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problem satisfying Lipschitz-type continuity and the split common null point problem. We propose an
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via numerical experiment with applications.
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1. Introduction

Let C be a nonempty subset of a real Hilbert space H1 with the inner product
< ·, · > and the associated norm ‖ · ‖. For an operator T : C → C, we denote by
Fix(T ) = {x ∈ C | x = Tx} the set of all fixed points of the operator T . Recall that
the operator T is known as k-demicontractive [24] if there exists k ∈ [0, 1) such that

‖Tx− p‖2 ≤ ‖x− p‖2 + k‖x− Tx‖2, ∀x ∈ C, p ∈ Fix(T ).

The class of k-demicontractive operators has been studied extensively in various in-
stances of fixed point problems in Hilbert spaces. However, we are concerned with
the fixed point problem of an infinite family of k-demicontractive operators in Hilbert
spaces via the following construction of Sk:

Qk,k+1 = Id,

Qk,k = βkT
′

kQk,k+1 + (1− βk)Id,

Qk,k−1 = βk−1T
′

k−1Qk,k + (1− βk−1)Id,

...

Qk,m = βmT
′

mQk,m+1 + (1− βm)Id,

...

Qk,2 = β2T
′

2Qk,3 + (1− β2)Id,

Sk = Qk,1 = β1T
′

1Qk,2 + (1− β1)Id,

where Id is an identity operator, 0 ≤ βm ≤ 1 and T
′

m = αx + (1 + α)Tmx for all
x ∈ C with Tm being k-demicontractive operator and α ∈ [k, 1). It is well-known in

the context of operator Sk that each T
′

m is nonexpansive and the limit limk→∞Qk,m
exists. Moreover

Sx = lim
k→∞

Skx = lim
k→∞

Qk,1x, for all x ∈ C.

This implies that Fix(S) =
⋂∞
k=1 Fix(Sk) [31, 33].

Besides fixed point problem, an other abstract formulation in nonlinear functional
analysis is the classical equilibrium problem [14] with respect to a (monotone) bifunc-
tion g defined on a nonempty subset C of a real Hilbert space H1 which aims to find
a point x̄ ∈ C such that

g (x̄, ȳ) ≥ 0, for all ȳ ∈ C. (1.1)

The set of equilibrium points or the solutions of problem (1.1) is denoted by EP (g).
Owing to the wide applicability, the problem (1.1) along with the fixed point prob-

lem associated with various nonlinear operators has been studied in the current liter-
ature. It is remarked that most of the iterative algorithms dealing with the problem
(1.1) solve a strongly monotone regularized equilibrium problem. As a matter of
fact, these iterative algorithms fail to converge provided that the bifunction g is pseu-
domonotone. On the other hand, the extragradient iterative algorithm, based on the
Korpelevich method [26], and its various modifications proved to be an important
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tool for solving the pseudomonotone equilibrium problem [2]. In this connection, we
use a modified variant of extragradient iterative algorithm in Hilbert spaces.

In 1994, Censor and Elfving [17] investigated an abstract problem under the name
of split convex feasibility problems (SCFP) which is a generalization of the convex
feasibility problems. This abstract framework found valuable real-world applications
in medical image reconstruction problem and the intensity-modulated radiation ther-
apy [18], see also [15, 21, 20, 19, 22] and the references cited therein. One of the
important instances of SCFP is the split common null point problem (SCNPP) de-
fined as follows: given two multivalued operators A1 : H1 → 2H1 and A2 : H2 → 2H2

the SCNPP problem deals with a model aiming to find a point

x̂ ∈ H1 such that 0 ∈ A1(x̂) and 0 ∈ A2(~x̂), (1.2)

where ~ : H1 → H2 is a bounded linear operator. The set of solutions of the SCNPP
(1.2) is denoted by Ω := {x̂ ∈ A−1

1 0 : ~x̂ ∈ A−1
2 0}, where (.)−1 indicates the inverse

operator. In 2012, Byrne et al.[15] suggested the following iterative algorithms to
solve the SCNPP associated with two maximal monotone operators A1 and A2:

xk+1 = JA1
m (xk + δ~∗(JA2

m − I)~xk), k ∈ N, (1.3)

and {
x0, v ∈ H1;
xk+1 = βkv + (1− βk)JA1

m (xk + δ~∗(JA2
m − I)~xk), k ∈ N,

(1.4)

where ~∗ denotes the adjoint operator of ~ and JA1
m , JA2

m denotes the corresponding
resolvents of A1, A2, respectively. It is remarked that the algorithm (1.3) exhibits
weak convergence while the algorithm (1.4) exhibits strong convergence under suitable
sets of constraints.

The algorithms (1.3) and (1.4) proved to be a major source of inspiration to study
the SCNPP in Hilbert spaces. Since then various optimization algorithms have been
analyzed for various instances of SCFP in Hilbert spaces [1, 11, 9, 10, 6, 7, 5, 8,
3, 4, 16, 27, 28]. Quite recently, Yasir et al.[10] investigated an accelerated hybrid
projection algorithm for the SCNPP and the fixed point problem in Hilbert spaces.
Inspired and motivated by the results presented in [10] and [15], we are aiming to
analyze a modified version of the extragradient iterative algorithm for computing a
common solution of the SCNPP along with the pseudomonotone equilibrium problem
and the fixed point problem of k-demicontractive operators in Hilbert spaces.

