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Abstract. In this paper we study the existence of multiple nontrivial positive weak solutions to the

following system of problems.

−∆pu−∆qu = λf(x)|u|r−2u+ ν
1− α

2− α− β
h(x)|u|−α|v|1−β in Ω,

−∆pv −∆qv = µg(x)|v|r−2v + ν
1− β

2− α− β
h(x)|u|1−α|v|−β in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω

where 0 < α < 1, 0 < β < 1, 2− α− β < q <
N(p−1)
N−p < p < r < p∗, with p∗ = Np

N−p .

We will guarantee the existence of a solution in the Nehari manifold. Further by using the Lusternik-

Schnirelman category we will prove the existence of at least cat(Ω) + 1 number of solutions.
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plicity, fixed point.
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1. Introduction

As mentioned in the abstract we will attempt the following problem.

−∆pu−∆qu = λf(x)|u|r−2u+ ν
1− α

2− α− β
h(x)|u|−α|v|1−β in Ω,

−∆pv −∆qv = µg(x)|v|r−2v + ν
1− β

2− α− β
h(x)|u|1−α|v|−β in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω

(1.1)

where (C): 0 < α < 1, 0 < β < 1, 2 − α − β < q < N(p−1)
N−p < p < r < p∗, with

p∗ = Np
N−p , λ, µ, ν > 0, 0 < α, β < 1.

The domain Ω is bounded subset of RN with a lipschitz continuous boundary ∂Ω.
The measurable functions f, g, h ≥ 0, f +g 6= 0 over a subset of Ω of positive measure
and are bounded almost everywhere in Ω, i.e. f, g, h ∈ L∞(Ω). The operator (−∆s)
acting on a function say U is the s-Laplacian operator which is defined as

−∆sU(x) = −∇ · (|∇U |s−2∇U)

for all s ∈ [1,∞). We will be assuming that p < N , 1 < r < q < N(p−1)
N−1 < p < p∗

throughout the article. Off-late, a huge attention has been given to elliptic problems
involving two Laplacian operators viz.

(−∆p)u− (−∆q)u = λ|u|r−2u+ |u|p
∗−2u in Ω,

u = 0 in ∂Ω.

The problem draws its motivation from the fundamental reaction-diffusion equation

∂

∂t
u = ∇ · [H(u)∇u] + c(x, u). (1.2)

where H(u) = |∇u|p−2 + |∇u|q−2. The problem is important owing to its manifold
applications in Physics and other applied sciences such as in biophysics to model the
cells, chemical reaction design, plasma physics, drug delivery mechanism to name a
few. The reaction term has a polynomial form with respect to u. In the recent years
the problem

−∇ · [H(u)∇u] = c(x, u)

has been studied in [4, 6, 29, 32, 16, 17]. One may refer to Yin and Yang [35] who
studied the problem in (1.2) when p2 < N , 1 < q < p < r < p∗. The authors
proved the existence of cat(Ω) number of positive solutions using simple variational
techniques. When p = q, r = 2 the problem (1.2) reduces to the well-known Brezis-
Nirenberg problem which has been further studied for the case of critical growth in
bounded and unbounded domains by many researchers (Refer [2, 3, 5, 26]) and the
references therein. A common issue which intrigued the researchers was to figure out
a way to overcome the lack of compactness in the continuous embedding W 1,p

0 (Ω) ↪→
Lp
∗
(Ω). Two noteworthy contributions can be found in [10, 23].
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Meanwhile, the elliptic systems have also gained much attention, especially for the
system

−(∆p)u = λ|u|r−2u+
2a

a+ b
|u|a−2u|v|b in Ω,

−(∆p)v = µ|v|r−2v +
2b

a+ b
|u|a|v|b−2u in Ω,

u = v = 0 in ∂Ω

(1.3)

where a+b = p∗. Ding and Xiao [11] studied (1.3) with the p−superlinear perturbation
of 2 ≤ p ≤ r < p∗ an extension of which can be found in Yin [33]. Both the works
in [33] and [11] have obtained the existence of cat(Ω) number of solutions using the
Lusternik-Scnirelman category. Similar results for elliptic equations driven by the
p-Laplacian or the double phase operator can be found in [22, 24]. For the sublinear
perturbation, Hsu [15] obtained the existence of two positive solutions for the problem
(1.3). Few years back, Fan [14] studied the problem (1.3) for p = 2 and 1 < r < p.
Using the Nehari manifold and the Lusternik-Schnirelman category the author has
proved the admittance of at least cat(Ω) + 1 positive solutions. Motivated from
the work of Li, Yang [18] we extend the results of the above problem with local
operators and added singular nonlinearities. As far as we know there has not been
any contribution in this direction whatsoever and is entirely novel. We now state the
main result of this work.

Theorem 1.1. Assume the condition (C) holds. Then there exists Λ∗ > 0 such that
if ν ∈ (0,Λ∗), problem (1.1) admits at least cat(Ω) + 1 number of distinct solutions.

2. Preliminaries

Let Ω ⊂ RN , then the space (W 1,p
0 (Ω), ‖.‖p) is defined by

W 1,p
0 (Ω) = {u : Du ∈ Lp(Ω), u|∂Ω = 0}

equipped with the norm

‖u‖p =

(∫
Ω

|∇u|p
) 1
p

.

We will refer to |u|p as the Lp-norm of u and is defined as (
∫

Ω
|u|pdx)

1
p . We further

define the space Clearly, X = W 1,p
0 (Ω) ×W 1,p

0 (Ω) is a Banach space. We define the
norm of any member of X as

‖(u, v)‖p = (‖u‖pp + ‖v‖pp)
1
p .

The best Sobolev constant is defined as

S = inf
u∈W 1,p

0 (Ω)\{0}

‖u‖pp(∫
Ω
|u|p∗dx

) p
p∗s

. (2.1)

and further define

Sα,β = inf
(u,v)∈X\{(0,0)}

‖(u, v)‖pp
(
∫

Ω
|u|p∗ + |v|p∗dx)

p
p∗
. (2.2)
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Also, we will denote M = ‖h‖∞, M ′ = max{‖f‖∞, ‖g‖∞}, where ‖ · ‖∞ denotes the
essential supremum norm (or more commonly the L∞-norm) of a function. We now
define the associated energy functional to the problem (1.1) which is as follows.

Iα,β(u, v) =
1

p
‖(u, v)‖pp +

1

q
‖(u, v)‖qq −

1

r

∫
Ω

(λf(x)ur + µg(x)vr)dx

− ν

2− α− β

∫
Ω

h(x)u1−αv1−βdx.

A function (u, v) ∈ X is a weak solution to the problem (1.1), if

(i) u, v > 0, u−αφ1, v
−βφ2 ∈ L1(Ω) and

(ii)

∫
Ω

(|∇u|p−2∇u · ∇φ1 + |∇v|p−2∇v · ∇φ2)dx

+

∫
Ω

(|∇u|q−2∇u · ∇φ1 + |∇v|q−2∇v · ∇φ2)dx

−
∫

Ω

(λf(x)ur−1φ1 + µg(x)vr−1φ2)dx− ν 1− α
2− α− β

∫
Ω

h(x)u−αv1−βφ1dx

− ν 1− β
2− α− β

∫
Ω

h(x)u1−αv−βφ2dx = 0

for each φ2, φ2 ∈ X. Note that the nontrivial critical points of the functional Iα,β
are the positive weak solutions of the problem (1.1). Note that the functional Iα,β is
not a C1-functional and hence the classical variational methods are not applicable.
One can easily verify that the energy functional Iα,β is not bounded below in X.
However, we will show that Iα,β is bounded below on a Nehari manifold and we will
extract solutions by minimizing the functional on suitable subsets. We further define
the Nehari manifold as follows.

