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1. INTRODUCTION AND PRELIMINARIES

There are several techniques in the fixed point theory for nonself operators on a
complete metric space ([6], [18], [12], [15], [14], [2], [8], [19], ...). Some results are
given in the case of Kasahara spaces ([3], [4], [13]). By following the papers of S.
Reich and A.J. Zaslavski [8] and I.A. Rus and M.-A. Serban [19] we give some fixed
point theorems for nonself operators on a large Kasahara space.

In this paper we will use the notations and terminology given in [3] and [19]. The
notions of comparison function, L-space and large Kasahara space are recalled below.
Definition 1.1. Let ¢ : Ry — R be a function. If ¢ is monotone increasing, i.e., for
all t1,t2 € Ry, t1 < o implies p(t1) < ¢(t2), and the sequence ™ (t) — 0 as n — oo,
for all t € Ry, then ¢ is a comparison function.

If ¢ is a continuous comparison function satisfying ¢t — ¢(t) — oo as t — oo, then
 is called strict comparison function. In this case, we can define the function

O, : Ry =Ry, 0,(t) =sup{s e Ry | s —p(s) < t}, forallt € Ry
which is increasing and has the property 6,(¢) — 0 as ¢ — 0. We will use the function
0, to study the data dependence of the fixed points.

If ¢ is a comparison function satisfying Z P"(t) < oo, for all t € Ry, then ¢ is

neN
called strong comparison function.
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More consideration on comparison functions are given in [1] and [10].

The notion of L-space was given by M. Fréchet in 1906 (see [5]).
Definition 1.2. Let X be a nonempty set. Let s(X) := {{zn}nen | 2n € X, n € N}.
Let ¢(X) be a subset of s(X) and Lim : ¢(X) — X be an operator. By definition the
triple (X, ¢(X), Lim) is called an L-space (denoted also by (X, £>)) if the following
conditions are satisfied:

(i) if x,, =z, for all n € N, then {x, }nen € ¢(X) and Lim{z, }nen = .
(1) if {xn}nen € ¢(X) and Lim{x, }neny = x, then for all subsequences {z, }icn
of {zn, }nen, we have that {z,, }ien € ¢(X) and Lim{zy, }ien = .
By definition, an element {z,, }nen of ¢(X) is a convergent sequence,

T = Lim{xn}neN

is the limit of this sequence and we also write x,, 5 rasn— oo

Example 1.1. Let X be a nonempty set and {z, }nen be a sequence in X which
does not have a constant subsequence. Let ¢1(X) be the set of all constant sequences
and c2(X) be the set of all subsequences of {x,}nen. Let ¢(X) := ¢1(X) U ca(X)
and z € X be an arbitrary element. If {z,}n,en € ¢1(X) then Lim{x,}neny = z. If
{Yn}nen € c2(X) then Lim{y, }nen = 2. The triple (X, c(X), Lim) is an L-space.

More examples of L-spaces are given in [11].

The notion of large Kasahara space was given by I.A. Rus in [13], as follows:
Definition 1.3. Let X be a nonempty set, L be an L-space structure on X,
(G,—i—,S,g) be an L-space ordered semigroup with unity, 0 be the least element
in (G,<) and dg : X X X — G be an operator. The triple (X,g,dg) is a large
Kasahara space iff we have the following compatibility condition between £ and dga:

(i) zn € X, (zn)nen a Cauchy sequence (in some sense) with respect to dg
implies that (z,,)nen converges in (X, E>)

The notion of large Kasahara space which will be used in this paper, is the following:
Definition 1.4. Let X be a nonempty set, £ be an L-space structure on X and
d: X x X — Ry be ametric on X. The triple (X, £>, d) is a large Kasahara space iff

we have the following compatibility conditions between £ and d:
(1) {zn}tnen is a fundamental sequence in (X, d) = {z, }nen converges in (X, g),

(i) xp EN T*, Yn EN y* and d(z,,yn) = 0as n — oo = z* = y*.