2. Preliminaries

Throughout this section, we assume certain concepts of the monotone operator
theory and other related concepts from the celebrated monograph of Bauschke and
Combettes [12]. Assume that PH1

C is a metric projection operator associated with
C ⊂ H1 provided that the subset C is nonempty, closed and convex. We also assume
that A1 ⊆ H1 × H1 is a set-valued operator with the usual definitions of dom(A1)
and zer(A1) whereas the set gra(A1) = {(x, u) ∈ H1 × H1|u ∈ A1x} denotes the
graph of A1. The operator A−1

1 denotes the inverse of A1. The operator A1 is said
to be monotone if 〈x − y, u − v〉 ≥ 0, for all (x, u), (y, v) ∈ gra(A1). A monotone
operator A1 is called as maximal monotone operator if there is no proper monotone
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extension of A1, equivalently if ran(Id + mA1) = H1 for all m > 0, where ran(A1)
denotes the range of the operator A1. The monotone operator A1 is also connected
with the resolvent operator JA1

m = (Id+mA1)−1 which is well-defined, single-valued,
nonexpansive and satisfies Fix(JA1

m ) = A−1
1 (0) for all m > 0.

Let g : C × C → R ∪ {+∞} be a bifunction. Then g is said to be (i) mono-
tone if g(x, y) + g(y, x) ≤ 0, for all x, y ∈ C; (ii) pseudomonotone if g(x, y) ≥ 0 ⇒
g(y, x) ≤ 0, for all x, y ∈ C and (iii) strongly pseudomonotone if g(x, y) ≥ 0 ⇒
g(y, x) ≤ −α‖x− y‖2, for all x, y ∈ C, where α > 0. It is worth mentioning that the
monotonicity of a bifunction implies the pseudo-monotonicity, but the converse is not
true.

The rest of this section is organized with the celebrated results required in the se-
quel. We first define certain important assumptions for modeling the pseudomonotone
equilibrium problem.

Assumption 2.1. [13] Let g : C × C → R ∪ {+∞} be a bifunction satisfying the
following assumptions:
(A1): g is pseudomonotone, i.e., g(x, y) ≥ 0⇒ g(x, y) ≤ 0, for all x, y ∈ C;
(A2): g is Lipschitz-type continuous, i.e., there exist two nonnegative constants d1, d2

such that

g(x, y) + g(y, z) ≥ g(x, z)− d1‖x− y‖2 − d2‖y − z‖2, for all x, y, z ∈ C;

(A3): g is weakly continuous on C ×C, imply that, if x, y ∈ C and (xk), (yk) are two
sequences in C converge weakly to x and y respectively, then g(xk, yk) converges to
g(x, y);
(A4): For each fixed x ∈ C, g(x, ·) is convex and subdifferentiable on C.

Lemma 2.2. Let x, y ∈ H1 and β ∈ R then

(1) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;
(2) ‖x− y‖2 ≤ ‖x‖2 − ‖y‖2 − 2〈x− y, y〉;
(3) ‖βx+ (1− β)y‖2 = β‖x‖2 + (1− β)‖y‖2 − β(1− β)‖x− y‖2.

Lemma 2.3 ([12]). Let C be a nonempty closed convex subset of a real Hilbert space
H1. For every x, y, z ∈ H1 and γ ∈ R, the set

D = {v ∈ C : ‖y − v‖2 ≤ ‖x− v‖2 + 〈z, v〉+ γ},

is closed and convex.

Lemma 2.4 ([12]). Let C be a nonempty, closed and convex subset of a real Hilbert
space H1. The operator Id − T is said to be demiclosed at the origin, if for any
sequence (xk) in C that converges weakly to some x and if the sequence ((Id− T )xk)
converges strongly to 0, then (Id− T )(x) = 0.

Lemma 2.5 ([12]). Let H1 be a real Hilbert space and let (xk) be a sequence in H1.
Then the following results hold:

(1) H1 has the Kadec-Klee property, i.e., if xk ⇀ x and ‖xk‖ → ‖x‖ as k →∞,
then xk → x as k →∞;

(2) If xk ⇀ x as k →∞, then ‖x‖ ≤ lim infk→∞ ‖xk‖.
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Lemma 2.6 ([32]). Let C be a nonempty closed and convex subset of a real Hilbert
space H1 and let h : C → R be a convex and subdifferentiable function on C. Then, x̄
is the solution of convex problem min{h(x) : x ∈ C}, if and only if 0 ∈ ∂h(x̄)+NC(x̄),
where ∂h(·) denotes the subdifferential of h and NC(x̄) is the normal cone of C at x̄.

Lemma 2.7 ([33]). Let C be a nonempty closed and convex subset of a real

Hilbert space H1 and let (T
′

m) be a sequence of nonexpansive operators such that⋂∞
k=1 Fix(T

′

k) 6= ∅ and 0 ≤ βm ≤ b < 1. Then for a bounded subset K of C, we have

lim
k→∞

sup
x∈K
‖Sx− Skx‖ = 0.

3. Algorithm and convergence analysis

In this section, we present the convergence analysis of our proposed iterative al-
gorithm. In order to proceed, first observe that we can take the same Lipschitz
coefficients (d1, d2) for all bifunctions gi for all i ∈ {1, 2, · · · ,M}. Note that the
condition (A2) which implies that

gi(x, z)− gi(x, y)− gi(y, z) ≤ d1,i‖x− y‖2 + d2,i‖y − z‖2 ≤ d1‖x− y‖2 + d2‖y − z‖2,
where d1 = max{d1,i : i = 1, 2, 3, · · · ,M} and d2 = max{d2,i : i = 1, 2, 3, · · · ,M}.
Therefore, gi(x, y) + gi(y, z) ≥ gi(x, z)− d1‖x− y‖2 − d2‖y − z‖2.

