
Fixed Point Theory, 24(2023), No. 2, 525-540

DOI: 10.24193/fpt-ro.2023.2.05

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

REMARKS ON THE TERMINOLOGY

OF THE MAPPINGS IN FIXED POINT ITERATIVE

METHODS IN METRIC SPACES

VASILE BERINDE∗,†, ADRIAN PETRUŞEL∗∗,† AND IOAN A. RUS∗∗,§
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1. Introduction

In the metric fixed point theory, very often, some basic conditions on mappings
appear under several names (see [49], [38], [29], [39], [80], [83], [66], [67], [73], [9], [21],
[27], [37], [43], [2], [31], [78], [14], [15], [63], [60], ...)

Let (X, d) be a metric space and T : X → X be a mapping. We denote by FT

the fixed point set of T , i.e., FT := {x ∈ X : x = T (x)}. We start by presenting the
following four examples:

(1) for the condition: there exists 0 < l < 1 such that

d(T (x), T (y)) ≤ ld(x, y), for all x, y ∈ X,
525
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we meet the following names: contraction, strong contraction, strict contrac-
tion, Banach contraction, Banach-Caccioppoli contraction, Picard-Banach-
Caccioppoli contraction, contractive, strongly nonexpansive,...

(2) for the condition:

d(T (x), T (y)) ≤ d(x, y), for all x, y ∈ X,
we meet the following names: nonexpansive, contraction, mapping which do
not increase distance,...

(3) for the condition: there exists 0 < l < 1 such that

d(T 2(x), T (x)) ≤ ld(x, T (x)), for all x ∈ X,
we meet the following names: graphic contraction, iterative contraction,
weakly contraction, Banach mapping,...

(4) for the condition: FT 6= ∅ and there exists c > 0 such that

d(x, FT ) ≤ cd(x, T (x)), for all x ∈ X
we can find the following names: condition I, condition II, condition D, FT -
displacement condition,...

On the other hand, the ambient space X that appears in fixed point theorems has
various structures:

• complete metric space
• compact metric space
• closed subset of a Banach space
• closed convex and bounded subset of a Hilbert space
• compact convex of a Banach space
• ordered metric space
• metric space with graph
• metric space with convex structure
• ...

So, the problem must be considered in the following three cases:

• X is a metric space;
• X is a Hilbert space;
• X is a Banach space.

In this paper, we consider the first case, i.e., the case of a metric space X, and we
cover the following aspects/sections:

2. Orbits and sequences of successive approximations
3. Metric conditions on Y × Y for T : Y → X with Y ⊂ X
4. Metric conditions on Y × FT for T : Y → X with FT 6= ∅: quasi-conditions
5. Metric conditions on G ⊂ X × X for T : X → X: G-conditions (graphic

conditions, cyclic conditions,...)
6. Conditions in terms of the displacement (Caristi condition, retraction-

displacement condition, FT -displacement condition...)
7. The case of multivalued mappings
8. Problems

8.1 Mappings of contraction type
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8.2 Mappings of contractive type
8.3 Mappings of nonexpansive type
8.4 Conditions in sinergistic relation in a fixed point theorem.
8.5 Other problems

2. Orbits and sequences of successive approximations

Let (X, d) be a metric space and T : X → X be a mapping. In terms of iterates of
T , we have the following notions and notations (see [7], [9], [10], [14], [15], [73], [71],
[78], ...):

• FT := {x ∈ X | T (x) = x}, the set of fixed points of T ;
• OT (x) := {Tn(x) | n ∈ N := 0, 1, . . .}, the orbit of T at x ∈ X;
• (Tn(x))n∈N, the sequence of successive approximations of T at x ∈ X;
• ωT (x) := the cluster point set of (fn(x))n∈N, i.e., the set
{y ∈ X | ∃ nk →∞ such that fnk(x)→ y as nk →∞};
• T is weakly Picard mapping (WPM) iff for each x ∈ X, fn(x)→ x∗(x) ∈ FT

as n→∞;
• if T is WPM with FT = {x∗}, then T is by definition, Picard mapping (PM);

by FT = {x∗} we understand that T has a unique fixed point and we denote
it by x∗;
• T is pre-WPM if for each x ∈ X, (fn(x))n∈N is convergent;
• T is pre-PM if there exists y ∈ X such that fn(x) → y as n → ∞, for all
x ∈ X;
• if T is pre-WPM, then we define the operator T∞ : X → X by

T∞(x) := lim
n→∞

Tn(x);

• T is asymptotically regular iff for each x ∈ X, d(Tn+1(x), Tn(x)) → 0 as
n→∞;
• T has diminishing orbital diameters on X iff for each x ∈ X with 0 <
δ(OT (x)) < +∞ we have that lim

n→∞
δ(OT (Tn(x)) < δ(OT (x)).