Example 1.2. (See [9], [17], [4]). Let (X, p) be a complete metric space and (X, d)
be a metric space. We suppose that there exists ¢ > 0 such that p(z,y) < cd(z,y),
for all z,y € X. Then, (X, Y d) is a large Kasahara space.
Example 1.3. We give here a counterexample of large Kasahara space, showing that
the condition (#7) of the Definition 1.4. is necessary.

Let X :=R, ¢(R) := ¢1(R) Uca(R) Ues(R), where ¢1(R) is the set of all convergent
sequences with respect to the metric d: R x R — R, defined by d(x,y) = |z —y], for

all ,y € R and, on ¢;(R), we consider L=% ¢ (R) is the set of all subsequences
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{zn}nen of {n}neny with Lim{x,}nen = 0; c3(R) be the set of all subsequences
{Yn}nen of {n + %H}neN with Lim{yn }nen = 1. Notice that (R,c(R), Lim) is an

L-space. But the triple (R, E), d) is not a large Kasahara space. The condition (¢) of
Definition 1.4. is satisfied, but the condition (iz) is not. Indeed, let

1
Ty :=mn and y, ::n+7n+1’

for all n € N. For these two sequences we have x,, E) 0, yn E> 1 and d(xn,yn) — 0 as
n — 00.
Remark 1.1. Let (X ,g,d) be a large Kasahara space. Then for any sequence

{Zp}nen C X with z, 4 asn — 0o, we have x, £ 2% as n — oo. This implies
that for any subset A C X, with A closed in (X, g), A is closed in (X, d).

2. THE CASE OF [-CONTRACTIONS

We give here one of the main results of this paper, concerning the existence and
uniqueness of fixed points for nonself I-contractions, in the context of a large Kasahara
space. The data dependence of the fixed point is also discussed (see [16]).

Theorem 2.1. Let (X, £>, d) be a large Kasahara space, Y C X be a closed subset of
(X, E>) and f:Y — X be an operator. We suppose that:

(1) there exists y, €Y, for alln € N*, such that the set {y, | n € N*} is bounded
and f*(yy) is defined for i =1,n, n € N*;
(ii) f is continuous in (X, g),
(#i7) f is an l-contraction w.r.t. the metric d.

Fy={z"};
™ (yn) B asn— 00

d(z,2*) < {5d(z, f(z)), forallz €Y
if the operator g :' Y — X is such that
(§) there exists n > 0 such that d(f(z),g(z)) <n, for allz €Y;

(17) Fy # 2
then d(x*,y*) < 14, for all y* € F,.

Proof. (1) 4 (2). First, we remark that
{fi(yn) | i=0,n—1, n € N*}

)
)
g ™ (yn) Lo asn — 00;
)

is a bounded set. Indeed, since the set {y, | n € N*} is bounded, for a given yg € Y
there exists a constant R > 0 such that d(yo,y,) < R, for all n € N*.
By the assumption (iii), we have the following estimations

d(yo, f(yn)) < d(yo, f(vo)) + d(f(yo), f(yn)) < d(yo, f(yo)) + IR, for all n. € N*.
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On the other hand, for any ¢ > 2, we have

d(yo, f'(yn)) < d(yo, f(y0)) + d(f (yo), [ (yn))
< d(yo, f(y0)) + d(f(Wo): f (yn)) + A(f (yn), [ (yn))

1—1
< d(yo, f(y0)) + 1R+ > d(f (yn), 7 (yn))
j=1
< d(yo, £(40) + IR+ 7y, £(yn), Tor all m € N
and
AWns f(Yn)) < d(yn, yo) + Ao, f(yn)) < R+ 1R+ d(yo, f(v0))-

So, there exists
_ 1 2lR
R:= md(yoaf(yo)) T 0
such that d(yo, f(yn)) < R, for all n € N* and i = 0,n — 1. Thus, the set
{fi(yn) | i=0,n -1, n € N*}

is bounded.