Now, we set the following hypotheses required in the sequel:
Let H1,H2 be two real Hilbert spaces and let C ⊆ H1 be a nonempty, closed and
convex subset of H1.

(H1) Let A1 : H1 → 2H1 and A2 : H2 → 2H2 be two maximal monotone operators
with the associated resolvents JA1

m and JA2
m , respectively;

(H2) Let ~ : H1 → H2 be a bounded linear operator with the associated adjoint
operator ~∗;

(H3) For each i ∈ {1, 2, · · · ,M}, let gi : C × C → R ∪ {+∞} be a finite family of
bifunctions satisfying Assumption 2.1;

(H4) Let Sk be the S-operator;

(H5) Assume that Γ := Ω ∩
⋂M
i=1EP (gi) ∩ Fix(S) 6= ∅.

Theorem 3.1. If Γ 6= ∅ with hypotheses (H1)-(H5), then the sequence (xk) generated
by the Algorithm 1 converges strongly to an element x̄ ∈ Γ, provided the following
conditions hold:

(C1)
∑∞
k=1 Θk‖xk − xk−1‖ <∞;

(C2) 0 < a∗ ≤ αk ≤ b∗ < 1;
(C3) lim infk→∞ βk > 0;
(C4) lim infk→∞mk > 0.

Remark 3.2. Note that the condition (C1) is easily carried through the numerical
computation since the value of ‖xk − xk−1‖ is known before choosing Θk. Here the

parameter Θk can be taken as 0 ≤ Θk ≤ Θ̂k, with

Θ̂k =

{
min{ νk

‖xk−xk−1‖ ,Θ} if xk 6= xk−1;

Θ otherwise,
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Algorithm 1 An Accelerated Projection Based Extragradient Algorithm (Alg.1)

Initialization: Choose arbitrarily, x0, x1 ∈ H1 and C0 = H1. Set k ≥ 1 and
nonincreasing sequence αk, βk ⊂ (0, 1), 0 < γ < min( 1

2d1
, 1

2d2
), Θk ⊂ [0, 1), mk ∈

(0,∞) and δ ∈ (0, 2
‖~‖2 ) such that ‖~‖2 = L is the spectral radius of ~∗~.

Iterative Steps: Given xk ∈ H1, calculate bk, vk, wk and yk as follows:
Step 1. Compute

bk = xk + Θk(xk − xk−1);
uk = arg min{γgi(bk, u) + 1

2‖bk − u‖
2 : u ∈ C};

vk = arg min{γgi(uk, u) + 1
2‖bk − u‖

2 : u ∈ C};
wk = αkvk + (1− αk)Skvk;
yk = βkwk + (1− βk)(JA1

mk
(wk + δ~∗(JA2

mk
− Id)~wk));

If yk = wk = vk = bk = xk then stop and xk is the solution of problem Γ. Otherwise,
Step 2. Compute

Ck+1 = {z ∈ Ck : ‖yk−z‖2 ≤ ‖xk−z‖2 + Θ2
k‖xk−xk−1‖2 + 2Θk〈xk−z, xk−xk−1〉},

xk+1 = PCk+1
x1, ∀ k ≥ 1,

Set k =: k + 1 and go back to Step 1.

where {νk} is a positive sequence such that
∑∞
k=1 νk <∞ and Θ ∈ [0, 1).

We also need the following relation to establish the strong convergence results of the
Algorithm 1.

Lemma 3.3 ([30]). Suppose that x̄ ∈ EP (gi), i ∈ {1, 2, 3, ...,M} and xk, bk, uk, wk
are defined in Step 1 of Algorithm 1. Then we have

‖vk − x̄‖2 ≤ ‖bk − x̄‖2 − (1− 2γd1)‖uk − bk‖2 − (1− 2γd2)‖uk − vk‖2.

Proof of Theorem 3.1. The proof is divided into the following steps:
Step 1. The Algorithm 1 is well-defined.
We know that Γ is closed and convex. Moreover, from Lemma 2.3 we have that Ck+1

is closed and convex for each k ≥ 1. Hence the projection PCk+1
x1 is well defined.

Now, for any x̄ ∈ Γ, we have that JA1
mk
x̄ = x̄ and JA2

mk
(~x̄) = ~x̄. Therefore, it follows

from Algorithm 1 that

‖bk − x̄‖2 = ‖(xk − x̄) + Θk(xk − xk−1)‖2

≤ ‖xk − x̄‖2 + Θ2
k‖xk − xk−1‖2 + 2Θk〈xk − x̄, xk − xk−1〉. (3.1)

Further

‖wk − x̄‖2 = ‖αkvk + (1− αk)Skvk − x̄‖2

≤ αk‖vk − x̄‖2 + (1− αk)‖Skvk − x̄‖2 − αk(1− αk)‖(Id− Sk)vk‖2

≤ ‖vk − x̄‖2 − αk(1− αk)‖(Id− Sk)vk‖2

≤ ‖xk − x̄‖2 + Θ2
k‖xk − xk−1‖2 + 2Θk〈xk − x̄, xk − xk−1〉. (3.2)
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Furthermore

‖yk − x̄‖2 = ‖βk(wk − x̄) + (1− βk)(JA1
mk

(wk + δ~∗(JA2
mk
− I)~wk)− x̄)‖2

≤ βk‖wk − x̄‖2 + (1− βk)‖JA1
mk

(wk + δ~∗(JA2
mk
− I)~wk)− x̄‖2. (3.3)