3. Metric conditions on Y × Y for T : Y → X with Y ⊂ X

Let (X, d) be a metric space, Y ⊂ X and T : Y → X a mapping.
We name the following metric conditions on Y × Y for T as follows (see [73], [67],

[38], [66], [74], ...):
(1) contraction mapping: there exists 0 < l < 1 such that

d(T (x), T (y)) ≤ ld(x, y), for all x, y ∈ Y ;

(2) contractive mapping:

d(T (x), T (y)) < d(x, y), for all x, y ∈ Y, x 6= y;

(3) nonexpansive mapping:

d(T (x), T (y)) ≤ d(x, y), for all x, y ∈ Y ;
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(4) ϕ-contraction mapping: the function ϕ : R5
+ → R+ is increasing such that

ψ : R+ → R+, ψ(t) = ϕ(t, t, t, t, t) is a comparison function and

d(T (x), T (y)) ≤ ϕ(d(x, y), d(x, T (x)), d(y, T (y)), d(x, T (y)), d(y, T (x))),

for all x, y ∈ Y.
Some examples of ϕ-contractions (see [9], [34], [49], [63], [64], [66], [73], ...) are:
• Kannan mappings: there exist l1, l2 ∈ R+, l1 + l2 < 1 such that

d(T (x), T (y)) ≤ l1d(x, T (x)) + l2d(y, T (y)), for all x, y ∈ Y.

• Ćirić-Reich-Rus mappings: there exist l1, l2, l3 ∈ R+, l1 + l2 + l3 < 1 such that

d(T (x), T (y)) ≤ l1d(x, y) + l2d(x, T (x)) + l3d(y, T (y)), for all x, y ∈ Y.

• Hardy-Rogers mappings: there exist l1, l2, l3, l4, l5 ∈ R+, l1 + l2 + l3 + l4 + l5 < 1
such that

d(T (x), T (y)) ≤ l1d(x, y) + l2d(x, T (x)) + l3d(y, T (y)) + l4d(x, T (y)) + l5d(y, T (x)),

for all x, y ∈ Y.
• Ćirić mappings: there exists l ∈]0, 1[ s.t.

d(T (x), T (y)) ≤ lmax{d(x, y), d(x, T (x)), d(y, T (y)), d(x, T (y)), d(y, T (x))},

for all x, y ∈ Y.

(5) ϕ−contractive mappings: the function ϕ : R5
+ → R+ is increasing such that

ϕ(t, t, t, t, t) ≤ t, t ∈ R+ and

d(T (x), T (y)) < ϕ(d(x, y), d(x, f(x)), d(y, f(y)), d(x, T (y)), d(y, T (x)))),

for all x, y ∈ Y, x 6= y.
Some examples of ϕ-contractive mappings (see [9], [27], [39], [65], [68], [73], [17],

[29], [40], [63], [64], [76], [79], ...) are:
• Kannan contractive mappings: there exist l1, l2 ∈ R+, l1 + l2 = 1 such that

d(T (x), T (y)) < l1d(x, T (x)) + l2d(y, T (y)), for all x, y ∈ Y, x 6= y.

• Ćirić-Reich-Rus contractive mappings: there exist l1, l2, l3 ∈ R+, l1 +l2 +l3 = 1
such that

d(T (x), T (y)) < l1d(x, y) + l2d(x, T (x)) + l3d(y, T (y)), for all x, y ∈ Y, x 6= y.