Nα,β = {(u, v) ∈ Z \ (0, 0), u, v > 0 : 〈I ′α,β(u, v), (u, v) = 0〉}.

For a detailed study on the method of Nehari manifolds we refer the readers to [30].
It is not difficult to see that a pair (u, v) ∈ Nα,β if and only if

‖(u, v)‖pp + ‖(u, v)‖qq −
∫

Ω

(λf(x)ur + µg(x)vr)dx− ν
∫

Ω

h(x)u1−αv1−βdx = 0.

Furthermore, it is customary to see, as for any problem which has an involvement of
a Nehari manifold, that

Iα,β(u, v) =

(
1

p
− 1

r

)
‖(u, v)‖pp +

(
1

q
− 1

r

)
‖(u, v)‖qq

+ν

(
1

r
− 1

2− α− β

)∫
Ω

h(x)u1−αv1−βdx.

≥
(

1

p
− 1

r

)(
‖(u, v)‖pp + ‖(u, v)‖qq

)
+ ν

(
1

r
− 1

2− α− β

)∫
Ω

h(x)u1−αv1−βdx.

≥
(

1

p
− 1

r

)
‖(u, v)‖pp + ν

(
1

r
− 1

2− α− β

)∫
Ω

h(x)u1−αv1−βdx
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≥
(

1

p
− 1

r

)
‖(u, v)‖pp − ν

(
1

2− α− β
− 1

r

)
‖(u, v)‖2−α−βp .

Since 2−α−β < p, therefore Iα,β is coercive and bounded below on Nα,β . Therefore
the functional is coercive and is bounded below in Nα,β . In fact Iα,β(u, v) ≥ 0 for
sufficiently small ν > 0 and for all (u, v) ∈ Nα,β . We define for t ≥ 0 the fiber maps

Φα,β(t) = Iα,β(tu, tv) =
tp

p
‖(u, v)‖pp +

tq

q
‖(u, v)‖qq

− tr

r

∫
Ω

(λf(x)ur + µg(x)vr)dx

− ν t2−α−β

2− α− β

∫
Ω

h(x)u1−αv1−βdx.

Then

Φ′α,β(t) = tp−1‖(u, v)‖pp + tq−1‖(u, v)‖qq − tr−1

∫
Ω

(λf(x)ur + µg(x)vr)dx

−νt1−α−β
∫

Ω

h(x)u1−αv1−βdx

and

Φ′′α,β(t) = (p− 1)tp−2‖(u, v)‖pp + (q − 1)tq−2‖(u, v)‖qq

− (r − 1)tr−2

∫
Ω

(λf(x)ur + µg(x)vr)dx

− ν(1− α− β)t−α−β
∫

Ω

h(x)u1−αv1−βdx.

A simple observation shows that (u, v) ∈ Nα,β if and only if Φ′α,β(1) = 0. Furthermore,

in general we have that (u, v) ∈ Nα,β if and only if Φ′α,β(t) = 0. Therefore for

(u, v) ∈ Nα,β we have

Φ′′α,β(1) = (p− 1)‖(u, v)‖pp + (q − 1)‖(u, v)‖qq − (r − 1)

∫
Ω

(λf(x)ur + µg(x)vr)dx

− ν(1− α− β)

∫
Ω

h(x)u1−αv1−βdx

= (p− r)‖(u, v)‖pp + (q − r)‖(u, v)‖qq + ν(r + α+ β − 2)

∫
Ω

h(x)u1−αv1−βdx

= (p+ α+ β − 2)‖(u, v)‖pp + (q + α+ β − 2)‖(u, v)‖qq

+ (2− α− β − r)
∫

Ω

(λf(x)ur + µg(x)vr)dx.

Therefore we split the Nehari manifold into three parts, namely

N+
α,β = {(u, v) ∈ Nα,β : Φ′′α,β(1) > 0},

N−α,β = {(u, v) ∈ Nα,β : Φ′′α,β(1) < 0},
N0
α,β = {(u, v) ∈ Nα,β : Φ′′α,β(1) = 0}



546 DEBAJYOTI CHOUDHURI, MOUNA KRATOU AND KAMEL SAOUDI

which corresponds to the collection of local minima, maxima and points of inflection
respectively. We now prove a lemma which falls back on the proof due to Hsu [15]
(refer Theorem 2.2).

Lemma 2.1. For (u, v) ∈ Nα,β, there exists a positive constant A0, that depends on

p, S,N, α, β, |Ω| such that Iα,β(u, v) ≥ −νA0

[(
1−α

2−α−β

) p
p+α+β−2

+
(

1−β
2−α−β

) p
p+α+β−2

]
.

Proof. We use

Iα,β(u, v) ≥
(

1

p
− 1

r

)(
‖(u, v)‖pp

)
+ ν

(
1

r
− 1

2− α− β

)∫
Ω

h(x)u1−αv1−βdx.

(2.3)

By the Hölder inequality, the Young’s inequality, and the Sobolev embedding theorem
to (2.3), we have

Iα,β(u, v) ≥
(

1

p
− 1

r

)(
‖(u, v)‖pp

)
− ν

(
1

2− α− β
− 1

r

)∫
Ω

h(x)u1−αv1−βdx

≥
(

1

p
− 1

r

)(
‖(u, v)‖pp

)
− νM |Ω|1−

2−α−β
p∗

×
(

1

2− α− β
− 1

r

)∫
Ω

(
1− α

2− α− β
|u|2−α−βp∗ +

1− β
2− α− β

|v|2−α−βp∗

)
dx

≥
(

1

p
− 1

r

)(
‖(u, v)‖pp

)
− νM |Ω|1−

2−α−β
p∗ S

α+β−2
p

×
(

1

2− α− β
− 1

r

)∫
Ω

(
1− α

2− α− β
|∇u|2−α−βp +

1− β
2− α− β

|∇v|2−α−βp

)
dx

≥ −νA0(p, S,N, α, β, |Ω|)

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
.

�

Lemma 2.2. There exists Λ∗ > 0 such that if

ν

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
∈ (0,Λ∗),

then N0
α,β = φ.

Proof. Let us choose

Λ∗ =

(
(p− 2 + α+ β)

1

M ′(λ+ µ)

) p
r−p (r − p)S

rp
N(r−p) + 2−α−β

p

α,β

νM(r − 2 + α+ β)
r
r−p |Ω|1−

2−α−β
p∗

.

The proof follows by contradiction. �
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From the lemma (2.2), we have that if

ν

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
∈ (0,Λ∗),

then Nα,β = N+
α,β

⋃
N−α,β .

We can define i+ = inf(u,v)∈N+
α,β

Iα,β and i− = inf(u,v)∈N−α,β
Iα,β since the functional

Iα,β is bounded below in Nα,β .

Remark 2.3. We will denote the norm convergence by →, the weak convergence
by ⇀ and Λ (or Λ∗) as any small parameter we will encounter or any cumbersome
representation in short form.

Lemma 2.4. There exists Λ∗ > 0 such that if

ν

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
∈ (0,Λ∗),

then

(1) i+ < 0,
(2) i− ≥ D0 for some D0 > 0.