Since JA1
mk

is nonexpansive, therefore the expression ‖JA1
mk

(wk+δ~∗(JA2
mk
−I)~wk)−x̄‖2

simplifies as

‖JA1
mk

(wk + δ~∗(JA2
mk
− I)~wk)− JA1

mk
x̄‖2

≤ ‖wk + δ~∗(JA2
mk
− I)~wk − x̄‖2

≤ ‖wk − x̄‖2 + δ2‖~∗(JA2
mk
− I)~wk‖2 + 2δ〈wk − x̄, ~∗(JA2

mk
− I)~wk〉

≤ ‖wk − x̄‖2 + δ2‖~‖2‖(JA2
mk
− I)~wk‖2 + 2δ〈~wk − ~x̄, (JA2

mk
− I)~wk)〉. (3.4)

Similarly, utilizing the firmly nonexpansiveness of JA2
mk

, the expression

λk = 2δ〈~wk − ~x̄, (JA2
mk
− I)~wk〉

simplifies as

λk = 2δ〈~wk − ~x̄+ (JA2
mk

(~wk)− ~wk)− (JA2
mk

(~wk)− ~wk), JA2
mk

(~wk)− ~wk〉
= 2δ(〈JA2

mk
(~wk)− ~x̄, JA2

mk
(~wk)− ~wk〉 − ‖(JA2

mk
− I)~wk‖2)

≤ −2δ‖(JA2
mk
− I)~wk)‖2. (3.5)

Utilizing (3.4), (3.5) and Lemma 3.3, we then obtain from (3.3) that

‖yk − x̄‖2 ≤ βk‖wk − x̄‖2 + (1− βk)(‖wk − x̄‖2 + δ2‖~‖2‖(JA2
mk
− I)~wk)‖2

−2δ‖(JA2
mk
− I)~wk‖2),

≤ βk‖wk − x̄‖2 + (1− βk)(‖wk − x̄‖2 − δ(2− δ‖~‖2)‖(JA2
mk
− I)~wk‖2)

≤ βk‖wk − x̄‖2 + (1− βk)‖wk − x̄‖2

≤ ‖xk − x̄‖2 + Θ2
k‖xk − xk−1‖2 + 2Θk〈xk − x̄, xk − xk−1〉. (3.6)

It follows from (3.6) that

‖yk − x̄‖2 ≤ ‖xk − x̄‖2 + Θ2
k‖xk − xk−1‖2 + 2Θk‖xk − x̄‖‖xk − xk−1‖. (3.7)

It follows from the above estimate that Γ ⊂ Ck+1. Summing up these facts, we
conclude that the Algorithm 1 is well-defined.
Step 2. The limit of the sequence (‖xk − x1‖) exists.
Since Γ is nonempty closed and convex subset of H1, there exists a unique x∗ ∈ Γ
such that x∗ = PΓx1. From xk+1 = PCk+1

x1, we have ‖xk+1−x1‖ ≤ ‖x∗−x1‖, for all
x∗ ∈ Γ ⊂ Ck+1. In particular ‖xk+1−x1‖ ≤ ‖PΓx1−x1‖. This proves that the sequence
(xk) is bounded. On the other hand, from xk = PCk

x1 and xk+1 = PCk+1
x1 ∈ Ck+1,

we have that

‖xk − x1‖ ≤ ‖xk+1 − x1‖.
This implies that (xk) is nondecreasing and hence

lim
k→∞

‖xk − x1‖ exists. (3.8)
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Step 3. Show that x̄∗ ∈ Γ.
In order to proceed, we first calculate the following estimate which is required in the
sequel:

‖xk+1 − xk‖2 = ‖xk+1 − x1 + x1 − xk‖2

= ‖xk+1 − x1‖2 + ‖xk − x1‖2 − 2 〈xk − x1, xk+1 − x1〉
= ‖xk+1 − x1‖2 + ‖xk − x1‖2 − 2 〈xk − x1, xk+1 − xk + xk − x1〉
= ‖xk+1 − x1‖2 − ‖xk − x1‖2 − 2 〈xk − x1, xk+1 − xk〉
≤ ‖xk+1 − x1‖2 − ‖xk − x1‖2 .

Taking lim sup on both sides of the above estimate and utilizing (3.8), we have

lim sup
k→∞

‖xk+1 − xk‖2 = 0.

That is

lim
k→∞

‖xk+1 − xk‖ = 0. (3.9)

From (bk) and (C1), we have

lim
k→∞

‖bk − xk‖ = lim
k→∞

Θk‖xk − xk−1‖ = 0. (3.10)

Utilizing (3.10) and the following triangle inequality, we have

‖bk − xk+1‖ ≤ ‖bk − xk‖+ ‖xk − xk+1‖.

From (3.9) and (3.10), we have

lim
k→∞

‖bk − xk+1‖ = 0. (3.11)

Since xk+1 ∈ Ck+1, therefore we have

‖yk − xk+1‖ ≤ ‖xk − xk+1‖+ 2Θk‖xk − xk−1‖+ 2〈xk − xk+1, xk − xk−1〉.

Utilizing (3.11) and (C1), the above estimate implies that

lim
k→∞

‖yk − xk+1‖ = 0. (3.12)

From (3.9), (3.12) and the following triangular inequality:

‖yk − xk‖ ≤ ‖yk − xk+1‖+ ‖xk+1 − xk‖,

we get

lim
k→∞

‖yk − xk‖ = 0. (3.13)

Consider the following re-arranged variant of the estimate (3.7) by applying Lemma
3.3:

(1− 2γd1)‖uk − bk‖2 − (1− 2γd2)‖uk − vk‖2

≤ (‖xk − x̄‖+ ‖yk − x̄‖)‖xk − yk‖+ Θ2
k‖xk − xk−1‖2 + 2Θk‖xk − x̄‖‖xk − xk−1‖.

