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1. Introduction

Let I = {1, ..., r}, J = {1, ...,m},H be a real Hilbert space and C be a nonempty
closed convex subset of H. Let f : C × C → R ∪ {+∞}, gj : C × C → R ∪ {+∞}
be bifunctions such that f(x, x) = 0, gj(x, x) = 0 for all x ∈ C, j ∈ J , which usually
are called cost bifunctions. The equilibrium problem [9] for f onto C is to find x̄ ∈ C
such that

f(x̄, y) ≥ 0, ∀y ∈ C. (1.1)

The solutions set of the problem (1.1) is denoted by S(C, f). Let mappings Si :
C → C(i ∈ I) be demicontractive. In this paper, we consider the following bilevel
equilibrium problem including demicontractive mappings:

Find x∗ ∈ Ω such that f(x∗, y) ≥ 0, ∀y ∈ Ω, (1.2)

where Fix(Si) is the fixed points set of Si, and Ω = ∩i∈IFix(Si) ∩ S(C, gj)j∈J .
Problem (1.2) is a special form of bilevel problems. Note that if gj is pseudomonotone
on C, then the constraint Ω is convex and not given in explicit form. It includes, as
special cases, many other problems, such as the follows.
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Equibrium problem: Setting Si = 0 and gj = 0 for all i ∈ I, j ∈ J , it is easy to see
that the problem (1.2) coincides with the form (1.1). In recent years, this problem
has received a lot of attention by many authors who improved it via various ways
in both Euclidean spaces and infinite dimensional Hilbert spaces; see for instance
[16, 17, 22, 26, 25, 27, 10, 11] and the references therein.

Bilevel variational inequality problem: Let two mappings F : C → H and G : C →
H. The following problem is called the bilevel variational inequality problem [7]:

Find x∗ ∈ V I(C,G) such that 〈F (x∗), x− x∗〉 ≥ 0, ∀x ∈ V I(C,G), (1.3)

where V I(C,G) := {x̄ ∈ C : 〈G(x̄), y − x̄〉 ≥ 0, ∀y ∈ C}. By choosing f(x, y) :=
〈F (x), y − x〉, gj(x, y) = 〈G(x), y − x〉 and Si = 0 for all i ∈ I, j ∈ J, (x, y) ∈ C × C,
we can easily see that (1.3) is equivalent to (1.2). The simplest approach for solving
this problem is projection method in which only two projections on the feasible set
C is performed per each iteration such as the projection method of Xu et al. in [32]
for neural network models, the extragradient methods in [12, 13, 29, 1, 7, 21].

Minimum-norm problem: Let a ∈ H and a mapping F : C → H. The minimum-
norm problem [35, 30, 23] is formulated in the following:

min
{
‖a− y‖2 : y ∈ V I(C,F )

}
.

Taking f(x, y) = ‖y−a‖2−‖x−a‖2, gj(x, y) = 〈F (x), y−x〉 and Si = 0 for all (x, y) ∈
C × C, i ∈ I, j ∈ J , we can see that the problem (1.2) collapses into the minimum-
norm problem. A typical example is the problem of the least-squares solution to the
constrained linear inverse problem.

Equilibrium problem over the fixed point sets: Let f : C × C → R ∪ {+∞} be a
bifunction such that f(x, x) = 0 for all x, y ∈ C and mappings Si : C → C(i ∈ I).
The problem is to find x∗ ∈ ∩Fix(Si)i∈I such that

f(x∗, y) ≥ 0, ∀y ∈ ∩Fix(Si)i∈I . (1.4)

By choosing gj = 0 for all j ∈ J , the problem (1.4) may be written in the form of (1.2).
In recent years, it is attractive by many researchers. There are increasing interests
in studying solution methods for this problem such as the hybrid steepest descent
methods of Yamada [33] where Si(i ∈ I) are nonexpansive mappings, subgradient-
type method of Iiduka [20] and other [34, 15, 14].