• Hardy-Rogers contractive mappings: there exist l1, l2, l3, l4, l5 ∈ R+, l1 + l2 +
l3 + l4 + l5 = 1 such that

d(T (x), T (y)) < l1d(x, y) + l2d(x, T (x)) + l3d(y, T (y)) + l4d(x, T (y)) + l5d(y, T (x)),

for all x, y ∈ Y, x 6= y.
• Ćirić contractive mappings:

d(T (x), T (y)) < max{d(x, y), d(x, T (x)), d(y, T (y)), d(x, T (y)), d(y, T (x))},

for all x, y ∈ Y, x 6= y.
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(6) ϕ-nonexpansive mappings: the function ϕ : R5
+ → R+ is increasing such that

ϕ(t, t, t, t, t) ≤ t, t ∈ R+ and

d(T (x), T (y)) ≤ ϕ(d(x, y), d(x, T (x)), d(y, T (y)), d(x, T (y)), d(Y, T (x))),

for all x, y ∈ Y.
Some examples of ϕ-nonexpansive mappings (see [49], [63], [65], [67], [73], [76], [64],

[78], [79], ...) are:
• Kannan nonexpansive mappings: there exist l1, l2 ∈ R+, l1 + l2 ≤ 1 such that

d(T (x), T (y)) ≤ l1d(x, T (x)) + l2d(y, T (y)), for all x, y ∈ Y.

• Ćirić-Reich-Rus nonexpansive mappings: there exist l1, l2, l3 ∈ R+, l1+l2+l3 ≤
1 such that

d(T (x), T (y)) ≤ l1d(x, y) + l2d(x, T (x)) + l3d(y, T (y)), for all x, y ∈ Y.

• Hardy-Rogers nonexpansive mappings: there exist l1, l2, l3, l4, l5 ∈ R+, l1 + l2 +
l3 + l4 + l5 ≤ 1 such that

d(T (x), T (y)) ≤ l1d(x, y) + l2d(x, T (x)) + l3d(y, T (y)) + l4d(x, T (y)) + l5d(y, T (x)),

for all x, y ∈ Y.
• Ćirić nonexpansive mappings:

d(T (x), T (y)) ≤ max(d(x, y), d(x, T (x)), d(y, T (y)), d(x, T (y)), d(y, T (x))),

for all x, y ∈ Y.

4. Metric conditions on Y × FT for T : Y → X with FT 6= ∅:
quasi-conditions

(X, d) a metric space, Y ⊂ X and T : Y → X with FT 6= ∅
In what follows we present conditions on Y × FT as a restriction of conditions on

Y × Y to Y × FT (see [18], [49], [60], [69], [70], [71], [79], [9], [12], ...):
(1) quasicontraction mapping: there exists 0 < l < 1 such that

d(T (x), x∗) ≤ ld(x, x∗), for all x ∈ Y, x∗ ∈ FT 6= ∅;

(2) quasicontractive mapping:

d(T (x), x∗) < d(x, x∗), for all x ∈ X, x∗ ∈ FT 6= ∅, x 6= x∗;

(3) quasinonexpansive mapping:

d(T (x), x∗) ≤ d(x, x∗), for all x ∈ X, x∗ ∈ FT 6= ∅;

(4) quasi-ϕ-contraction mapping: the function ϕ : R+ → R+ is a comparison
function and

d(T (x), x∗) ≤ ϕ(d(x, x∗)), for all x ∈ X, x∗ ∈ FT 6= ∅;

(5) quasi-ϕ-contractive mapping: the function ϕ : R+ → R+ is increasing such that
ϕ(t) ≤ t, ∀ t ∈ R+ and

d(T (x), x∗) < ϕ(d(x, x∗)), for all x ∈ X, x∗ ∈ FT 6= ∅, x 6= x∗;
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(6) quasi-ϕ-nonexpansive mapping: the function ϕ : R+ → R+ is increasing such
that ϕ(t) ≤ t, ∀ t ∈ R+ and

d(T (x), x∗) ≤ ϕ(d(x, x∗)), ∀ x ∈ X, x∗ ∈ FT 6= ∅.

In general if C is a condition on Y × Y , then quasi C is the restriction of C to
Y × FT with FT 6= ∅.

By a conditional quasi C we understand that: if FT 6= ∅, then T is quasi C. For
example, T is conditional quasinonexpansive if FT 6= ∅ implies that T is quasinonex-
pansive.