Letting k →∞, using (C1) and (3.13), we have

(1− 2γd1) lim
k→∞

‖uk − bk‖2 − (1− 2γd2) lim
k→∞

‖uk − vk‖2 = 0. (3.14)
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This implies that

lim
k→∞

‖uk − bk‖2 = lim
k→∞

‖uk − vk‖2 = 0. (3.15)

Again, consider the following re-arranged variant of the estimate (3.7) by applying
Lemma 3.3:

a∗(1− b∗)‖(Id− Sk)vk‖2 ≤ (‖xk − x̄‖+ ‖yk − x̄‖)‖xk − yk‖+ Θ2
k‖xk − xk−1‖2

+2Θk‖xk − x̄‖‖xk − xk−1‖.

Letting k →∞ and utilizing (C1),(C2) and (3.13), we have

lim
k→∞

‖(Id− Sk)vk‖ = 0. (3.16)

This implies that

lim
k→∞

‖wk − vk‖ = lim
k→∞

a∗‖(Id− Sk)vk‖ = 0. (3.17)

Utilizing (3.10), (3.15) and (3.17) and the following triangle inequalities, we have

• ‖vk − bk‖ ≤ ‖vk − uk‖+ ‖uk − bk‖ → 0;
• ‖vk − xk‖ ≤ ‖vk − bk‖+ ‖bk − xk‖ → 0;
• ‖wk − bk‖ ≤ ‖wk − vk‖+ ‖vk − bk‖ → 0.
• ‖wk − xk‖ ≤ ‖wk − bk‖+ ‖bk − xk‖ → 0;

From (3.4), (3.5) and Lemma 2.2, we have

‖yk − x̄‖2 = ‖βkwk + (1− βk)(JA1
mk

(wk + δ~∗(JA2
mk
− Id)~wk))− x̄)‖2

≤ βk‖wk − x̄‖2 + (1− βk)(‖wk − x̄‖2 − δ(2− δ‖~‖2)‖(JA2
mk
− Id)~wk‖2)

≤ ‖wk − x̄‖2 − (1− βk)δ(2− δ‖~‖2)‖(JA2
mk
− Id)~wk‖2

≤ ‖xk − x̄‖2 + 2Θk〈xk − xk−1, bk − x̄〉
− (1− βk)δ(2− δ‖~‖2)‖(JA2

mk
− Id)~wk‖2. (3.18)

Rearranging the above estimate, we have

(1− βk)δ(2− δ‖~‖2)‖(JA2
mk
− Id)~wk‖2

≤ ‖xk − x̄‖2 − ‖yk − x̄‖2 + 2Θk〈xk − xk−1, bk − x̄〉
≤ ‖xk − x̄‖2 − ‖bk − x̄‖2 + 2Θk〈xk − xk−1, bk − x̄〉
≤ (‖xk − x̄‖+ ‖bk − x̄‖) ‖xk − bk‖+ 2Θk〈xk − xk−1, bk − x̄〉. (3.19)

By using (C1), (C3), (3.10) and δ ∈ (0, 2
‖~‖2 ), the estimate (3.19) implies that

lim
k→∞

‖(JA2
mk
− Id)~wk‖ = 0. (3.20)

Note that JA1
mk

is firmly nonexpansive, it follows that

‖yk − x̄‖2 = ‖βkwk + (1− βk)(JA1
mk

(wk + δ~∗(JA2
mk
− Id)~wk))− x̄‖2

= ‖βk(wk − x̄) + (1− βk)(JA1
mk

(wk + δ~∗(JA2
mk
− Id)~wk)− x̄)‖2

≤ βk‖wk − x̄‖2 + (1− βk)‖JA1
mk

(wk + δ~∗(JA2
mk
− Id)~wk)− x̄‖2. (3.21)
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Utilizing (3.4) and (3.5), the expression JA1
mk

(wk + δ~∗(JA2
mk
− Id)~wk) simplifies as

‖JA1
mk

(wk + δ~∗(JA2
mk
− Id)~wk)− JA1

mk
x̄‖2 ≤ ‖wk + δ~∗(JA2

mk
− Id)~wk − x̄‖2

≤ ‖wk − x̄‖2. (3.22)

Setting ξk = JA1
mk

(wk + δ~∗(JA2
mk
− Id)~wk) and (3.21), it follows that

‖ξk − x̄‖2 = ‖JA1
mk
wk + δ~∗(JA2

mk
− Id)~wk)− JA1

mk
x̄‖2

≤ 〈JA1
mk

(wk + δ~∗(JA2
mk
− Id)~wk)− JA1

mk
x̄, wk + δ~∗(JA2

mk
− Id)~wk − x̄〉

= 〈ξk − x̄, wk + δ~∗(JA2
mk
− Id)~wk − x̄〉

=
1

2
(‖ξk − x̄‖2 + ‖wk + δ~∗(JA2

mk
− Id)~wk − x̄‖2

−‖ξk − wk − δ~∗(JA2
mk
− Id)~wk‖2)

≤ 1

2
(‖ξk − x̄‖2 + ‖wk − x̄‖2 − ‖ξk − wk − δ~∗(JA2

mk
− Id)~wk‖2)