Proof. (1) Let (u, v) ∈ N+
α,β ⊂ Nα,β . Then we have

0 < (r − p)‖(u, v)‖pp + (r − q)‖(u, v)‖qq

< ν(r + α+ β − 2)

∫
Ω

h(x)u1−αv1−βdx (2.4)

Further,

Iα,β(u, v) =

(
1

p
− 1

r

)
‖(u, v)‖pp +

(
1

q
− 1

r

)
‖(u, v)‖qq

+ ν

(
1

r
− 1

2− α− β

)∫
Ω

h(x)u1−αv1−βdx.

<

(
1

p
− 1

r

)
‖(u, v)‖pp +

(
1

q
− 1

r

)
‖(u, v)‖qq

− (r − p)
r(2− α− β)

‖(u, v)‖pp −
(r − q)

r(2− α− β)
‖(u, v)‖qq

=
(r − p)
r

(
1

p
− 1

2− α− β

)
‖(u, v)‖pp +

(r − p)
r

(
1

q
− 1

2− α− β

)
‖(u, v)‖qq

< 0.

Therefore, i+ = inf(u,v)∈N+
α,β

Iα,β(u, v) < 0.
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(2) Likewise, let us choose (u, v) ∈ N−α,β . We again appeal to the following inequality

(p+ α+ β − 2)‖(u, v)‖pp < (p+ α+ β − 2)‖(u, v)‖pp + (q + α+ β − 2)‖(u, v)‖qq

< (r + α+ β − 2)

∫
Ω

(λf(x)ur + µg(x)vr)dx

≤ (r + α+ β − 2)CM ′(λ
r
r−p + µ

r
r−p )‖(u, v)‖rp. (2.5)

by virtue of the fact that (u, v) ∈ Nα,β . Therefore

‖(u, v)‖p ≥
[(

p+ α+ β − 2

r + α+ β − 2

)
1

CM ′(λ
r
r−p + µ

r
r−p )

] 1
r−p

.

We will call this cumbersome looking constant as Λ. Therefore on proceeding further
we have

Iα,β(u, v) =

(
1

p
− 1

r

)
‖(u, v)‖pp +

(
1

q
− 1

r

)
‖(u, v)‖qq

+ ν

(
1

r
− 1

2− α− β

)∫
Ω

h(x)u1−αv1−βdx

≥
(

1

p
− 1

r

)
‖(u, v)‖pp

− νM |Ω|1−
2−α−β
p∗ S

α+β−2
p

×
(

1

2− α− β
− 1

r

)∫
Ω

(
1− α

2− α− β
|∇u|2−α−βp +

1− β
2− α− β

|∇v|2−α−βp

)
dx

≥
(

1

p
− 1

r

)
‖(u, v)‖pp

− νA0(p, s,N, α, β, |Ω|)

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
× ‖(u, v)‖2−α−βp

= ‖(u, v)‖2−α−βp

[(
1

p
− 1

r

)
‖(u, v)‖p+α+β−2

p

−νA0(p, s,N, α, β, |Ω|)

{(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

}]
.

≥ Λ2−α−β
[(

1

p
− 1

r

)
Λp+α+β−2

−νA0(p, s,N, α, β, |Ω|)

{(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

}]
.

Then for a sufficiently small Λ∗ > 0 and D0 > 0 such that

ν

[(
1− α

2− α− β

) p+α+β−2
p

+

(
1− β

2− α− β

) p+α+β−2
p

]
∈ (0,Λ∗),
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we have i− ≥ D0 > 0. �

Remark 2.5. For a better understanding of the Nehari manifold and the fiber maps,
we define the function

Fu,v(t) = tp−r‖(u, v)‖pp + tq−r‖(u, v)‖qq − νt2−α−β−r
∫

Ω

h(x)u1−αv1−βdx.

Then

Φ′(t) = tr−1[Fu,v(t)−
∫

Ω

(λf(x)ur + βg(x)vr)dx].

Observe that lim
t→∞

Fu,v(t) = 0 and lim
t→0+

Fu,v(t) = −∞. Further,

F ′u,v(t) = (p− r)tp−r−1‖(u, v)‖pp + (q − r)tq−r−1‖(u, v)‖qq

−ν(2− α− β − r)t1−α−β−r
∫

Ω

h(x)u1−αv1−βdx

= t1−α−β−r[(p− r)tp+α+β‖(u, v)‖pp + (q − r)tq+α+β‖(u, v)‖qq

−ν(2− α− β − r)
∫

Ω

h(x)u1−αv1−βdx].

Let

ψu,v(t) = (p− r)tp+α+β‖(u, v)‖pp + (q − r)tq+α+β‖(u, v)‖qq

− ν(2− α− β − r)
∫

Ω

h(x)u1−αv1−βdx.

We also have

lim
t→0+

ψu,v(t) = ν(r + α+ β − 2)

∫
Ω

h(x)u1−αv1−βdx,

lim
t→∞

ψu,v(t) = −∞

and

ψ′u,v(t) = (p− r)(p+ α+ β)tp+α+β−1‖(u, v)‖pp
+ (q − r)(q + α+ β)tq+α+β−1‖(u, v)‖qq < 0.

Thus, for each (u, v) ∈ X with
∫

Ω
h(x)u1−αv1−βdx > 0, Fu,v(t) attains its maximum

at some tmax = tmax(u, v). This unique tmax can be evaluated by solving for t from
the equation

(r−p)tp+α+β‖(u, v)‖pp+(r−q)tq+α+β‖(u, v)‖qq = ν(r+α+β−2)

∫
Ω

h(x)u1−αv1−βdx.

A simple calculation yields

Fu,v(tmax) = tp−rmax

(
1 +

r − p
r + α+ β − 2

t2max

)
‖(u, v)‖pp

+ tq−rmax

(
1 +

r − q
r + α+ β − 2

t2max

)
‖(u, v)‖qq > 0.
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Thus for t ∈ (0, tmax) we have F ′u,v(t) > 0 and F ′u,v(t) < 0 for t ∈ (tmax,∞).
We now have the following lemma as a consequence.

Lemma 2.6. For every (u, v) ∈ X \{(0, 0)} there exists a unique 0 < t+ < tmax such
that (t+u, t+v) ∈ N+

α,β and

Iα,β(t+u, t+v) = inf
t≥0

Iα,β(tu, tv).

Furthermore, if ∫
Ω

(λf(x)ur + µg(x)vr)dx > 0

then there exists unique 0 < t+ < tmax < t− such that

(t+u, t+v) ∈ N+
α,β , (t−u, t−v) ∈ N−α,β

and

Iα,β(t+u, t+v) = inf
0≤t≤tmax

Iα,β(tu, tv), Iα,β(t−u, t−v) = sup
t≥0

Iα,β(tu, tv).

Proof. We only prove the case when∫
Ω

(λf(x)ur + µg(x)vr)dx > 0.

Thus the equation

Fu,v(t) =

∫
Ω

(λf(x)ur + βg(x)vr)dx

has only two solutions namely, 0 < t+ < tmax < t− such that I ′α,β(t+) > 0 and

I ′α,β(t−) < 0. Since

Φ′′(t+) = (t+)r−1[Fu,v(t
+)−

∫
Ω

(λf(x)ur + µg(x)vr)dx] > 0

and

Φ′′(t−) = (t−)r−1[Fu,v(t
−)−

∫
Ω

(λf(x)ur + µg(x)vr)dx] < 0,

therefore (t+u, t+v) ∈ N+
α,β and (t−u, t−v) ∈ N−α,β . Thus Φ(t) decreases in (0, t+),

increases in (t+, t−) and decreases in (t−,∞). Hence the lemma. �

We now define the palais-Smale sequence ((PS)-sequence), (PS)-condition and (PS)-
value in X for Iα,β corresponding to the functional Iα,β which is as follows.