Bilevel equilibrium problem (lexicographic Ky Fan inequality): Let g : C × C →
R∪{+∞} such that g(x, x) = 0 for all x ∈ C. Let Si(i ∈ I) be the identity mapping.
Set gj(x, y) = g(x, y) for all j ∈ J and (x, y) ∈ C×C. Then, the problem (1.2) usually
called bilevel equilibrium problem or lexicographic Ky Fan inequality as follows:

Find x ∈ S(C, g) such that f(x, y) ≥ 0, ∀y ∈ S(C, g). (1.5)

In [28], Moudafi introduced proximal methods for a class of monotone bilevel equi-
librium problems. By using Korpelevich’s extragradient method, Strodiot et al. [31]
proposed the projected extragradient viscosity method for finding the solution of a
variational inequality problem whose constraint set is the common elements of the set
of fixed points of a demicontractive mapping and the solutions set of monotone equi-
librium problems. Some other methods for solving this problem have been studied
extensively (see [3, 19, 36]).
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In this paper, motivated by the extragradient method for equilibrium and fixed
point problems in [2], parallel techniques in [4] and the subgradient projections in
[31, 19], we propose a new iterative algorithm to solve the problem (1.2), replacing
the metric projection as usual by inexact projection.

The remainder of this paper is organized as follows. In the next section, we re-
call some basic definitions, properties of approximation projection and some technical
lemmas. Section 3 is devoted to the presentation of our scheme and its convergence
results. In Section 5, we particularize the proposed method to the equilibrium prob-
lem over a fixed point set, and the bilevel equilibrium problem. Some preliminary
computational results and comparisons are presented in the last section.

2. Preliminaries

Let C be a nonempty, closed and convex subset of H. We denote weak convergence
and strong convergence by notations ⇀ and →, respectively. A mapping S : C → C
is called:
(i) demicontractive with constant ξ, shortly ξ−demicontractive, if Fix(S) 6= ∅ and
there exists ξ ∈ [0, 1) such that

‖S(x)− x∗‖2 ≤ ‖x− x∗‖2 + ξ‖x− S(x)‖2, ∀x ∈ C, x∗ ∈ Fix(S);

(ii) quasinonexpansive, if Fix(S) 6= ∅ and

‖S(x)− x∗‖ ≤ ‖x− x∗‖, ∀x ∈ C, x∗ ∈ Fix(S);

(iii) demiclosed at zero, if for each {xk} ⊂ C, then{
xk ⇀ x̂, ‖S(xk)− xk‖ → 0

}
⇒ S(x̂) = x̂.

For each x ∈ H, there exists a unique point in C, denoted by PrC(x) satisfying

‖x− PrC(x)‖ ≤ ‖x− y‖, ∀y ∈ C.

As usual, PrC is called metric projection of H on C. Then, a point x̄ = PrC(x) if
and only if x̄ ∈ C which satisfies

〈x− x̄, x̄− y〉 ≥ 0, ∀y ∈ C.

Let ε > 0. We may define that a point wx ∈ C is called a ε−metric projection of
x ∈ H onto C, if

〈x− wx, wx − y〉 ≥ −
ε2

4
, ∀y ∈ C. (2.1)

The set of all ε−metric projections of x onto C is denoted PrεC(x).

Lemma 2.1. ([6, Remark 2.1]) For each x, y ∈ H, the following holds

‖wx − wy‖2 ≤ ‖x− y‖2 + ε2, ∀wx ∈ PrεC(x), wy ∈ PrεC(y). (2.2)

From the above definitions, it is clear that PrC is an ε−metric projection onto C
for all ε > 0, quasinonexpansive on H and

‖wx − wy‖ ≤ ‖x− y‖+ ε, ∀x, y ∈ H, wx ∈ PrεC(x), wy ∈ PrεC(y).
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Let f : C × C → R ∪ {+∞} be a bifunction such that f(x, x) = 0 for all x ∈ C.
Then,
– The ε−diagonal subdifferential ∂ε2f(x, x) at x ∈ C is given by