=
1

2
(‖ξk − x̄‖2 + ‖wk − x̄‖2 − ‖ξk − wk‖2 − δ2‖~∗(JA2

mk
− Id)~wk‖2

+2δ〈ξk − wk, ~∗(JA2
mk
− Id)~wk〉)

≤ 1

2
(‖ξk − x̄‖2 + ‖wk − x̄‖2 − ‖ξk − wk‖2 − δ2‖~∗(JA2

mk
− Id)~wk‖2

+2δ‖ξk − wk‖‖~∗(JA2
mk
− Id)~wk‖). (3.23)

That is

‖ξk − x̄‖2 ≤ ‖wk − x̄‖2 − ‖ξk − wk‖2 + 2δ‖ξk − wk‖‖~∗(JA2
mk
− Id)~wk‖. (3.24)

So, we have

‖yk − x̄‖2 ≤ βk‖wk − x̄‖2 + (1− βk)‖ξk − x̄‖2

≤ βk‖wk − x̄‖2 + (1− βk)(‖wk − x̄‖2 − ‖ξk − wk‖2

+2δ‖ξk − wk‖‖~∗(JA2
mk
− Id)~wk‖). (3.25)

After simplification, we have

(1− βk)‖ξk − wk‖2 ≤ ‖wk − x̄‖2 − ‖yk − x̄‖2

−2(1− βk)δ‖ξk − wk‖‖~∗(JA2
mk
− Id)~wk‖)

≤ (‖wk − x̄‖+ ‖yk − x̄‖)‖wk − yk‖
−2(1− βk)δ‖ξk − wk‖‖~∗(JA2

mk
− Id)~wk‖). (3.26)

Making use of (3.24), (3.20) and (C3), we have the following estimate:

lim
k→∞

‖ξk − wk‖ = 0. (3.27)

This implies that

lim
k→∞

‖ξk − vk‖ = 0. (3.28)

Reasoning as above, we get from (bk), (C1) and (3.28) that

lim
k→∞

‖ξk − xk‖ = 0. (3.29)
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Since (xk) is bounded, then there exists a subsequence (xkt) of (xk) such that

xkt ⇀ x̄∗ ∈ H1 as t→∞.

So, therefore ξkt ⇀ x̄∗ and w̄kt ⇀ x̄∗ as t → ∞. In order to show that x̄∗ ∈ Ω, we
assume that (r, s) ∈ gra(A1). Since ξkt = JA1

mkt
(wkt + δ~∗(JA2

mkt
− Id)~wkt), therefore,

we have

wkt + δ~∗(JA2
mkt
− Id)~wkt ∈ ξkt +mktA1(ξkt).

This implies that

1

mkt

(wkt − ξkt) +
1

mkt

δ~∗(JA2
mkt
− Id)~wkt ∈ A1(ξkt).

From the monotonicity of A1, we have

〈r − ξkt , s− (
1

mkt

(wkt − ξkt) +
1

mkt

(δ~∗(JA2
mkt
− Id)~wkt))〉 ≥ 0.

From the above estimate, we also have

〈r − ξkt , s〉 ≥ 〈r − ξkt ,
1

mkt

(wkt − ξkt) +
1

mkt

(δ~∗(JA2
mkt
− Id)~wkt)〉

= 〈r − ξkt ,
1

mkt

(wkt − ξkt)〉

+〈r − ξkt ,
1

mkt

(δ~∗(JA2
mkt
− Id)~wkt)〉. (3.30)

Since ξkt ⇀ x̄∗, we obtain

lim
t→∞
〈r − ξkt , v〉 = 〈r − x̄∗, s〉.

By making the use of (3.27), (3.28) and (3.30), it follows that

〈r − x̄∗, s〉 ≥ 0.

This implies that 0 ∈ A1x̄∗. Since ~ is a bounded linear operator, we have ~wkt ⇀ ~x̄∗
as t → ∞. Moreover from (3.20), it then follows from the demiclosed principle that
0 ∈ A2(~x̄∗) and hence x̄∗ ∈ Ω.

Step 4. Show that x̄∗ ∈
⋂M
i=1EP (gi).

Note that

uk = arg min{γgi(bk, y) +
1

2
‖bk − y‖2 : y ∈ C}.

By employing Lemma 2.6, we get

0 ∈ ∂2{γgi(bk, y) +
1

2
‖bk − y‖2}(uk) +NC(uk).

Then, there exist p ∈ ∂2gi(bk, uk) and p̄ ∈ NC(uk) such that

γp+ bk − uk + p̄. (3.31)

Since p̄ ∈ NC(uk) and 〈p̄, y − uk〉 ≤ 0 for all y ∈ C. So, by using (3.31), we have

γ〈p, y − uk〉 ≥ 〈uk − bk, y − uk〉, for all y ∈ C. (3.32)
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Since p ∈ ∂2gi(bk, uk),

gi(bk, y)− gi(bk, uk) ≥ 〈p, y − uk〉, for all y ∈ C. (3.33)

Utilizing, (3.30) and (3.33), we obtain

γ(gi(bk, y)− gi(bk, uk)) ≥ 〈uk − bk, y − uk〉, for all y ∈ C. (3.34)

Since bk ⇀ x̄∗ and ‖bk − uk‖ → 0 as k → ∞, this imply uk ⇀ x̄∗. By using
(A3) and from (3.34), letting k → ∞, we deduce that gi(x̄∗, y) ≥ 0 for all y ∈ C,

i ∈ {1, 2, 3, · · · ,M}. Therefore, x̄∗ ∈
⋂M
i=1EP (gi).