Let A € Py(Y) be such that {f(y,) | i=0,n—1, n € N*} C A. (The authors of
the paper [19] informed me that in their paper, the condition {y, | n € N} C A must
be replaced with {f*(y,) | i =0,n —1,n € N} C A).

Let Ay := f(A), A2 := f(A1NA), ..., Apt1:= f(A, N A), for all n € N*. By this
construction, we obtain the sequence of sets {A,, },en+ with the following properties:
Apy1 C Ay, for all n € N*, and f"(y,) € Ay, for all n € N*.

Since the operator f is an [-contraction w.r.t. the metric d, there exists a constant
1 €0,1) such that d(f(z), f(y)) <ld(x,y), for all z,y € Y. By taking the supremum
over z,y € Y in the contraction condition, we get that

5(f(B)) <15(B), for all B € Py(Y).

By using the properties of the diameter functional § and the contraction condition
of the operator f, we have

5(Ant1) = 3(f(An N A)) < 6(F(An)) < I6(Ay), for all n € N*.
By mathematical induction over n € N*| it follows that
§(Apy1) <1"T5(A), for all n € N*.

By letting n — oo, we get that §(A,4+1) — 0.

Since f™(yn) € Ap, [ yn) € An—1NAand §(A,_1) — 0 as n — oo, we get that
{1 (yn) bnen and {f""H(yn) }nen- are fundamental sequences in (X, d).

By the condition (¢) of Definition 1.4. we have that

" yn) L5 u* and " (yn) B o asn — .

On the other hand, d(f"~*(y,), f"(yn)) — 0 as n — oo.
By the condition (#i) of Definition 1.4. we have that u* = v* =: z*.
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Since f is continuous, we have

I () = FUF" " n)) = fla®) as n— 0.
So, f(z*) = z*. Hence Fy = {z*}.
(3)- By (iid),
A(f"(yn), %) = d(f" (yn), [ (@) <1 yn), S ") < - < Pd(yn, 27) =0

as n — 00. So, f"™(yn) 4 2% as n — oo.
(4). Let z € Y. By using the triangle inequality of the metric d and the assumption
(iii), we have

d(z,2") < d(z, f(2)) +d(f(2), f(=")) < d(, f(2)) + ld(z,z7).
So, d(z,2*) < {5d(z, f(z)), forall z € Y.
(5). Let y* € Fy. Then, by choosing x := y* in the conclusion (4), we get
1 * * _ 1 * *
md(y SW) = md(g(y ), f(y)).

By the symmetry of the metric d and by condition (), it follows that

d(y*,z") <

d(z*,y*) < %, for all y* € F,.

3. THE CASE OF (-CONTRACTIONS

The following theorem generalizes Theorem 1 and Theorem 3 given by I.A. Rus
and M.-A. Serban in [19], for ¢-contractions in the context of complete metric spaces,
and Theorem 1, given by S. Reich and A.J. Zaslavski in [8], for Rakotch contractions,
in the same context.

Theorem 3.1. Let (X, £>, d) be a large Kasahara space, Y C X be a closed subset of
(X, E>) and f:Y — X be an operator. We suppose that:
(i) there exists yn, €Y, for alln € N*, such that the set {y, | n € N*} is bounded
and fi(yy) is defined for i =1,n, n € N*;
(i3) f is continuous in (X, £>),
(#i1) f is a p-contraction w.r.t. the metric d, where ¢ is a strict and strong com-
parison function.

Ao asn — 005
fyn), ") < p(d(yn,x%)), for all n € N*;
z,x*) < O,(d(z, f(x))), forallz € Y;
g:Y — X is such that
(7) there exists n > 0 such that d(f(z),g(x)) <n, for allz €Y;
(G7) F, # 2
then d(z*,y*) < 0,(n), for all y* € Fy,.
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Proof. (1) + (2). First, we remark that {f*(y,) | i = 0,n — 1, n € N*} is a bounded
set. Indeed, since the set {y, | n € N*} is bounded, for a given yo € Y there exists a
constant R > 0 such that d(yo,yn) < R, for all n € N*.
Since ¢ : Ry — R is a comparison function, we have ¢(t) < ¢, for all ¢ > 0.
By (4i7) we have the following estimations
d(yo, f(yn)) < d(yo, f(y0)) + d(f(y0), [ (yn)) < d(yo, f(y0)) + (d(yo, yn))
< d(yo, f(y0)) + R, for all n € N*.