∂ε2f(x, x) ={w ∈ H : f(x, y)− f(x, x) ≥ 〈w, y − x〉 − ε, ∀y ∈ C}
={w ∈ H : f(x, y) + ε ≥ 〈w, y − x〉, ∀y ∈ C};

– It is said to be strongly monotone on C with constant β > 0 (shortly β− strongly
monotone), if for each x, y ∈ C,

f(x, y) + f(y, x) ≤ −β‖x− y‖2.
– It is pseudomonotone, if for each x, y ∈ C,

f(x, y) ≥ 0⇒ f(y, x) ≤ 0.

– It is Lipschitz-type on C with constants γ1 > 0 and γ2 > 0, if for each x, y, z ∈ C,

f(x, y) + f(y, z) ≥ f(x, z)− γ1‖x− y‖2 − γ2‖y − z‖2.
Let T : H → 2H be a multivalued mapping. As usual, T is said to be

(a) ε−Lipschitz continuous on C with constant L > 0 if

ρ(T (x), T (y)) ≤ L‖x− y‖+ ε, ∀x, y ∈ C,
where ρ denotes the Hausdorff distance. By definition, the Hausdorff distance of two
sets A and B is defined as

ρ(A,B) := max{d(A,B), d(B,A)},
where d(A,B) := sup

a∈A
inf
b∈B
‖a−b‖ and d(B,A) := sup

b∈B
inf
a∈A
‖a−b‖. In the case L ∈ [0, 1),

the mapping T is called to be ε−contractive with constant L on C. Let us note that
the 0−Lipschitz continuous is Lipschitz continuous;
(b) β−strongly monotone on C if

〈wx − wy, x− y〉 ≥ β‖x− y‖2, ∀x, y ∈ C,wx ∈ T (x), wy ∈ T (y).

To investigate the convergence of our iteration schemes, we recall the following
technical lemma which will be used in the sequel.

Lemma 2.2. ([8, Lemma 2.1]) Let C be a nonempty closed convex subset of a real
Hilbert space H. Let g : C×C → R be a bifunction such that g(x, x) = 0 for all x ∈ C,
and for each x ∈ C, g(x, y) is lower semicontinuous, convex and subdifferentiable on
C respect to y. If g is β-strongly monotone on C and for each ε ≥ 0, ∂ε2g(x, x) is
Lipschitz continuous with constant L > 0 on C, then the multivalued mapping

S(x) := {x− γwx : wx ∈ ∂ε2g(x, x)} , ∀x ∈ C,

is 2
√
γε−contractive with constant δ =

√
1− γ(2β − γL2), where γ ∈

(
0, 2βL2

)
.

Lemma 2.3. ([24, Remark 4.4]) Let {ak} be a sequence of nonnegative real numbers.
Suppose that for any integer m, there exists an integer p such that p ≥ m and ap ≤
ap+1. Let k0 be an integer such that ak0 ≤ ak0+1 and define, for all integers k ≥ k0,

τ(k) = max{i ∈ N : k0 ≤ i ≤ k, ai ≤ ai+1}.
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Then, 0 ≤ ak ≤ aτ(k)+1 for all k ≥ k0. Furthermore, the sequence {τ(k)}k≥k0 is
nondecreasing and tends to +∞ as k →∞.

Lemma 2.4. ([24, Remark 4.2]) Assume that S : C → C is an m−demicontractive
mapping such that Fix(S) 6= ∅ and α ∈ [0, 1−m]. Then, the mapping

Sα = (1− α)I + αS

is quasinonexpansive on C. Moreover,

‖Sα(x)− x∗‖2 ≤ ‖x− x∗‖2 − α(1−m− α)‖S(x)− x‖2, ∀x ∈ C, x∗ ∈ Fix(S).