5. Metric conditions on G ⊂ X ×X for T : X → X: G-conditions
(graphic conditions, cyclic conditions,...)

Let (X, d) be a metric space, T : X → X a mapping and G ⊂ X ×X a nonempty
subset. If (C) is a condition on T , on X ×X, then by condition G-C we understand
the condition which is the restriction of condition (C) to G.
For various examples (see also [4], [54], [52], [56], [58], [69], [70], [72], [73], ...):

(A1) G-contraction mapping: there exists 0 < l < 1 such that

d(T (x), T (y)) ≤ ld(x, y), for all (x, y) ∈ G;

(A2) G-contractive mapping:

d(T (x), T (y)) < d(x, y), for all (x, y) ∈ G, x 6= y;

(A3) G-nonexpansive mapping:

d(T (x), T (y)) ≤ d(x, y), for all (x, y) ∈ G.

If we take G := {(x, T (x)) | x ∈ X}, then we have the following conditions (see
[56], [57], [59], [74], ...):

(B1) graphic contraction mapping: there exists 0 < l < 1 such that

d(T (x), T 2(x)) ≤ ld(x, T (x)), for all x ∈ X;

(B2) graphic contractive mapping:

d(T (x), T 2(x)) < d(x, T (x)), for all x ∈ X, x 6= T (x);

(B3) graphic nonexpansive mapping:

d(T (x), T 2(x)) ≤ d(x, T (x)), for all x ∈ X.

Let (X, d) be a metric space,

X =

m⋃
i=1

Xi, m ≥ 2,

be a covering of X with Xi 6= ∅, i = 1,m. Let T : X → X be such that:

T (X1) ⊂ X2, . . . , T (Xm−1) ⊂ Xm, T (Xm) ⊂ X1.

We call a such mapping, a cyclic mapping with respect to this covering.
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Let

G :=

m⋃
i=1

(Xi ×Xi+1), where Xm+1 = X1.

By definition a G-condition on T is a cyclic condition on T .
We present now some examples of cyclic conditions for T a cyclic mapping (see

[11], [35], [38], [49], [67], [70], [73], [79], [82], ...):

(C1) cyclic contraction mapping: there exists 0 < l < 1 such that

d(T (x), T (y)) ≤ ld(x, y), for all x ∈ Xi, y ∈ Xi+1, i = 1,m;

(C2) cyclic contractive mapping:

d(T (x), T (y)) < d(x, y), for all x ∈ Xi, y ∈ Xi+1, x 6= y, i = 1,m;

(C3) cyclic nonexpansive mapping:

d(T (x), T (y)) ≤ d(x, y), for all x ∈ Xi, y ∈ Xi+1, i = 1,m;

..........

6. Conditions in terms of the displacement (Caristi condition,
retraction-displacement condition, and FT -displacement

condition,...)

Let (X, d) be a metric space, Y ⊂ X a nonempty subset and T : Y → X a mapping.
In terms of displacement of T , functional of T , x 7→ d(x, T (x)), we have the following
conditions:

(A1) Caristi mapping: there exists ϕ : X → R+ such that

d(x, T (x)) ≤ ϕ(x)− ϕ(T (x)), for all x ∈ X;

(A2) Caristi-Kirk mapping: T is Caristi mapping with ϕ a lower semicontinuous
mapping;

(A3) Caristi-Browder mapping: T is Caristi mapping and T is orbitally continuous.

Let T : Y → X with FT 6= ∅. In this case we have:

(B1) FT -displacement condition: there exists c > 0 such that

d(x, FT ) ≤ cd(x, T (x)), for all x ∈ X;

(B2) retraction-displacement condition: there exists a retraction r : X → FT (i.e.,

r
∣∣∣
FT

= 1FT
) such that

d(x, r(x)) ≤ cd(x, T (x)), for all x ∈ X;

(B3) c-WPM: T is a WPM and there exists c > 0 such that

d(x, T∞(x)) ≤ cd(x, T (x)), for all x ∈ X.
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7. Problems

7.1. Mappings of contraction type. In the metrical fixed point theory we meet
some variants of the contraction principle (see [49], [73], [9], [50], [38], [45], [48], [84],
[70], ...), like the following ones:

(V1) (S. Banach – R. Caccioppoli). Let (X, d) be a complete metric space and
T : X → X be a contraction. Then:

(i) T has a unique fixed point in X, i.e., FT = {x∗}.
(ii) For each x ∈ X, Tn(x)→ x∗ as n→∞.
(V2) (R.S. Palais). Let (X, d) be a metric space and T : X → X be an l-contraction.