On the other hand, for any ¢ > 2, we have

d(yo, [ (yn)) < d(yo, f(y0)) + d(f (yo), [ (yn))
< d(yo, f(y0)) + d(f (yo), f(yn)) + d(f (¥n), f* (yn))

i—1

< d(yo. f(y0)) + R+ > _d(f (yn), 7 (yn))

j=1
< d(yo, f(40)) + R+ Y ¢ (d(yn, f(yn))), for all n € N*.
j=1

Since ¢ is a strong comparison function, it follows that
> @ (dyn, fyn))) < o
j=1

So, there exists a number ® € R, such that d(yo, f*(yn)) < d(vo, f(y0)) + R + @,
for all n € N*. Thus, the set {f*(y,) | i =0,n — 1, n € N*} is bounded.

Let A € P,(Y) be such that {f*(y,) | i=0,n—1, n € N*} C A.

Let Ay := f(A), As := f(A1NA), ..., Apt1:= f(A, N A), for all n € N*. By this
construction, we obtain the sequence of sets {4, }nen+ with the following properties:
Ani1 C Ay, for all n € N* and f"(y,,) € Ay, for all n € N*.

Since the operator f is a p-contraction w.r.t. the metric d,

d(f(), f(y)) < @(d(z,y)), for all 2,y € .

By taking the supremum over x,y € Y in the contraction condition, we get that

5(f(B)) < p(8(B)), for all B € By(Y).

By using the properties of the diameter functional § and by taking into account
the assumption (iii), we have

5(Ansr) = 8(f(An 1 A)) < 5(F(An)) < p(6(A,), for all n € N*,
By mathematical induction over n € N*| it follows that
§(Ani1) < @"TH(8(A)), for all n € N*.

By letting n — oo, we get that 6(A,+1) — 0.
Since f™(yn) € Ap, " H(yn) € An_1NAand §(A,_1) — 0 as n — oo, we get that
{F"(Yn) fnen and {f" " (yn) }nen+ are fundamental sequences in (X, d).
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By the condition (¢) of Definition 1.4. we have that

" yn) L and ™ (yn) B % asn — .

On the other hand, d(f"~*(y,), f"(yn)) — 0 as n — oo.
By the condition (i) of Definition 1.4. we have that u* = v* =: z*.
Since f is continuous, we have

n n— F *
") = F(f 1(yn))—>f(ac)asn—>oo.

So, f(z*) = z*. Hence Fy = {z*}.

(3) + (4). By using the assumption (4i7), we have
d(f™(yn),z*) = d(f"(yn), ["(27)) < @(d(f* " (yn), f*7H(2") < ... < " (dlyn, 2)),
for all n € N*. Since ¢ : Ry — R, is a comparison function, we have that
©"(d(Yn,z*)) — 0 as n — oo. So, f"(yn) % 2* as n — co. On the other hand,
¢ is an increasing function on Ry and ¢(¢) < ¢, for all ¢t € R, with equality when
t = 0. By mathematical induction over n € N* we have

A (ga),2") < " (d(gara™)) < ... < (d(gn, ™)), for all n € N,

(5). Since d(z,2%) < d(z, f(z)) + d(f(x),z") < d(z, {(z)) + p(d(z,2")), for al

x €Y, it follows that d(x, z*) — ¢(d(z, x*)) < d(z, f(x)), for all x € Y. We have next
d(z,z") < sup d(z,xz") = 0,(d(x, f(x))), forall z € Y.
d(z,2*)—p(d(z,2*))<d(z,f(z))