Lemma 2.5. ([2, Lemma 3.1]) Let C be a nonempty closed convex subset of a real
Hilbert space H, and a bifunction h : C × C → R∪ {+∞} satisfies the conditions:

- h(x, x) = 0 for all x ∈ C;
- for each x ∈ C, h(x, ·) is convex and subdifferentable on C;
- h is pseudomonotone on C;
- h is Lipschitz-type with constants γ1 > 0 and γ2 > 0.

Then, if λ ∈
(

0,min
{

1
2γ1

, 1
2γ2

})
, then the mapping S is defined in, for each x ∈ C,

yx = argmin

{
λh(x, y) +

1

2
‖y − x‖2 : y ∈ C

}
,

S(x) = argmin

{
λh(yx, y) +

1

2
‖y − x‖2 : y ∈ C

}
,

which is quasinonexpansive on C.

3. Main results

Now we will discuss the iteration scheme and the convergence of the parallel pro-
jection method with computing inexact subgradients and approximate metric projec-
tions.

Theorem 3.1. Let f be β−strongly monotone and weakly continuous, ∂ε2f(x, x) be
L− Lipschitz continuous on C. For each i ∈ I, let the mapping Si : C → C be
βi−demicontractive such that Ω 6= ∅. Let gj(j ∈ J) be pseudomonotone, weakly
continuous and Lipschitz-type with constants c1j and c2j. Suppose that the sequence
{xk} is generated by the following scheme:

x0 ∈ C,
yki = (1− αk,i)xk + αk,iSi(x

k), ∀i ∈ I,
yk := yki0 , where i0 = argmax{‖yki − xk‖ : i ∈ I},
zkj = argmin

{
ρk,jgj(y

k, y) + 1
2‖y − y

k‖2 : y ∈ C
}
,

z̄kj = argmin
{
ρk,jgj(z

k
j , y) + 1

2‖y − y
k‖2 : y ∈ C

}
,

zk := z̄kj0 , where j0 = argmax{‖z̄kj − yk‖ : j ∈ J},
xk+1 ∈ PrεkC (zk − γkuk), uk ∈ ∂τk2 f(zk, zk).

(3.1)
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Let the positive parameter sequences {αk,i}(i ∈ I), {ρk,j}(j ∈ J), {εk}, {γk} and {τk}
be satisfied the restriction set:

τ ∈ (0, β), τk ≤ γk < min
{

2β
L2 ,

2(β−τ)
L2−τ2 ,

1
τ

}
,

0 < a ≤ αk,i ≤ min
{

1−βi

2 : i ∈ I
}
,

0 < ā ≤ ρk,j ≤ b̄ < min
{

1
2c1j

, 1
2c2j

: j ∈ J
}
,

εk ≤ γk,
∑∞
k=0 ε

2
k < +∞,∑∞

k=0 γk = +∞,
∑∞
k=0 γ

2
k < +∞,

∑∞
k=0 γkτk < +∞.

(3.2)

Then, the sequences {xk}, {yk} and {zk} converge strongly to the unique solution x∗

of the problem (1.2).

Proof. Let x∗ be the unique solution of Problem (1.2). We divide the proof into
several steps.
Step 1. The following assertion holds

ak+1 ≤ (1− τγk)ak +
γk(3 + ‖w∗k‖)2

τ
−αk,i0(1−αk,i0 − βi0)(1− τγk)‖xk −Si0(xk)‖2,

(3.3)
where ak = ‖xk − x∗‖2 and w∗k is the projection of xk onto ∂τk2 f(x∗, x∗). Moreover,
limk→∞ ‖xk+1 − zk‖ = 0 and three sequences {xk}, {yk} and {zk} are bounded.
Proof of Step 1. Set Ak(x) = x − γk∂τk2 g(x, x) for all x ∈ C. By Lemma 2.1 and
Lemma 2.2, and using the conditions (3.2), we obtain

‖xk+1 − x∗‖ ≤‖(zk − γkuk)− x∗‖+ εk

≤‖(zk − γkuk)− (x∗ − γkw∗k)‖+ γk‖w∗k‖+ εk

≤ρ
(
Ak(zk), Ak(x∗)