Then:

(i) d(x, y) ≤ 1

1− l
[d(x, T (x)) + d(y, T (y))], ∀ x, y ∈ X.

(ii) T has at most one fixed point.
(iii) For any x in X, the sequence Tn(x) of iterates of x under T is a Cauchy

sequence.
(iv) If (X, d) is a complete metric space, then T has a unique fixed point p, and

for any x in X the sequence Tn(x) converges to p. In fact,

d(Tn(x), p) ≤ ln

1− l
d(x, T (x)), n ∈ N.

(V3) (W.A. Kirk). Let (X, d) be a complete metric space and T : X → X be an
l-contraction. Then:

(i) T has a unique fixed point, say p ∈ X.
(ii) For each x ∈ X the Picard sequence {Tn(x)} converges to p.
(iii) The convergence is uniform if X is bounded.
(iv) d(Tn+1(x), p) ≤ ld(Tn(x), p).
(V4) (P.R. Meyers). Let (X, d) be a complete metric space and T : X → X be a

contraction. Then there exist a unique point x∗ ∈ X and a neighborhood U of x∗

such that:
(i) T (x∗) = x∗.
(ii) For each x ∈ X, Tn(x)→ x∗ as n→∞.
(iii) Tn(U)→ x∗ as n→∞.
(V5) (V.I. Opoitsev). Let (X, d) be a complete metric space and T : X → X be a

contraction. Then we have the conclusions (i), (ii) and (iii) in (V4) and the following
ones:

(iv) The mapping T is continuous.
(v) Stability of the fixed point x∗, i.e., for any neighborhood V of x∗ we can find a

neighborhood W of x∗ such that from x ∈W it follows that Tn(x) ∈ V , for all n ∈ N.
(V6) (I.A. Rus). Let (X, d) be a complete metric space and T : X → X an l-

contraction. Then:
(i) There exists x∗ ∈ X such that FT = FTn = {x∗}, for all n ∈ N∗.
(ii) For all x ∈ X, Tn(x)→ x∗ as n→∞.

(iii) d(x, x∗) ≤ ψ(d(x, T (x))), ∀ x ∈ X, where ψ(t) =
t

1− l
, t ≥ 0.
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(iv) If (yn)n∈N is a sequence in X such that

d(yn, T (yn))→ 0 as n→∞,

then yn → x∗ as n→∞.
(v) If (yn)n∈N is a sequence in X such that

d(yn+1, T (yn))→ 0 as n→∞,

then yn → x∗ as n→∞.
(vi) If Y ⊂ X is a closed subset such that T (Y ) ⊂ Y , then x∗ ∈ Y . Moreover, if in

addition Y is bounded then:
(a) (Tn(x))n∈N converges uniformly to x∗ on Y ;

(b)
⋂
n∈N

Tn(Y ) = {x∗}.

Here are some remarks and commentaries, from [70], on the variant (V6):
”Conclusion (i) is a set-theoretical one. If X is a nonempty set and T : X → X

is a mapping such that FTn = {x∗}, for all n ∈ N∗, then by definition we call T a
Bessaga mapping.

Conclusion (ii) is a topological one. All Picard iterations converge to the unique
fixed point of the mapping. If (X,→) is an L-space and T : X → X is a mapping
such that we have (i) and (ii), then by definition T is a Picard mapping.

Conclusion (iii) is a metrical one and is very important in the theory of fixed point
equations. We obtain from this estimate, for example, a data dependence of the fixed
point under mapping perturbation.

If in a metric space a mapping T : X → X satisfies (i), (ii) and (iii), then, by
definition, the mapping T is a ψ-Picard mapping and the estimation in (iii) is called
retraction-displacement estimation. In this definition, ψ is a function, ψ : R+ → R+,
increasing and continuous in 0 with ψ(0) = 0.