Step 6. Show that x̄∗ ∈ Fix(S).
Observe that

‖vk − Svk‖ ≤ ‖vk − Skvk‖+ ‖Skvk − Svk‖
≤ ‖vk − Skvk‖+ sup

x∈K
‖Skvk − Svk‖.

Utilizing (3.16) and Lemma 2.7, the above estimate implies that

lim
k→∞

‖vk − Svk‖ = 0.

This together with the fact that vkt ⇀ x̄∗ implies, with the help of Lemma 2.4, that
x̄∗ ∈ Fix(S) =

⋂∞
k=1 Fix(Tk) and hence x̄∗ ∈ Γ.

Step 7. Show that xk → x̄ = PΓx1.
Since x̄ = PΓx1 and x̄∗ ∈ Γ. Therefore, we have

‖x̄− x1‖ ≤ ‖x̄∗ − x1‖ ≤ lim inf
k→∞

‖xk − x1‖ ≤ lim sup
k→∞

‖xk − x1‖ ≤ ‖x̄− x1‖ .

From the uniqueness of the nearest point x̄, we get that x̄ = x̄∗. On the other hand,
from the estimate ‖xkt − x1‖ ≤ ‖x̄− x1‖ and Lemma 2.5, we get that xkt → x̄ as
t→∞. Again, utilizing the uniqueness of x̄, we deduce that xk → x̄ as k →∞. This
completes the proof. �

If we take A2 = 0 then we have the following results:

Corollary 3.4. Let H1, A1, gi and S be the same as in Theorem 3.1 with

Γ := {x ∈ A−1
1 (0) ∩

(
M⋂
i=1

EP (gi)

)
∩ Fix(S)} 6= ∅.

Then the following sequence:

bk = xk + Θk(xk − xk−1);
uk = arg min{γgi(bk, u) + 1

2‖bk − u‖
2 : u ∈ C};

vk = arg min{γgi(uk, u) + 1
2‖bk − u‖

2 : u ∈ C};
wk = αkvk + (1− αk)Sjvk;
yk = βkwk + (1− βk)JA1

mk
w̄k;

Ck+1 = {z ∈ Ck : ‖yk − z‖2 ≤ ‖xk − z‖2 + Θ2
k‖xk − xk−1‖2

+2Θk〈xk − z, xk − xk−1〉};
xk+1 = PCk+1

x1,∀ k ≥ 1,

(3.35)

converges strongly to an element x̄ = PΓx1 provided that the conditions (C1)-(C4)
hold.
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Replacing Mann’s iteration in Step 1 of Algorithm 1 by Halpern [23] type algorithm,
we have the following algorithm.

Algorithm 2 An Accelerated Projection Based Halpern’s-Extragradient Algorithm
(Alg.2)

Initialization: Choose arbitrarily, r, x0, x1 ∈ H1 and C0 = H1. Set k ≥ 1 and
nonincreasing sequence αk, βk ⊂ (0, 1), 0 < γ < min( 1

2d1
, 1

2d2
), Θk ⊂ [0, 1), mk ∈

(0,∞) and δ ∈ (0, 2
‖~‖2 ) such that ‖~‖2 = L is the spectral radius of ~∗~.

Iterative Steps: Given xk ∈ H1, calculate bk, vk, wk and yk as follows:
Step 1. Compute

bk = xk + Θk(xk − xk−1);
uk = arg min{γgi(bk, u) + 1

2‖bk − u‖
2 : u ∈ C};

vk = arg min{γgi(uk, u) + 1
2‖bk − u‖

2 : u ∈ C};
wk = αkr + (1− αk)Sjvk;
yk = βkwk + (1− βk)(JA1

mk
(wk + δ~∗(JA2

mk
− Id)~wk));

If yk = wk = vk = bk = xk then stop and xk is the solution of problem Γ. Otherwise,
Step 2. Compute

Ck+1 = {z ∈ Ck : ‖yk−z‖2 ≤ αk‖r − z‖2 + (1− αk)(‖xk−xk+1‖2 + Θ2
k‖xk − xk−1‖2

+ 2Θk〈xk − xk+1, xk − xk−1〉)},
xk+1 = PCk+1

x1, ∀ k ≥ 1,

Set k =: k + 1 and go back to Step 1.

Remark 3.5. In order to obtain the desired convergence result for the Algorithm 2,
we have to assume a stopping criteria as k > kmax for some chosen sufficiently large
number kmax.

Theorem 3.6. If Γ 6= ∅ with hypotheses (H1)-(H5), then the sequence (xk) generated
by the Algorithm 2 converges strongly to an element x̄ ∈ Γ, provided the following
conditions hold:

(C1)
∑∞
k=1 Θk‖xk − xk−1‖ <∞;

(C2) 0 < a∗ ≤ αk ≤ b∗ < 1 and limk→∞ αk = 0;
(C3) lim infk→∞ βk > 0;
(C4) lim infk→∞mk > 0.

Proof. Arguing similarly as in the proof of Theorem 3.1 Steps 1-2, the set

Ck+1 = {z ∈ Ck : ‖yk − z‖2 ≤ αk‖r − z‖2 + (1− αk)(‖xk − xk+1‖2 + ξ2
k‖xk − xk−1‖2

+ 2ξk〈xk − xk+1, xk − xk−1〉)},

is closed and convex as well as Γ ⊂ Ck+1 for all k ≥ 0. Moreover, the sequence (xk)
is bounded and

lim
k→∞

‖xk+1 − xk‖ = 0. (3.36)
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Since xk+1 = PCk
(r) ∈ Ck and by definition of Ck, we have

‖yk − xk+1‖2 ≤ αk‖r − xk+1‖2 + (1− αk)(‖xk − xk+1‖2 + Θ2
k‖xk − xk−1‖2

+2Θk〈xk − xk+1, xk − xk−1〉).