)
+ γk‖w∗k‖+ εk

≤ρk‖zk − x∗‖+ 2
√
γkτk + γk‖w∗k‖+ εk

≤(1− τγk)‖zk − x∗‖+ γk(2 + ‖w∗k‖) + εk

≤(1− τγk)‖zk − x∗‖+ γk(3 + ‖w∗k‖), (3.4)

where ρk =
√

1− γk(2β − γkL2). This implies that

‖xk+1 − x∗‖2 ≤
[
(1− τγk)‖zk − x∗‖+ γk(3 + ‖w∗k‖)

]2
=

[
(1− τγk)‖zk − x∗‖+ τγk

3 + ‖w∗k‖
τ

]2
≤ (1− τγk)‖zk − x∗‖2 +

γk(3 + ‖w∗k‖)2

τ
. (3.5)

Set

zxj = argmin

{
ρk,jgj(x, y) +

1

2
‖y − x‖2 : y ∈ C

}
and

Sk,j(x) = argmin

{
ρk,jgj(z

x
j , y) +

1

2
‖y − x‖2 : y ∈ C

}
.
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By Lemma 2.5, note that x∗ ∈ Fix(Sk,j) for all k ∈ N , j ∈ J , for each fixed k, j, the
mapping Sk,j is quasinonexpansive. Then,

‖zk − x∗‖ = ‖z̄kj0 − x
∗‖ = ‖Sk,j0(yk)− x∗‖ ≤ ‖yk − x∗‖, ∀k ∈ N . (3.6)

For each α ∈ [0, 1), set Tα = (1− α)I + αSi0 . By Lemma 2.4, we have

‖yk − x∗‖2 =‖yki0 − x
∗‖2

=
∥∥Tαk,i0

(xk)− x∗
∥∥2

≤‖xk − x∗‖2 − αk,i0(1− αk,i0 − βi0)‖xk − Si0(xk)‖2. (3.7)

Combining (3.5), (3.6) and (3.7), we obtain

‖xk+1 − x∗‖2 ≤(1− τγk)‖zk − x∗‖2 +
γk(3 + ‖w∗k‖)2

τ

≤(1− τγk)‖xk − x∗‖2 +
γk(3 + ‖w∗k‖)2

τ
(3.8)

− αk,i0(1− αk,i0 − βi0)(1− τγk)‖xk − Si0(xk)‖2

≤(1− τγk)‖xk − x∗‖2 + τγk
(3 + ‖w∗k‖)2

τ2

≤max{‖xk − x∗‖2,K}
≤...
≤max{‖x0 − x∗‖2,K},

where

K =
1

τ2
sup
k

{
(3 + ‖w∗k‖)2

}
< +∞.

Consequently, {xk} is bounded and (3.3) is deduced from (3.8). From (3.7), it follows
that ‖yk − x∗‖ ≤ ‖xk − x∗‖ and {yk} is also bounded, and the relation (3.6) implies
the boundedness of {zk}. Note that xk+1 ∈ PrεkC (zk − γkuk), zk ∈ PrεkC (zk). Then,

0 ≤ lim
k→∞

∥∥xk+1 − zk
∥∥ ≤ lim

k→∞

[
γk‖uk‖+ εk

]
= 0.

This completes the proof of Step 1.
Step 2. Let us consider two following cases:
Case 2.1. There exists k0 ∈ N such that ak+1 ≤ ak for all k ≥ k0 and hence
limk→∞ ak = A < +∞. Combining limk→∞ γk = 0, (3.4), (3.6), (3.7) and the
boundedness of {xk}, we have

lim
k→∞

‖zk − x∗‖2 = lim
k→∞

‖yk − x∗‖2 = A.
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By the definition of i0 and 0 < a ≤ αk,i ≤ 1−βi

2 for all i ∈ I, we have

1− βi0
2
‖yki − xk‖2 ≤

1− βi0
2
‖yki0 − x

k‖2

=
αk,i0(1− βi0)