If in a metric space (X, d) a mapping T : X → X satisfies (i) and (iv) then, by
definition, the fixed point problem for f is well posed. We remark that we can present
this notion in a linear L-space. Let (X,+,R,→) be a linear L-space and T : X → X
be a mapping. By definition, the fixed point problem for T is well posed if:

(1) FT = {x∗}.
(2) If (yn)n∈N is a sequence in X such that yn − T (yn) → 0 as n → ∞, then

yn → x∗ as n→∞.
If in a metric space (X, d) a mapping T : X → X satisfies (i) and (v), then, by

definition, the mapping has the Ostrowski property. We notice that we can present
this notion in a linear L-space, as follows. Let (X,+,R,→) be a linear L-space and
T : X → X be a mapping. By definition, the mapping T has the Ostrowski property
if:

(1) FT = {x∗}.
(2) If (yn)n∈N is a sequence in X such that yn+1 − T (yn) → 0 as n → ∞, then

yn → x∗ as n→∞.
First part of conclusion (vi) is useful for the localization of the fixed point. Second

part (b) is a set-theoretical one, under metrical conditions. If X is a nonempty set
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and T : X → X is a mapping such that⋂
n∈N

Tn(X) = {x∗},

then, by definition, T is a Janos mapping.
On the other hand, from (vi), (b), we have the following property of contractions:
If (X, d) is a complete metric space and T : X → X is a contraction with FT = {x∗}

and (yn)n∈N is a bounded sequence in X, then Tn(yn)→ x∗ as n→∞.”
For the notions in the above commentaries see: [11], [29], [49], [20], [61], [62], [69],

[71], [75], [73], [25], [41], [88].
With the above variants in mind, in terms of the proposed conclusions, a notion

emerges: contraction type mapping.
Instead to give an abstract notion of ”contraction type mapping”, in what follows

we present some problems which typify some classes of contraction type mappings.
Let (X, d) be a complete metric space and T : X → X be a mapping.
Problem (CT )1. Which metric conditions on T imply that T is a ψ-PM, for a

suitable ψ?
Problem (CT )2. Which metric conditions on T imply the conclusions in (V4)?
Problem (CT )3. Which metric conditions on T imply that T is a ψ-PM and a

quasi-ϕ-contraction, with ϕ and ψ appropriately chosen.
Commentaries:
(1) If T is a ψ-PM then the fixed point problem for T is well posed.
(2) If T is PM and is a quasicontraction then T has the Ostrowski property.
(3) For example, if T is a Kannan mapping then T satisfies all the conclusions in

(V6).
(4) References: [70], [49], [34], [38], [39], [73].

7.2. Mappings of contractive type. We are looking for a good definition of ”con-
tractive type” mapping. For to do this we start with some aspects of the theory of
contractive mappings. The basic variants of contractive mapping principle (see [23],
[49], [67], [47], [17])are the following ones:

(V1) (V.V. Niemytzki – M. Edelstein). Let (X, d) be a compact metric space and
T : X → X be a contractive mapping. Then T is a PM.

(V2) (V.V. Niemytzki – M. Edelstein). Let (X, d) be a metric space and T be a

contractive mapping. If T (X) is a compact subset of X, then T is a PM.
(V3) (M. Edelstein). Let (X, d) be a metric space and T : X → X be a contractive

mapping. If for each x ∈ X, ωT (x) 6= 0, then T is a PM.
From the above results on contractive mappings the concept of ”contractive type”

emerges as solution of one of the following problems:
Problem (CV T )1. Let (X, d) be a compact metric space and T : X → X be

orbitally continuous. Which metric conditions on T imply that T is PM?
Problem (CV T )2. Let (X, d) be a metric space and T : X → X be orbitally

continuous such that T (X) is a compact subset of X. Which metric conditions on T
imply that T is PM?
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Problem (CV T )3. Let (X, d) be a metric space and T : X → X be orbitally
continuous such that ωT (x) 6= ∅ for all x ∈ X. Which metric conditions imply that T
is PM ?

Commentaries:
(1) If a metric condition on T implies that cardFT ≤ 1 and T is a graphic contrac-

tive, then T is a solution of the above problems. For example, Kannan contractive
condition and Ćirić-Reich-Rus contractive condition, Hardy-Rogers contractive con-
dition are such conditions.

(2) References: [9], [29], [40], [49], [63], [65], [75], [76], [79].

7.3. Mapping of nonexpansive type. A consistent fixed point theory for nonex-
pansive mappings is in the case when we have self mappings of a subset (closed convex,
bounded closed convex,...) of a Hilbert space and of a Banach space. For a better
understanding of the impact of the metric structure in this theory, the study of the
problem in an abstract metric space is required.