Definition 2.7. Suppose for c ∈ R, a sequence {(un, vn)} ⊂ X is a (PS)c-sequence
for the functional Iα,β if Iα,β(un, vn) → c and I ′α,β(un, vn) → 0 in X ′ as n → ∞,
then:

(1) c ∈ R is a (PS) value in X for the functional Iα,β if there exists a (PS)c-
sequence in X for Iα,β .

(2) The functional Iα,β satisfies the (PS)c-condition in X for Iα,β if any (PS)c-
sequence admits a strongly convergent subsequence in X.

Remark 2.8. We will sometimes denote limn→∞ xn = 0 as xn = o(1) for a sequence
of real numbers (xn).
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Remark 2.9. X ′ refers to the dual space of X.

Lemma 2.10. For any 0 < α, β < 1, the functional Iα,β satisfies the (PS)c-condition

for c ∈

(
−∞, S

r
r−p
α,β

Λ − νA0

[(
1−α

2−α−β

) p
p+α+β−2

+
(

1−β
2−α−β

) p
p+α+β−2

])
where

Λ = 2M ′(λ
r
r−p + µ

r
r−p )}

p
r−p |Ω| 1r .

Proof. Suppose {(un, vn)} is a (PS)c-sequence in X for the functional Iα,β with

c ∈

−∞, S r
r−p
α,β

Λ
− νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

] .

Then

Iα,β(un, vn) = c+ o(1), I ′α,β(un, vn) = o(1). (2.6)

We now claim that {(un, vn)} is bounded in X. We prove this claim by contradiction,
i.e. say ‖(un, vn)‖p →∞. Let

(ũn, ṽn) =

(
un

‖(un, vn)‖p
,

vn
‖(un, vn‖p)

)
,

then ‖(ũn, ṽn)‖p = 1 which implies that (ũn, ṽn) is bounded in X. Therefore, due to
the reflexivity of the space X, we have upto a subsequence

(ũn, ṽn) ⇀ (un, vn)

as n→∞ in X. This further implies that

ũn ⇀ ũ, ṽn ⇀ ṽ in W 1,p
0 (Ω),

ũn → ũ, ṽn → ṽ in Ls(Ω), 1 ≤ s < p∗,∫
Ω

νh(x)ũn
1−αṽn

1−βdx→
∫

Ω

νh(x)u1−αv1−βdx.

The last convergence follows from the Egoroff’s theorem. From (2.6) we have

c+ o(1) =
1

p
‖(un, vn)‖pp‖(ũn, ṽn)‖pp +

1

q
‖(un, vn)‖qq‖(ũn, ṽn)‖qq

−1

r
‖(un, vn)‖rp

∫
Ω

(λf(x)ũrn + µg(x)ṽrn)dx

− ν

2− α− β
‖(un, vn)‖2−α−βp

∫
Ω

h(x)ũ1−α
n ṽ1−β

n dx

and

o(1) = ‖(un, vn)‖pp‖(ũn, ṽn)‖pp + ‖(un, vn)‖qq‖(ũn, ṽn)‖qq

−‖(un, vn)‖rp
∫

Ω

(λf(x)ũrn + µg(x)ṽrn)dx

−ν‖(un, vn)‖2−α−βp

∫
Ω

h(x)ũ1−α
n ṽ1−β

n dx.
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Now by the assumption we made, i.e. ‖(un, vn)‖p →∞, we obtain

o(1) =
1

p
‖(ũn, ṽn)‖pp +

1

q
‖(un, vn)‖q−pp ‖(ũn, ṽn)‖qq

−1

r
‖(un, vn)‖r−pp

∫
Ω

(λf(x)ũrn + µg(x)ṽrn)dx

− ν

2− α− β
‖(un, vn)‖2−α−β−pp

∫
Ω

h(x)ũ1−α
n ṽ1−β

n dx

and

o(1) = ‖(ũn, ṽn)‖pp + ‖(un, vn)‖q−pp ‖(ũn, ṽn)‖qq

−‖(un, vn)‖r−pp

∫
Ω

(λf(x)ũrn + µg(x)ṽrn)dx

−ν‖(un, vn)‖2−α−β−pp

∫
Ω

h(x)ũ1−α
n ṽ1−β

n dx.

On using the above to equalities we get

o(1) =

(
1− 2− α− β

p

)
‖(ũn, ṽn)‖pp

+

(
1− 2− α− β

q

)
‖(un, vn)‖q−pp ‖(ũn, ṽn)‖qq

+

(
2− α− β

r
− 1

)
‖(un, vn)‖r−pp

∫
Ω

(λf(x)ũrn + µg(x)ṽrn)dx

as n→∞.
Therefore we have

‖(ũn, ṽn)‖pp =
p(p− 2 + α+ β)

q(2− α− β − q)
‖(un, vn)‖q−pp ‖(ũn, ṽn)‖qq

+ν
p(p− 2 + α+ β)

r(r − 2 + α+ β)
‖(un, vn)‖2−α−β−pp

∫
Ω

h(x)ũ1−α
n ṽ1−β

n dx+ o(1)

as n→∞. Thus we have ‖(ũn, ṽn)‖pp →∞ which is a contradiction to our assumption
that

‖(ũn, ṽn)‖p = 1.

Therefore, the sequence {(un, vn)} is bounded in X.
We choose a subsequence to this bounded sequence, still denoted by {(un, vn)} such
that

(un, vn) ⇀ (u, v) in X,

un → u, vn → v in Ls(Ω), 1 ≤ s < p∗,∫
Ω

(λf(x)urn + µg(x)vrn)dx→
∫

Ω

(λf(x)ur + µg(x)vr)dx,

ν

∫
Ω

h(x)u1−α
n v1−β

n dx→ ν

∫
Ω

h(x)u1−αv1−βdx

as n→∞.
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By the Brezis-Lieb [19] theorem we get

‖(un − u, vn − v)‖pp = ‖(un, vn)‖pp − ‖(u, v)‖pp + o(1),

∫
Ω

(λf(x)(un − u)r + µg(x)(vn − v)r)dx =

∫
Ω

(λf(x)urn + µg(x)vrn)dx

−
∫

Ω

(λf(x)ur + µg(x)vr)dx+ o(1)

and

ν

∫
Ω

h(x)(un − u)1−α(vn − v)1−βdx = ν

∫
Ω

h(x)u1−α
n v1−β

n dx

− ν
∫

Ω

h(x)u1−αv1−βdx+ o(1).

Thus for any (φ2, φ2) ∈ X the following holds.

lim
n→∞

〈I ′α,β , (φ2, φ2)〉 = 〈I ′α,β(u, v), (φ1, φ2)〉 = 0.