2
‖Si0(xk)− xk‖2

≤αk,i0(1− βi0 − αk,i0)‖xk − Si0(xk)‖2

≤‖xk − x∗‖2 − ‖yk − x∗‖2,

where the last relation is deduced from (3.7). Then, we have limk→∞ ‖yki − xk‖2 = 0
and hence

0 ≤ a lim
k→∞

‖Si(xk)− xk‖ ≤ lim
k→∞

αk,i‖Si(xk)− xk‖ = lim
k→∞

‖yki − xk‖ = 0, ∀i ∈ I.
(3.9)

Applying Lemma 2.5 for

x := yk; x̄ := x∗;λ := ρk,j0 ; γ1 := c1; yx := zkj0 ; γ2 := c2;S(x) := zk;h := gj0 ,

we obtain that

‖zk − x∗‖2 =‖z̄kj0 − x
∗‖2

≤‖yk − x∗‖2 − (1− 2ρk,j0c1)‖zkj0 − y
k‖2 − (1− 2ρk,j0c2)‖zkj0 − z̄

k
j0‖

2

≤‖yk − x∗‖2 − (1− 2b̄c1)‖zkj0 − y
k‖2 − (1− 2b̄c2)‖zkj0 − z̄

k
j0‖

2.

The last conclusion is deduced from the assumptions 0 < ρk,j ≤ b̄ < min
{

1
2c1
, 1
2c2

}
for all j ∈ J, k ∈ N . This together j0 = argmax{‖z̄kj − yk‖ : j ∈ J} implies that

0 ≤ lim
k→∞

‖zkj0 − y
k‖ ≤ 1

1− 2b̄c1
lim
k→∞

(
‖yk − x∗‖2 − |‖zk − x∗‖2

)
= 0.

By a similar way, we also have limk→∞ ‖zkj0 − z
k‖ = limk→∞ ‖zkj0 − z̄

k
j0
‖ = 0. Then,

0 ≤ lim
k→∞

[‖zk − yk‖] ≤ lim
k→∞

[
‖zkj0 − y

k‖+ ‖zkj0 − z
k‖
]

= 0.

By the definition of j0, we have

0 ≤ lim
k→∞

‖z̄kj − yk‖ ≤ lim
k→∞

‖zk − yk‖ = 0. (3.10)

By Step 1, {yk} is bounded, we may assume that yks ⇀ x̄ ∈ C and

lim inf
k→∞

[−f(yk, x∗)] = lim
s→∞

[−f(yks , x∗)] = −f(x̄, x∗),

where the last equality is deduced from the weak continuity of f . Since (3.9), we have

xks ⇀ x̄. Thus, z̄ksj ⇀ x̄ as s → ∞ for all j ∈ J . Using the demiclosed property at

zero of Si for all i ∈ I, xks ⇀ x̄ ∈ C and (3.9), we obtain x̄ ∈ ∩i∈IFix(Si). By a
similar way as the proof of Lemma 2.5 that since

zkj = argmin

{
ρk,jgj(y

k, y) +
1

2
‖y − yk‖2 : y ∈ C

}
,



PROJECTION METHOD FOR BEPS 495

we have

ρk,j
[
gj(y

k, y)− gj(yk, zkj )
]
≥
〈
zkj − yk, zkj − y

〉
, ∀y ∈ C, j ∈ J.