In what follows we consider nonexpansive mappings on a metric space and we are
looking for a good definition of the concept ”nonexpansive type mapping”.

First, we start with the following result on some classes of mappings in the case of
nonexpansive mappings (see [8]).

Equivalence Theorem. Let (X, d) be a compact metric space and T : X → X a
nonexpansive mapping. Then the following statements are equivalent:

(i) T has diminishing orbital diameters on X.
(ii) For each x ∈ X, T is not an isometry on OT (x) if δ(OT (x)) > 0.
(iii) T is asymptotically regular on X.
As basic variants of the nonexpansive mapping principle in a metric space we

present the following results, see [7], [8], [14], [15], [27], [32], [49], [58]. ([7], [8], [14],
[15], [25], [27], [38], [46]):

(V1) Let (X, d) be a metric space and T : X → X be a nonexpansive mapping. If
ωT (x) ∩ FT 6= ∅, ∀ x ∈ X, then T is WPM.

(V2) (L.P. Belluce – W.A. Kirk). Let (X, d) be a metric space and T : X → X be
a nonexpansive mapping with diminishing orbital diameters. If ωT (x) 6= ∅, ∀ x ∈ X,
then T is WPM.

(V3) (L.P. Belluce – W.A. Kirk). Let (X, d) be a compact metric space and T :
X → X be a nonexpansive mapping with diminishing orbital diameters on X. Then
T is WPM.

(V4) Let (X, d) be a metric space and T : X → X be a nonexpansive mapping with

diminishing orbital diameters on X and with T (X) a compact subset of X. Then T
is WPM.

Now we have the possibility to define the concept of nonexpansive type mapping
as a solution of each of the following problems:

Problem (NT )1. Let (X, d) be a metric space and T : X → X be a mapping such
that ωT (x)∩FT 6= ∅, ∀ x ∈ X. Which metric conditions on T imply that T is WPM?

Problem (NT )2. Let (X, d) be a metric space and T : X → X be orbitally
continuous with diminishing orbital diameters on X and with ωT (x) 6= ∅, ∀ x ∈ X.
Which metric conditions on T imply that T is WPM?
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Commentaries:
(1) If a metric condition on T implies that T is quasinonexpansive, then T is a

solution of the above problems. For example, Kannan nonexpansive condition is such
a condition.

(2) References: [27], [78], [79], [38], [4], [36], [9], [67], [60],...

7.4. Conditions in sinergistic relation in a fixed point theorem. From the
theorems in Sections 7.1, 7.2 and 7.3, and from other results in fixed point theory the
following problems emerge:

Let (X, d) be a metric space and T : X → X be a mapping.
Problem (ST )1. Which conditions imply that ωT (x) 6= ∅, ∀ x ∈ X and which

ones imply that ωT (X) ∩ FT 6= ∅, ∀ x ∈ X?
Problem (ST )2. Which metric conditions imply that T is asymptotically regular?
Commentaries:
(1) If T is orbitally continuous and T is asymptotically regular, then ωT (x) = FT .

If in addition T (X) is compact, then ωT (x) 6= ∅, ∀ x ∈ X.
(2) The following result is given in [71]:
Let α : R+ → R+ and β : X → R+ such that:
(i) tn ∈ R+, n ∈ N, α(tn)→ 0 as n→∞ ⇒ tn → 0 as n→∞;
(ii) α(d(x, T (x))) ≤ β(x)− β(T (x)), ∀ x ∈ X.
Then, the mapping T is asymptotically regular.
(3) References: [44], [30], [24], [71], [12].

8. The case of multivalued mappings

Let us consider now the following sets of subsets of a metric space (X, d):

P (X) = {Y ∈ P(X)| Y 6= ∅}; Pb(X) = {Y ∈ P (X)| Y is bounded };

Pcl(X) = {Y ∈ P (X)| Y is closed}; Pcp(X) = {Y ∈ P (X)| Y is compact};

If X is a normed space, then we denote:

Pcv(X) = {Y ∈ P (X)| Y convex}; Pcp,cv(X) = Pcp(X) ∩ Pcv(X).

Let us define the following generalized functionals:
(1) D : P (X)× P (X)→ R+ ∪ {+∞}

D(A,B) := inf{d(a, b)| a ∈ A, b ∈ B}.
D is called the gap functional between A and B.

