 2008.
- [19] I.A. Rus, M.-A. Serban, Some fixed point theorems for nonself generalized contractions, Miskolc Math. Notes, 17(2016), no. 2, 1021-1031.

Received: October 28, 2021; Accepted: May 10, 2022.

594 ALEXANDRU-DARIUS FILIP