In other words (u, v) is a critical point of Iα,β . All we now need to show is that
(un, vn) → (u, v) in X. We use (2.6), the Brezis-Lieb lemma [19] and some basic
functional analysis to obtain

c− Iα,β + o(1) =
1

p
‖(un − u, vn − v)‖pp +

1

q
‖(un − u, vn − v)‖qq

−1

r

∫
Ω

(λf(x)(un − u)r + µg(x)(vn − v)r)dx (2.7)

and

0 = 〈I ′α,β(un, vn), (un − u, vn − v)〉
= 〈I ′α,β(un, vn)− I ′α,β(u, v), (un − u, vn − v)〉
= ‖(un − u, vn − v)‖pp + ‖(un − u, vn − v)‖qq

−
∫

Ω

(λf(x)(un − u)r + µg(x)(vn − v)r)dx+ o(1). (2.8)

Now without loss of generality, we let

‖(un − u, vn − v)‖pp = c′ + o(1),

‖(un − u, vn − v)‖qq = d′ + o(1)

and therefore ∫
Ω

(λf(x)(un − u)r + µg(x)(vn − v)r)dx = c′ + d′ + o(1).
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Now if c′ = 0 the proof is immediate. On the contrary, we assume that c′ > 0.(
c′

2

) p
p∗

≤
(
c′ + d′

2

) p
p∗

= lim
n→∞

∫
Ω

(λf(x)(un − u)r + µg(x)(vn − v)r)dx

≤ M ′ lim
n→∞

∫
Ω

(λ|un − u|r + µ|vn − v|r) dx

≤ M ′ lim
n→∞

|Ω|
1

2−α−β−
1
r S
− rp
α,β‖(un − u, vn − v)‖rp

= M ′|Ω|
1
p−

1
r S
− rp
α,β (λ

r
r−p + µ

r
r−p )c′

r
p .

Thus,

c′ ≥
S

r
r−p
α,β

{2M ′(λ
r
r−p + µ

r
r−p )}

p
r−p |Ω| 1r

=
S

r
r−p
α,β

Λ
.

Therefore from (2.7), (2.8) and (u, v) ∈ Nα,β
⋃
{(0, 0)} we have

c′ = Iα,β(u, v) +
c′

p
+
d′

q
− c′ + d′

r

≥
S

r
r−p
α,β

Λ
− νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
which contradicts

c′ <
S

r
r−p
α,β

Λ
− νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
.

Thus c′ = 0 and hence (un, vn)→ (u, v) in X. �

We will now see the proof of the existence of a local minimizer for Iα,β in N+
α,β .

Lemma 2.11. There exists Λ∗ > 0 such that

ν

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
∈ (0,Λ∗),

Iα,β has a minimizer (uν , vν) ∈ N+
α,β and it satisfies

(i) Iα,β(uν , vν) = i+ is a weak solution to the problem (1.1)

(ii) Iα,β(uν , vν)→ 0 and ‖(uν , vν)‖p → 0, ‖(uν , vν)‖q → 0 as ν → 0.

Proof. For the proof of (i) we follow Hsu [15], Theorem 4.2.
Since i+ = inf(u,v)∈Nα,β{Iα,β(u, v)}, there exists a sequence (un, vn) ∈ Nα,β such that

Iα,β(un, vn)→ i+ and I ′α,β(un, vn)→ 0 in X∗ as n→∞. Since the functional Iα,β is

coercive and therefore (un, vn) is bounded in X. Thus there exists a subsequence of
(un, vn), still denoted as (un, vn), such that ((un, vn)) ⇀ (u, v) ∈ X. So we have

un ⇀ u, vn ⇀ v,
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un → u, vn → v a.e.in Ω,

un → u, vn → v in Ls(Ω) for 1 ≤ s < p∗

as n→∞. This implies

2ν

2− α− β

∫
Ω

h(x)u1−α
n v1−β

n dx→ 2ν

2− α− β

∫
Ω

h(x)u1−αv1−βdx.

Clearly (u, v) is a weak solution of (1.1). Also since (un, vn) ∈ Nα,β we have

Lνα,β(un, vn) =
r(2− α− β)

2ν(r − 2 + α+ β)

(
1

p
− 1

r

)
‖(un, vn)‖pp

+
r(2− α− β)

2ν(r − 2 + α+ β)

(
1

q
− 1

r

)
‖(un, vn)‖qq

− r(2− α− β)

2ν(r − 2 + α+ β)
Iα,β(un, vn)

where

Lνα,β(un, vn) =

∫
Ω

h(x)u1−α
n v1−β

n dx.

Also

Lνα,β(un, vn) ≥ r(2− α− β)

2ν(r − 2 + α+ β)

(
1

p
− 1

r

)
‖(u, v)‖pp

+
r(2− α− β)

2ν(r − 2 + α+ β)

(
1

q
− 1

r

)
‖(u, v)‖qq −

r(2− α− β)

2ν(r − 2 + α+ β)
i+

≥ − r(2− α− β)

2ν(r − 2 + α+ β)
i+ > 0

where we have used the lower-semicontinuity of ‖ · ‖p, ‖ · ‖q and i+ < 0. Therefore
(u, v) 6= (0, 0). Thus we have a nontrivial weak solution.
Claim: We now claim that (un, vn)→ (u, v) in X and Iα,β(u, v) = i+.
For any (u0, v0) ∈ Nα,β we have

Lνα,β(u0, v0) =
r(2− α− β)

2ν(r − 2 + α+ β)

(
1

p
− 1

r

)
‖(u0, v0)‖pp

+
r(2− α− β)

2ν(r − 2 + α+ β)

(
1

q
− 1

r

)
‖(u0, v0)‖qq

− r(2− α− β)

2ν(r − 2 + α+ β)
Iα,β(u0, v0).

Thus

i+ ≤ Iα,β(u, v)

≤ lim
n→∞

[(
1

p
− 1

r

)
‖(un, vn)‖pp +

(
1

q
− 1

r

)
‖un, vn‖qq

− 2ν

2− α− β
Lνα,β(un, vn)

]
= Iα,β(u, v) = i+.
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Thus Iα,β(u, v) = i+. This also implies that (un, vn)→ (u, v) in X.
For the proof of (ii) let (uν , vν) ∈ N+

α,β . From Lemmas 2.1, 2.2 we have that

0 > Iα,β(uν , vν) ≥ −νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
.

Therefore it is obvious that as ν → 0 we have Iα,β(uν , vν)→ 0.
Further we have

0 = lim
ν→0

Iα,β(uν , vν)

= lim
ν→0

[(
1

p
− 1

r

)
‖(uν , vν)‖pp +

(
1

q
− 1

r

)
‖uν , vν‖qq

− 2ν

2− α− β

∫
Ω

h(x)u1−α
ν v1−β

ν dx

]
.

As seen earlier that the functional Iα,β is coercive over N+
α,β and therefore (uν , vν) is

bounded. Also using the fact lim
ν→0

2ν
2−α−β

∫
Ω
h(x)u1−α

ν v1−β
ν dx = 0 we clearly have

lim
ν→0
‖(uν , vν)‖pp = 0 = lim

ν→0
‖(uν , vν)‖qq. �

Remark 2.12. For ε > 0 we define

uε(x) =
η(x)

(ε+ |x|
p
p−1 )

N−p
p

, vε(x) =
uε(x)

|uε(x)|p∗

where η(x) ∈ C∞0 (Ω) is a radially symmetric function defined by

η(x) =


1 |x| < ρ0

0 |x| > 2ρ0

0 ≤ η(x) ≤ 1 otherwise.

Further let |∇η| ≤ C, where ρ0 is such that B(0, 2ρ0) ⊂ Ω. Then
∫

Ω
|uε|p

∗
dx = 1 and

we have the following estimates

∫
Ω

|uε|tdx =


C1ε

N(p−1)−t(N−p)
p +O(1) t > N(p−1)

N−p
C1| ln ε|+O(1) t = N(p−1)

N−p
O(1) ≤ η(x) ≤ 1 t < N(p−1)

N−p .

Therefore in particular we have∫
Ω

|∇uε|pdx = K2ε
p−N
p +O(1)

and (∫
Ω

|uε|p
∗
dx

) 1
p∗

= K3ε
p−N
p +O(1)

where K1,K2,K3 > 0 independent of ε. Further there exists ε0 such that S, the best
sobolev constant, is close to K2

K3
for every 0 < ε < ε0. In other words we will take

S = K2

K3
.
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We now prove the following lemma which will be used in guaranteeing the multi-
plicity of solutions.