(6). Let y* € Fy. Then, from the conclusion (5) we have
d(z*,y*) = d(y",2") < 0,(d(y", f(y"))) = 0,(d(g(y"), f(y"))) < O,(n).
4. THE CASE OF KANNAN OPERATORS

Let us recall first the notion of a-Kannan nonself operator.
Definition 4.1. Let (X, d) be a metric space and Y € P(X). The operator f:Y —
X is an a-Kannan operator, if there exists a constant « € [0, %) such that

d(f(x), f(y)) < ald(z, f(x)) + d(y, f(y))], for all z,y €Y.

In the proof of the main result of this section, we will use the maximal displacement
functional, also recalled below.
Definition 4.2. Let (X,d) be a metric space, ¥ € Py(X)and f: Y — X be a
continuous nonself operator. By the maximal displacement functional corresponding
to f, we understand the functional E; : P(Y) — Ry U {+00} defined by

E;(A) :=sup{d(z, f(z)) | x € A}, for all A€ P(Y).

The maximal displacement functional has the following properties:

(i) A,Be P(Y), AC B imply Ef(A) < E¢(B);

(i) E;(A) = Ef(A), for all A € P(Y).
Lemma 4.1. Let (X,d) be a metric space, ¥ € Py(X) and f : ¥ — X be a
continuous a-Kannan operator. Then:

(1) Ef(f(A)) < 72=FE;(A), for all A€ Y with f(4) CY;

— l—«
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(2) Er(f(A)NY) < -2 E(A), for all A € Y with f(A)NY # @.

— l—«
Proof. (1). From the definition of the maximal displacement functional corresponding
to f we have that

By(f(A)) = sup{d(z, f(2)) |x € f(A)} = sup{d(f(w), f*(u)) |u € A}.
Since f is an a-Kannan operator, we have
d(f(u), f(u) < ald(u, f(u)) + d(f(u), f*(u))], for all u € A.
It follows that d(f(u), f2(u)) < 12=d(u, f(u)), for all u € A. Hence
Er(f(A)) <

for all A € Y with f(4) C Y.
(2). Taking into consideration that f is an a-Kannan operator, we have that

Ep(f(A)NY) = sup{d(z, f(z)) | = € fF(A)NY}
sup{d(f(u), f*(u)) | u € A, f(u) €Y}
sup{d(u, f(u)) | u € A}

(0%
=1L,

[0} «

sup{d(u, f(u)) | v € A} =

E(A),

11—« l—«

<
T 11—«

for all A € Y with f(A)NY # @.

The following result generalizes Theorem 4 given by I.A. Rus and M.-A. Serban in
[19] for Kannan operators in the context of complete metric spaces.

Theorem 4.1. Let (X, E), d) be a large Kasahara space, Y C X be a closed subset of
(X, i) and f:Y — X be an operator. We suppose that:
(i) there exists yn, €Y, for alln € N*, such that the set {y,, | n € N*} is bounded
and f*(yn) is defined for i =1,n, n € N*;
(ii) f is continuous in (X, g),
(ii7) f is an a-Kannan operator w.r.t. the metric d;
(iv) E¢(Y) < o0.

as n — 0o;
1+ a)d(x, f(x)), for allx € Y;
1N @) 7)< (Lt @) (725)" d(@n, f(0)). for alln € N';
ifg: Y — X is such that

(7) there exists n > 0 such that d(f(z),g(x)) <n, forallz €Y;
(73) Fy # @
then d(z*,y*) < (1 + «)n, for all y* € Fy.
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Proof. (1) + (2). First, we remark that {f(y,) | i = 0,n — 1, n € N*} is a bounded
set. Indeed, since the set {y, | n € N*} is bounded, for a given yo € Y there exists a
constant R > 0 such that d(yo,yn) < R, for all n € N*.