Substituting y = z̄kj ∈ C into this inequality, we obtain

ρk,j
[
gj(y

k, z̄kj )− gj(yk, zkj )
]
≥
〈
zkj − yk, zkj − z̄kj

〉
. (3.11)

Using the Lipschitz-type property of gj and the relation (3.11), we have

ρk,jgj(z
k
j , z̄

k
j ) ≥ρk,j [gj(yk, z̄kj )− gj(yk, zkj )]− c1ρk,j‖zkj − yk‖2 − c2ρk,j‖z̄kj − zkj ‖2

≥
〈
zkj − yk, zkj − z̄kj

〉
− c1ρk,j‖zkj − yk‖2 − c2ρk,j‖z̄kj − zkj ‖2. (3.12)

Since

z̄kj = argmin

{
ρk,jgj(z

k
j , y) +

1

2
‖y − yk‖2 : y ∈ C

}
,

we have

ρk,j
[
gj(z

k
j , y)− gj(zkj , z̄kj )

]
≥
〈
z̄kj − yk, z̄kj − y

〉
, ∀y ∈ C, j ∈ J. (3.13)

Adding the two inequalities (3.12) and (3.13), we get

ρk,jgj(z
k
j , y) ≥

〈
zkj − yk, zkj − z̄kj

〉
− c1ρk,j‖zkj − yk‖2 − c2ρk,j‖z̄kj − zkj ‖2

+
〈
z̄kj − yk, z̄kj − y

〉
, ∀y ∈ C, j ∈ J.

Consequently,

ρks,jgj(z
ks
j , y) ≥

〈
zksj − y

ks , zksj − z̄
ks
j

〉
− c1ρks,j‖z

ks
j − y

ks‖2 − c2ρks,j‖z̄
ks
j − z

ks
j ‖

2

+
〈
z̄ksj − y

ks , z̄ksj − y
〉
, ∀y ∈ C, j ∈ J.

Letting s → ∞ in the above inequality and using the weak continuity of gj , the
assumption 0 < a ≤ ρk,j ≤ b and (3.10), we obtain

0 ≤ lim sup
s→∞

ρks,jgj(z
ks
j , y) ≤ gj(x̄, y), ∀y ∈ C.

Then, x̄ ∈ ∩j∈JS(C, gj) and so x̄ ∈ ∩i∈IFix(Si) ∩j∈J S(C, gj).
From uk ∈ ∂τk2 f(zk, zk) and f(zk, zk) = 0, it follows

f(zk, x∗) = f(zk, x∗)− f(zk, zk) ≥ 〈uk, x∗ − zk〉 − τk. (3.14)

Combining (2.2), (3.6), (3.7) and (3.14), note that xk+1 = PrεkC (zk − γkuk), we get

‖xk+1 − x∗‖2 =‖PrεkC (zk − γkuk)− PrεkC (x∗)‖2

≤‖zk − γkuk − x∗‖2 + ε2k

=‖zk − x∗‖2 − 2γk〈uk, zk − x∗〉+ γ2k‖uk‖2 + ε2k

≤‖zk − x∗‖2 + 2γk[f(zk, x∗) + τk] + γ2k‖uk‖2 + ε2k

≤‖xk − x∗‖2 + 2γkf(zk, x∗) + 2γkτk + γ2k‖uk‖2 + ε2k. (3.15)

This implies

2

k∑
i=k0

γi[−f(zi, x∗)] ≤ ‖xk0−x∗‖2 +2

k∑
i=k0

γiτi+M

k∑
i=k0

γ2i +

k∑
i=k0

ε2i , ∀k ≥ k0, (3.16)
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where M = sup{‖uk‖2 : k ∈ N} < +∞. Under the condition set (3.2) and

lim inf
k→∞

[
−f(zk, x∗)

]
= lim
s→∞

[
−f(yks , x∗)

]
= lim inf

k→∞

[
−f(yk, x∗)

]
= −f(x̄, x∗) ≥ 0,

we may include that lim infk→∞[−f(yk, x∗)] = 0. On the other hand, the β−strong
monotonicity of f yields

0 ≤f(x∗, x̄)

= lim inf
k→∞

f(x∗, yk)

≤ lim inf
k→∞

[−β‖yk − x∗‖2 − f(yk, x∗)]

=− βA+ lim inf
k→∞

[−f(yk, x∗)]

=− βA.