Lemma 2.13. There exists ε1, Λ∗, σ(ε) > 0 such that for ε ∈ (0, ε1),

ν

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
∈ (0,Λ∗)

and σ ∈ (0, σ(ε)), we have

sup
t≥0

Iα,β(tε
p
√
νvε, tε

p
√
νvε) < cα,β − σ,

where

cα,β =
r − p
rp

S
r
r−p − νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
.

Proof. Define

a(t) = Iα,β(t p
√
νvε, t

p
√
νvε)

=
tp

p
ν

∫
Ω

|∇vε|pdx+
tq

q
(2ν

q
p )

∫
Ω

|∇vε|qdx

−1

r

∫
Ω

(λf(x) + µg(x))(tvεν
1
p )rdx− 2ν

p−α−β+2
p t2−α−β

2− α− β

∫
Ω

h(x)v2−α−β
ε dx.

Clearly a(0) = 0, lim
t→∞

a(t) = −∞. Therefore there exists tε > 0 such that

Iα,β(tε
p
√
νvε, tε

p
√
νvε) = sup

t≥0
Iα,β(t p

√
νvε, t

p
√
νvε).

This yields that

(2ν)tp−1
ε

∫
Ω

|∇vε|pdx+ 2tq−1
ε ν

q
p

∫
Ω

|∇vε|qdx = tr−1
ε

∫
Ω

(λf(x) + µg(x))(vεν
1
p )rdx

+ 2ν
p−α−β+2

p t1−α−βε

∫
Ω

h(x)v2−α−β
ε dx.

(2.9)

From (2.9) we have the following

tp+α+β−2
ε

∫
Ω

|∇vε|pdx ≤ tr+α+β−2
ε

∫
Ω

(λf(x) + µg(x))(vεν
1
p )rdx

+2ν
p−α−β+2

p

∫
Ω

h(x)v2−α−β
ε dx. (2.10)

and

(2ν)tp−qε

∫
Ω

|∇vε|pdx+ 2ν
q
p

∫
Ω

|∇vε|qdx ≥ tr−qε

∫
Ω

(λf(x) + µg(x))(vεν
1
p )rdx.

(2.11)



558 DEBAJYOTI CHOUDHURI, MOUNA KRATOU AND KAMEL SAOUDI

From the estimates for uε obtained in the Remark 2.12, i.e.∫
Ω

|∇vε|pdx = S +O
(
ε
N−p
p

)
,∫

Ω

|vε|rdx = O

(
ε
r(N−p)
p2

)
,

∫
Ω

|vε|2−α−βdx = O

(
ε

(2−α−β)(N−p)
p2

)
.

From (2.9) it very easily follows now that

tp+α+β−2
ε

(
S +O

(
ε
N−p
p

))
≤ CM ′tr+α+β−2

ε + 2Mν
p−α−β+2

p O

(
ε

(2−α−β)(N−p)
p2

)
(2.12)

where we have use the estimate∫
Ω

(λf(x) + µg(x))vrεdx ≤ CM ′‖vε‖rp∗ = CM ′.

Thus, there exists T1 > 0, ε1 > 0 such that for any ε ∈ (0, ε1), we have tε ≥ T1.
Likewise we have

(2ν)tp−qε (S +O(ε
N−p
p )) + 2Cν

q
p ≥ Ct2−α−β−qε . (2.13)

Then, there exists T2 > 0, ε2 > 0 such that for any ε ∈ (0, ε2), we have tε ≤ T2. Let
ε̃ = min{ε1, ε2}. Then for any ε ∈ (0, ε̃) we have T1 ≤ tε ≤ T2. Consider

b(t) =
tp

p
ν

∫
Ω

|∇vε|pdx−
1

r

∫
Ω

(λf(x) + µg(x))(tvεν
1
p )rdx.

Then a simple calculation gives

sup
t≥0

b(t) =
r − p
rp

S
r
r−p +O

(
ε
N−p
p

)
.

Therefore, for any ε ∈ (0, ε̃), we have

a(tε) = b(tε) +
tqε
q

(ν
q
p )

∫
Ω

|∇vε|qdx

−ν
p−α−β+2

p t2−α−βε

2− α− β

∫
Ω

h(x)v2−α−β
ε dx

≤ r − p
rp

S
r
r−p +O

(
ε
N−p
p

)
+
tqε
q

(2ν
q
p )

∫
Ω

|∇vε|qdx

−ν
p−α−β+2

p t2−α−βε

2− α− β

∫
Ω

h(x)v2−α−β
ε dx

≤ r − p
rp

S
r
r−p +O

(
ε
N−p
p

)
+
T q2
q

(2ν
q
p )

∫
Ω

|∇vε|qdx

−ν
p−α−β+2

p T 2−α−β
1

2− α− β

∫
Ω

h(x)v2−α−β
ε dx

≤ r − p
rp

S
r
r−p +O

(
ε
N−p
p

)
+O

(
ε
q(N−p)
p2

)
−O

(
ε

(2−α−β)(N−p)
p2

)
.
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From the assumptions in the problem in (1.1) we also have

0 <
(2− α− β)(N − p)

p2
<
q(N − p)

p2
<
N − p
p

.

Therefore, one can choose ε1 > 0, sufficiently small, Λ∗, σ(ε) > 0 such that for

ε ∈ (0, ε1), ν

[(
1−α

2−α−β

) p
p+α+β−2

+
(

1−β
2−α−β

) p
p+α+β−2

]
∈ (0,Λ∗) and σ ∈ (0, σ(ε)), we

have

O
(
ε
N−p
p

)
+O

(
ε
q(N−p)
p2

)
−O

(
ε

(2−α−β)(N−p)
p2

)
< −A0ν

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
− σ. �

3. Few useful lemmas

This section is devoted to recall and prove some important lemmas which are
crucial to the proof of the main theorem. We first consider a submanifold of N−α,β
defined as follows.

N−α,β(cα,β) = {(u, v) ∈ N−α,β : Iα,β(u, v) ≤ cα,β}.

The main result which we will prove in this section is that the problem in (1.1) admits
at least cat(Ω) number of solutions in this set.

Definition 3.1. (a) For a topological space X, we say that a non-empty, closed
subspace Y ⊂ X is contractible to a point if and only if there exists a continuous
mapping

ξ : [0, 1]× Y → X

such that for some x0 ∈ X. there hold

ξ(0, x) = x, for all x ∈ Y

and

ξ(1, x) = x0, for all x ∈ Y.
(b) If Y is closed subset of a topological space X, catX(Y ) denotes Lusternik-
Schnirelman category of Y , i.e., the least number of closed and contractible sets
in X which cover Y .

We now state an auxiliary lemma which can be found in the form of Theorem 1 in
[1].

Lemma 3.2. Suppose that X is a C1,1 complete Riemanian manifold and I ∈
C1(X,R). Assume that for c0 ∈ R and k ∈ N:

(i) I satisfies the (PS)c condition for c ≤ c0
(ii) cat(u ∈ X : I(u) ≤ c0) ≥ k. (3.1)

Then I has at least k critical points in u ∈ X : I(u) ≤ c0.
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The following lemma is a standard one and can be proved if one works in the lines of
the argument in [31].

Lemma 3.3. Let {(un, vn)} ⊂ X be a nonnegative sequence of functions with∫
Ω

(λf(x)urn + µg(x)vrn)dx = 1 and ‖(un, vn)‖pp → Sα,β .