Letting k →∞, from (3.36), (C1), (C2) and the boundedness of (xk), we obtain

lim
k→∞

‖yk − xk+1‖ = 0.

Similarly from (3.12) and (3.36), we get

lim
k→∞

‖yk − xk‖ = 0.

Consequently, we have the following estimates:

lim
k→∞

‖uk − xk‖ = lim
k→∞

‖vk − xk‖

= lim
k→∞

‖wk − xk‖

= lim
k→∞

‖wk − vk‖ = 0.

Using wk = αkr + (1− αk)Sjvk, we obtain

‖Skvk − vk‖ ≤
1

(1− αk)
‖wk − vk‖+

αk
(1− αk)

‖r − vk‖.

In view of (C2), the above estimate implies that

lim
k→∞

‖Skvk − vk‖ = 0.

The rest of the proof of Theorem 3.6 follows from the proof of Theorem 3.1. �

4. Numerical experiment and results

This section is devoted to analyze the computation performance of the Algorithm
1 by the following suitable example.

Example 4.1. Let H1 = H2 = R, the set of all real numbers, with the inner product
defined by 〈x, y〉 = xy, for all x, y ∈ R and induced usual norm | · |. Define three
operators ~, A1, A2 : R→ R as

~(x) = 3x and A1x = 2x and A2x = 3x

for all x ∈ R. It is evident from the definitions that A1 and A2 are maximal monotone
operators with

Ω := {x̂ ∈ A−1
1 (0) : ~x̂ ∈ A−1

2 (0)} = {0}.
For the bounded linear operator ~ and the associated adjoint operator ~∗, we have

‖~‖ = ‖~∗‖ = 3.

For each i ∈ {1, 2, 3, · · · ,M}, let gi be a finite family of bifunctions defined by

gi(x, y) = Ji(x)(y − x),
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where  Ji(x) = 0, if 0 ≤ x ≤ µi,
and
Ji(x) = sin(x− µi) + exp(x− µi)− 1, if µi ≤ x ≤ 1.

Note that the family of bifunctions gi is pseudomonotone and satisfies Assumption
2.1. Moreover, Ji(x) is 4-Lipschitz continuous and

M⋂
i=1

EP (gi) = [0, µ1].

Let

Sk(x) =

{
−xk , x ∈ [0,∞);
x, x ∈ (−∞, 0);

be an infinite family of k-demicontractive operators with
⋂∞
k=1 Fix(Sk) = {0}. Hence

Γ = Ω ∩

(
M⋂
i=1

EP (gi)

)
∩

( ∞⋂
k=1

Fix(Sk)

)
= 0.

From the Algorithm 1, we have

uk = arg min{γJi(bk)(y − bk) +
1

2
(y − bk)2, ∀ y ∈ [0, 1]}.

For the sake of clarity, we reformulate the above equation, which is equivalent to

uk = bk − γJi(bk), for all i ∈ {1, 2, · · · ,M}.
Similarly, we get

wk = bk − γJi(uk), for all i ∈ {1, 2, · · · ,M}.
Also, choose Θ = 0.5, γ = 1

8 , αk = 1
100k+1 , βk = 1

100k+1 , δ = 1
9 , L = 9 and m = 0.01.

Since {
min{ 1

k2‖xk−xk−1‖ , 0.5} if xk 6= xk−1;

0.5 otherwise.

Now, we provide a numerical test for a comparison between our accelerated based
projection splitting algorithm defined in Algorithm 1 (i.e Θk 6= 0) and the non-inertial
variant of the projection splitting algorithm (i.e Θk = 0). The stopping criteria is
defined as Error=Ek = ‖xk − xk−1‖ < 10−6. The different choices of x0 and x1 are
giving as follows:

Table 1. Numerical results for Example 4.1

No. of Iter. CPU(Sec)

Θk = 0 Alg.1, Θk 6= 0 Θk = 0 Alg.1, Θk 6= 0

Choice 1. x0 = (5), x1 = (4) 85 80 0.079451 0.070391

Choice 2. x0 = (4.7), x1 = (1.7) 86 77 0.083978 0.075550

Choice 3. x0 = (−7), x1 = (−4) 91 81 0.084529 0.077949
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The error plotting Ek and (xk) against Alg.1, Θk 6= 0 and Θk = 0 for each choices
in Table 1 has shown in Figure 1.
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Figure 1. Comparison of Alg.1, Θk 6= 0 and Θk = 0

We can see from Table 1 and Figure 1 that Alg.1 (Θk 6= 0) exhibits better compu-
tational performance as compared with Alg.1 (Θk = 0).

5. Conclusions

In this paper, we have devised an accelerated based parallel hybrid projection al-
gorithm for computing a common solution associated with the fixed point problem
of an infinite family of k-demicontractive mappings, pseudomonotone equilibrium bi-
function satisfying Lipschitz-type continuity and the SCNPP in Hilbert spaces. The
strong convergence of the algorithm and its variant is established under suitable set
of constraints. The theoretical framework of the algorithm has been strengthened
with an appropriate numerical example. We would like to emphasize that the above
mentioned problems occur naturally in many applications, therefore, iterative algo-
rithms are inevitable in this field of investigation. As a consequence, our theoretical
framework constitutes an important topic of future research.
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