In particular, D(x0, B) = D({x0}, B) (where x0 ∈ X) is called the distance from
the point x0 to the set B.

(2) e : P (X)× P (X)→ R+ ∪ {+∞},
e(A,B) := sup{D(a,B)| a ∈ A}.

e is called the excess functional of A over B.

(3) H : P (X)× P (X)→ R+ ∪ {+∞},
H(A,B) := max{e(A,B), e(B,A)}.
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H is called the generalized Pompeiu-Hausdorff functional of A and B.
Let (X, d) be a metric space and T : X → P (X) be a multivalued operator. Then,

we denote FT := {x ∈ X : x ∈ T (x)}, (SF )T := {x ∈ X : T (x) = {x}}. The graph of
the mapping T is denoted by Graph(T ) := {(x, y) ∈ X ×X : y ∈ T (x)}.

Using the above notations, we have in the literature the following metric conditions
on a multivalued mapping.

The multivalued operator T : X → P (X) is said to be:
1) α-Lipschitz if α > 0 and H(T (x1), T (x2)) ≤ α · d(x1, x2), for each x1, x2 ∈ X.
2) α-contraction if it is α-Lipschitz with α < 1.
3) contractive if H(T (x1), T (x2)) < d(x1, x2), for each x1, x2 ∈ X, with x1 6= x2.
4) nonexpansive if H(T (x1), T (x2)) ≤ d(x1, x2), for each x1, x2 ∈ X.

Let (X, d) be a metric space. If T : X → P (X) is a multivalued operator and x0 ∈
X is an arbitrary point, then the sequence (xn)n∈N is, by definition, the successive
approximations sequence of T starting from (x0, x1) if and only if xk ∈ T (xk−1), for
all k ∈ N∗.

The following result is the basic theorem for multivalued contraction mappings. It
is known in the literature as the Multivalued Contraction Principle of Nadler.

(Nadler [46], Covitz-Nadler [19]) Let (X, d) be a complete metric space and x0 ∈ X
be arbitrary. If T : X → Pcl(X) is a multivalued α-contraction, then there exists
a sequence of successive approximations of T starting from x0 which converges to a
fixed point of T .

If the multivalued operator is contractive, then we need a stronger assumption
on the space X. The following result is the main fixed point result for multivalued
contractive mappings.

(Smithson [81]) Let (X, d) be a compact metric space and T : X → Pcl(X) be a
contractive multivalued operator. Then FT 6= ∅.

The main result for nonexpansive mappings was given by T.C. Lim.
(T.C. Lim [42]) Let X be an uniformly convex Banach space, Y ∈ Pb,cl,cv(X) and

F : Y → Pcp(Y ) be nonexpansive. Then FT 6= ∅.
As in the singlevalued case, there are many extensions and generalizations of these

principles. By similar considerations, we can classify multivalued mappings ”of con-
traction type”, ”of contractive type” and of ”of nonexpansive type”. Having in mind
the previous main theorems we can formulate, as in the singlevalued case, problems
which generate the notions of multivalued mappings of contraction type, multivalued
mappings of contractive type and multivalued mappings of nonexpansive type. For
related concepts and results see [2], [3], [5], [6], [13], [19], [22], [28], [29], [31], [38],
[37], [46], [51], [55], [58], [62], [68], [73], [81], [86], [87].
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[6] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht, 1993.

[7] L.P. Belluce, W.A. Kirk, Fixed-point theorems for certain classes of nonexpansive mappings,

Proc. Amer. Math. Soc., bf 20(1969), 141-146.
[8] L.P. Belluce, W.A. Kirk, Some fixed point theorems in metric and Banach spaces, Canad. Math.

Bull., bf 12(1969), 481-491.

[9] V. Berinde, Iterative Approximation of Fixed Points, Springer, 2007.
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[58] A. Petruşel, I.A. Rus, M.A. Şerban, Basic problems of the metric fixed point theory and the

relevance of a metric fixed point theorem for a multivalued operator, J. Nonlinear Convex Anal.,
15(2014), 493-513.
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1, 73-77.

[67] I.A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.

[68] I.A. Rus, Fixed Point Structure Theory, Cluj Univ. Press, Cluj-Napoca, 2006.
[69] I.A. Rus, Relevant classes of weakly Picard operators, An. Univ. Vest Timişoara, Mat.-Inform.,
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