Then there exists a sequence {(yn, θn)} ⊂ RN × R+ such that

ωn(x) = (ω1
n(x), ω2

n(x)) = θ
N
r
n (un(θnx+ yn), vn(θnx+ yn))

contains a convergent subsequence denoted again by {ωn} such that

ωn → ω in W 1,p(RN ×W 1,p(RN ),

where ω = (ω1, ω2) > 0 in RN . Moreover, we have θn → 0 and yn → y ∈ Ω as
n→∞.

Up to translations, we assume that 0 ∈ Ω. Moreover, we choose δ > 0 small enough
such that Bδ = {x ∈ RN : dist(x, ∂Ω) < δ} and the sets

Ω+
δ = {x ∈ RN : dist(x, ∂Ω) < δ}, Ω−δ = {x ∈ RN : dist(x, ∂Ω) > δ}

are both homotopically equivalent to Ω. By using the idea of [14] or [20] we define a
continuous mapping τ : N−α,β → RN by setting

τ(u, v) =

∫
Ω
x(λfur + µgvr)dx∫

Ω
(λfur + µgvr)dx

.

Remark 3.4. As told before that the functional Iα,β is not a C1-functional, we
might fail to use some very useful techniques in variational techniques. For this we
will define a cut-off functional using a subsolution (refer [13] for a definition) to the
system in (1.1). Define,

f(x, t, s) =


f(x, t, s) if t > u, s > v

f(x, t, v) if t > u, s ≤ v
f(x, u, s) if t ≤ u, s > v

f(x, u, v) if t ≤ u, s ≤ v

where

f(x, t, s) = λf(x)tr−1+µg(x)sr−1+ν
1− α

2− α− β
h(x)t−αs1−β+ν

1− β
2− α− β

h(x)t1−αs−β

is a subsolution to (1.1) (the existence of such a solution can be guaranteed by the

previous sections by taking λ = µ = 0 in (1.1)). Let F (x, t, s) =
∫ t

0

∫ s
0
f(x, t, s)dsdt

and (u, v). Define a function I : X ×X → R as follows.

I(u, v) =
1

p
‖(u, v)‖pp +

1

q
‖(u, v)‖qq −

∫
Ω

F (x, u, v)dx. (3.2)

The functional is C1 (the proof follows the arguments of the Lemma 6.4 in the Ap-
pendix of [28]) and weakly lower semicontinuous. The way the functional has been
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defined, it is not difficult to see that the critical points of the fnctional corresponding
to the problem (1.1) and that of the cut-off functional are the same.

Remark 3.5. We will continue to name the cut-off functional I as Iα,β .

We then have the following result.

Lemma 3.6. There exists Λ∗ such that if

ν

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
∈ (0,Λ∗)

and (u, v) ∈ N−α,β(cα,β), then τ(u, v) ∈ Ω+
δ .

Proof. Let us assume that there exists sequences νn → 0 and {(un, vn)} such that
τ(un, vn) 6∈ Ω+

δ . By using the tactics in one of the previous lemmas (2.10) we conclude
the boundedness of the sequence {(un, vn)} in X. Then we have

νn

∫
Ω

h(x)u1−α
n v1−β

n dx→ 0 as n→∞.

Therefore we get

Iα,β(un, vn) =

(
1

p
− 1

r

)
‖(un, vn)‖pp +

(
1

q
− 1

r

)
‖(un, vn)‖qq + o(1) ≤ cνnα,β + o(1)

and (
1

p
− 1

r

)
‖(un, vn)‖pp ≤ cνnα,β + o(1) ≤ S

r
r−p

Λ
+ o(1).

This implies that

‖(un, vn)‖pp ≤ rp

r − p
S

r
r−p

Λ
+ o(1). (3.3)

Since {(un, vn)} ⊂ N−α,β(cνnα,β) ⊂ N−α,β , we have

‖(un, vn)‖pp ≤
∫

Ω

(λf(x)urn + µg(x)vrn)dx+ o(1) ≤M ′|(un, vn)|rp∗ + o(1).

(3.4)

By (3.3) and (3.4) we get

Sα,β ≤
‖(un, vn)‖pp

{
∫

Ω
(up

∗
n + vp

∗
n )dx}

p
p∗

≤ C‖(un, vn)‖pp
≤ Sα,β + o(1) (3.5)

which implies that ‖(un, vn)‖pp → CS
p
r−p
α,β and

∫
Ω

(λf(x)urn + µg(x)vrn)dx → C ′S
p
r−p
α,β .

Define

(ξn, ηn) =

(
un

(
∫

Ω
(λfurn + µgvrn)dx)1/r

,
vn

(
∫

Ω
(λfurn + µgvrn)dx)1/r

)
.
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Clearly, ∫
Ω

(λξrn + µηrn)dx = 1

and ∫
Ω

(|∇ξn|p + |ηn|pdx)→ S
p
r−p

r−1
r

α,β , as n→∞.

From the Lemma 3.3, there exists a sequence {(yn, θn)} ⊂ N×R+ such that θn → 0,

yn → y ∈ Ω and ω(x) = (ω1
n(x), ω2

n(x)) = θ
N
r
n (ξn(θnx+ yn), ηn(θnx+ yn))→ (ω1, ω2)

with ω1, ω2 > 0 in RN as n→∞.
Let χ ∈ C∞0 (RN ) such that χ(x) = x in Ω. Then we guarantee that

τ(un, vn) =

∫
Ω
χ(x)(λfurn + µgvrn)dx∫
Ω

(λfurn + µgvrn)dx

=

∫
Ω

θNn χ(θnx+ yn)(λξrn + µηrn)dx

=

∫
Ω

χ(θnxn + yn)(λ(ωn(x)1)r + µ(ωn(x)2)r)dx. (3.6)

By the Lebesgue dominated convergence theorem we have∫
Ω

χ(θnxn + yn)(λ(ω1
n)r + µ(ω2

n)r)dx→ y ∈ Ω

as n → ∞. this implies that τ(xn, yn) → y ∈ Ω as n → ∞, which leads to a
contradiction to our assumption. �

The analysis done till now tells us that infMδ
uα,β > 0 and infMδ

vα,β > 0, thanks to

the Lemma 2.11 and the definition of Ω−δ . Note that Mδ = {x ∈ Ω : dist(x,Ω−δ ) ≤ δ
2}

which is a compact set. Thus by the Lemma 2.13 and using the idea of Lemma 3.4
of [14], Lemma 3.3 of [9], we can obtain a t̃− > 0 such that

(t̃− p
√
νvε(x− y), t̃ p

√
νvε(x− y)) ∈ Nα,β(cα,β − σ)

uniformly in y ∈ Ω−δ . Further, by the lemma 3.6, τ(t̃− p
√
νvε(x− y), t̃ p

√
νvε(x− y)) ∈

Ω−δ . Thus we can define a map γ : Ω−δ → Nα,β(cα,β − σ)− by

γ(y) =

{
(t̃− p
√
νvε(x− y), t̃ p

√
νvε(x− y)), if x ∈ Bδ(y)

0, otherwise.

We will denote by τα,β the restriction of τ over N−α,β(cα,β − σ). Observe that vε is a

radial function, therefore for each y ∈ Ω−δ , we have

(τα,β ◦ γ)(y) =

∫
Ω
x(λf(x)(t̃− p

√
νvε(x− y))r + µg(x)(t̃− p

√
νvε(x− y))r)dx∫

Ω
(λf(x)(t̃− p

√
νvε(x− y))r + µg(x)(t̃− p

√
νvε(x− y))r)dx

=

∫
Ω

(y + z)(t̃−)rν
r
p (λf + µg)vrεdz∫

Ω
(t̃−)rν

r
p (λf + µg)vrεdz

= y.
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From [14], we define the map Hα,β : [0, 1]×N−α,β(cα,β − σ)→ RN by

Hα,β(t, z) = tτα,β(z) + (1− t)τα,β(z).