By (4i7) we have the following estimations

d(yo, f(yn)) < d(yo, f(0)) + d(f (o), f(yn))

< d(yo, f(yo)) + ald(yo, f(v0)) + d(Yn; f(yn))]

< (14 a)d(yo, f(y0)) + ad(yn, yo) + ad(yo, f(yn)), for all n € N*.
It follows that

1+« o "
d(yo, f(yn)) < Ed(yoa f(yo)) + ER’ for all n € N*.

On the other hand, for any ¢ > 2, we have

d(yo.f*(yn)) < d(yo, f(yo)) + d(f (o), f* (yn))
< d(yo, f(y0)) + d(f(yo)s f(yn)) + d(f (yn), [*(yn))

< d(yo, £ (y0)) + ald(yo, f(y0)) + d(yn, f(yn))] + z_: d(f7 (yn), F77 (yn))

j=1

< (1 @) F() + o) + S]] e )

< (14 a)d(yo, f(yo)) + aR + ad(yo, f(yn)) +

11—«

(1 + a)d(yo, £(v0)) + 207—5—

1+« 20
< d for all *,
<194 (yo,f(yo))Jrl_QaR, oralln e N

Thus, the set {f(y,) | i =0,n — 1, n € N*} is bounded.

Let A € P,(Y) be such that {fi(y,) | i=0,n—1, n € N*} C A.

Let Ay := f(A), As := f(A1NA), ..., Api1:= f(A, N A), for all n € N*. By this
construction, we obtain the sequence of sets {4, }nen+ with the following properties:
Ani1 C Ay, for all n € N* ) and f"(y,) € Ay, for all n € N*.

By the definitions of the diameter functional § and maximal displacement func-
tional Ey and taking into account the properties stated in Lemma 4.1., we have

0(Ap41) =0(f(An,NA)) <2aE;(A, NA) =2aE;(f(An—1 NA)NA)
202 2a" !
< E (A, NA)<...< =
T l-a i ! )< ~(1-a)
By following the proof of Theorem 2.1., the conclusions follow.
(3). Follows from the proof of (5).
(4). Let x € Y. By using the assumption (4ii), we have
A(e,2°) < da, f(2)) +d(f(2), /(@) < e, S(@) + ald(e, [(2) + e, S @),
It follows that d(x,z*) < (1 + a)d(x, f(x)), for all z € Y.

[l o) + dlyor S (n)]

[R+ d(yo, f(yn))]

IN

Ef(A) = 0asn — oo.
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(5). Let = := f""!(z,) in the conclusion (4). Then we have
d(f"H(an),2") < (1+a)d (f"il(xn) [ (@n))
< (1 a) (), S )

«

—

n—1
< (1—|—o<)<1 ) d(p, f(x,)), for all n € N*.

(6). Let y* € F,. By letting « := y* in the conclusion (4) we have

d(y*,z*) < (1 +a)d(y", f(y")).
Hence d(z*,y*) < (1 + a)d(g(y*), f(y*)) < (1 + a)n, for all y* € F,.

5. SOME PROBLEMS

The above considerations give rise to the following problems.
Problem 5.1. Let (X, d) be a metric space, Y C X be a nonempty closed subset and
{Yn}neny C Y be a bounded sequence. For which generalized contractions ([10], [18],
1], [7]) f:Y — X, the following implication holds: f(y,) is defined for i = 1,n,
n € N* implies that the set {f*(y,) | i = 1,n, n € N*} is bounded ?
Problem 5.2. If f is a solution of Problem 5.1. in which conditions we have that:

(1) Fy={a"};

(i )f"(yn)—me asn — 0o ?

Problem 5.3. Let (X, —),d) be a large Kasahara space, Y C X be a closed subset
of (X, £>) and f:Y — X be an operator. We suppose that:

(i) there exists a bounded sequence {y, }nen C Y such that fi(y,,) is defined for
1=1,n,n e N
(ii) f is continuous in (X, 5).

The problem is to find those generalized contractions f, satisfying the above condi-
tions, for which we have that:

(1) Fy={z"};

(2) f™(yn) 5 2" asn— o0,
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