We then have the following lemma.

Lemma 3.7. To each ε ∈ (0, ε0), there exists Λ∗ > 0 such that if

ν

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
∈ (0,Λ∗),

we have Hα,β([0, 1]×N−α,β(cα,β − σ)) ⊂ Ω−δ .

Proof. We prove by contradiction. Let there exists sequences tn ∈ [0, 1], νn → 0 and
zn = (un, vn) ∈ N−α,β(cα,β − σ) such that Hα,β(tn, zn) 6∈ Ω+

δ for all n. We can assume

that tn → t ∈ [0, 1]. Thus by Lemma 2.11 (ii) and similar argument in the proof of
3.6, we have

Hα,β(tn, zn)→ y ∈ Ω as n→∞
which leads to a contradiction. �

We now prove the main result of this article which roughly states that under certain
assumptions on ν the problem in (1.1) admits at least cat(Ω)+1 number of solutions.

Lemma 3.8. If (u, v) is a critical point of Iα,β on N−α,β, then it is also a critical
point of Iα,β in X.

Proof. We follow the proof of Lemma 4.1 in [14] or of Lemma 4.1 in [35]. Let (u, v)
be a crtical point of Iα,β in N−α,β . Then

〈I ′α,β(u, v), (u, v)〉 = 0.

Define

ψα,β(u, v) = 〈I ′α,β(u, v), (u, v)〉
= ‖(u, v)‖pp + ‖(u, v)‖qq

−
∫

Ω

(λf(x)ur + µg(x)vr)dx

− ν
∫

Ω

h(x)u1−αv1−βdx.

Since we are now looking for minimizing Iα,β over the entire space X, to which the
Lagrange multiplier method comes to our rescue in finding a θ( 6= 0) ∈ R such that

I ′α,β(u, v) = θψ′(u, v) (3.7)

where

ψα,β(u, v) = 〈I ′α,β(u, v), (u, v)〉.

Since, (u, v) ∈ N−α,β , we have from a simple computation that ψ′α,β(u, v) < 0.

Consequently from (3.7) we have I ′α,β(u, v) = 0. �
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Lemma 3.9. There exists Λ∗ > 0 such that any sequence {(un, vn)} ⊂ N−α,β with

IN−α,β
(un, vn) → c ∈ (−∞, cα,β) and I ′

N−α,β
(un, vn) → 0 contains a convergent subse-

quence for all 0 < ν

[(
1−α

2−α−β

) p
p+α+β−2

+
(

1−β
2−α−β

) p
p+α+β−2

]
< Λ∗.

Proof. From the Lagrange’s multiplier method, there exists a sequence (an) ⊂ R such
that

‖I ′α,β(un, vn)− anψ′α,β(un, vn)‖X′ → 0

as n→∞. Here

ψα,β(un, vn) = 〈I ′α,β(un, vn), (un, vn)〉

= ‖(un, vn)‖pp + ‖(un, vn)‖qq −
∫

Ω

(λf(x)urn + µg(x)vrn)dx

−ν
∫

Ω

h(x)u1−α
n v1−β

n dx.

Then

I ′α,β(un, vn) = anψ
′
α,β(un, vn) + o(1).

Since (un, vn) ∈ N−α,β ⊂ Nα,β , by a simple computation we have

〈ψα,β(un, vn), (un, vn)〉 < 0.

Now suppose 〈ψ′α,β(un, vn), (un, vn)〉 → 0, then we have

(r − p)‖(un, vn)‖pp + (r − q)‖(un, vn)‖qq

= ν(1 + α+ β)

∫
Ω

h(x)u1−α
n v1−β

n dx+ o(1)

≤ ν(1 + α+ β)M

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

] p+α+β−2
p

‖(un, vn)‖2−α−βp + o(1)

and

(p+ α+ β − 2)‖(un, vn)‖pp + (q + α+ β − 2)‖(un, vn)‖qq

= (r + α+ β − 2)

∫
Ω

(λf(x)urn + βg(x)vrn)dx+ o(1) ≤M ′‖(un, vn)‖p
∗

p + o(1)

where we have used the Hölder inequlaity and the Sobolev embedding. Then we have

‖(un, vn)‖p ≤ (νC1)
1
p

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

] 1
p

+ o(1)

and

‖(un, vn)‖p ≥ C
1

p∗−p
2 + o(1).



p− q LAPLACIAN SYSTEM 565

Now if we choose Λ∗ small enough, this cannot hold. Therefore let us assume that
〈ψα,β(un, vn), (un, vn)〉 → l < 0, as n → ∞. since 〈Iα,β(un, vn), (un, vn)〉 = 0, we
conlcude that an → 0 and therefore I ′α,β(un, vn)→ 0. This gives us that

Iα,β(un, vn) = c < cα,β and I ′α,β(un, vn)→ 0.

Therefore by the Lemma 2.10 the proof is complete. �

Lemma 3.10. Suppose that (C) holds and

ν

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
∈ (0,Λ∗).

Then cat(N−λ,µ(cλ,µ − σ)) ≥ cat(Ω).

Proof. Let cat(N−α,β(cα,β − σ)) = n. Then, by the definition 3.1 of the category of a
set in the sense of Lusternik-Schnirelman, we suppose that

N−α,β(cα,β − σ) = A1 ∪A2 ∪ ... ∪An
where Aj , j = 1, 2, ..., n are closed and contractible in N−α,β(cα,β−σ), i.e., there exists

hj ∈ C([0, 1]×Aj ,N−α,β(cα,β − σ)) such that

hj(0, z) = z, hj(1, z) = Θ, for all z ∈ Aj ,
where Θ ∈ Aj is fixed. Consider Bj = γ−1(Aj), j = 1, 2, ..., n. Then the sets Bj are
closed

Ω−δ = B1 ∪B2 ∪ ... ∪Bn.
We now define the deformation gj : [0, 1]×Bj → Ω+

δ by setting

gj(t, y) = Hα,β(t, hj(t, γ(y))).

for ν

[(
1−α

2−α−β

) p+α+β−2
p

+
(

1−β
2−α−β

) p+α+β−2
p

]
∈ (0,Λ∗). Notice that

gj(0, y) = Hα,β(0, hj(0, γ(y))) = (τα,β ◦ γ)(y) = y, for all y ∈ Bj
and

gj(1, y) = Hα,β(0, hj(1, γ(y))) = τα,β(Θ) ∈ Ω+
δ , for all y ∈ Bj .

Thus the sets Bj , j = 1, 2, ..., n are contractible in Ω+
δ .

Therefore cat(N−α,β − σ) ≥ catΩ+
δ

(Ω−δ ) = cat(Ω). �

Proof of Theorem 1.1. By Lemmas 2.10 and 3.9, the functional Iα,β satisfies the (PS)c
condition for c ∈ (−∞, cα,β). Then, by Lemma 3.2 and 3.10, we have Iα,β has at least
cat(Ω) number of critical points in N−α,β(cα,β − σ). By Lemma 3.8, we have Iα,β has

at least cat(Ω) number of critical points in N−α,β . Further, since N+
α,β ∩N

−
α,β = φ, the

proof is now complete.
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