Hence A = 0, which implies xk → x∗, yk → x∗ and zk → x∗ as k →∞.
Case 2.2. There does not exist k1 ∈ N such that ak+1 ≤ ak for all k ≥ k1. So there
exists a positive integer k0 such that ak0 ≤ ak0+1. By Lemma 2.3, Maingé proposed
a subsequence {aξ(k)} of {ak} which is defined as

ξ(k) = max{i ∈ N : k0 ≤ i ≤ k, ai ≤ ai+1}.

Then, he showed that

ξ(k)↗ +∞, 0 ≤ ak ≤ aξ(k)+1, aξ(k) ≤ aξ(k)+1, ∀k ≥ k0. (3.17)

By Step 1, {zξ(k)} is bounded, and it has a convergent subsequence. Without general,
we may assume that limk→∞ aξ(k) = B < +∞ and zξ(k) ⇀ x̄ ∈ C. Similar to Case

2.1, we also claim that x̄ ∈ Ω and limk→∞ f(x∗, zξ(k)) = f(x∗, x̄) ≥ 0. Using (3.15)
and the β−strong monotonicity of f , i.e.,

f(zk, x∗) ≤ −f(x∗, zk)− β‖zk − x∗‖2,

we have

ak+1 ≤ak + 2γkf(zk, x∗) + 2γkτk + γ2k‖uk‖2 + ε2k

≤ak + 2γk
[
−f(x∗, zk)− β‖zk − x∗‖2

]
+ 2γkτk + +γ2k‖uk‖2 + ε2k. (3.18)

It results

2γξ(k)f(x∗, zξ(k)) ≤ aξ(k) − aξ(k)+1 − 2γξ(k)β‖zξ(k) − x∗‖2

+ 2τξ(k)γξ(k) + γ2ξ(k)‖u
ξ(k)‖2 + ε2ξ(k)

≤ −2γξ(k)β‖zξ(k) − x∗‖2 + 2τξ(k)γξ(k)

+ γ2ξ(k)‖u
ξ(k)‖2 + ε2ξ(k)

Since
∞∑
k=0

γk = +∞,
∞∑
k=0

γ2k < +∞,
∞∑
k=0

γkτk < +∞
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and by Step 1 that {uk} is bounded, we deduce that

lim sup
k→∞

f
(
x∗, zξ(k)

)
= 0⇒ lim

k→∞
f
(
x∗, zξ(k)

)
= 0. (3.19)

By (3.7), Remark 2.1 and using the β−strong monotonicity of f , we have

ak+1 =‖PrεkC (zk − γkuk)− PrεkC (x∗)‖2

≤‖zk − γkuk − x∗‖2 + ε2k

=‖zk − x∗‖2 + 2γk〈uk, x∗ − zk〉+ γ2k‖uk‖2 + ε2k

≤‖zk − x∗‖2 + 2γkf(zk, x∗) + γ2k‖uk‖2 + ε2k

≤‖zk − x∗‖2 + 2γk
[
−f(x∗, zk)− β‖zk − x∗‖2

]
+ γ2k‖uk‖2 + ε2k

=(1− 2βγk)‖zk − x∗‖2 − 2γkf(x∗, zk) + γ2k‖uk‖2 + ε2k

≤(1− 2βγk)ak − 2γkf(x∗, zk) + γ2k‖uk‖2 + ε2k.

This implies that

aξ(k)+1 ≤
[
1− 2βγξ(k)

]
aξ(k) − 2γξ(k)f(x∗, zξ(k)) + γ2ξ(k)‖u

ξ(k)‖2 + ε2ξ(k).

Combining this and (3.17), we obtain

aξ(k) ≤
[
1− 2βγξ(k)

]
aξ(k) − 2γξ(k)f(x∗, zξ(k)) + γ2ξ(k)‖u

ξ(k)‖2 + ε2ξ(k).

Thus

2βaξ(k) ≤ −2f(x∗, zξ(k)) + γξ(k)‖uξ(k)‖2 + εξ(k).

Letting the limit yields

lim
k→∞

aξ(k) = 0,

and hence limk→∞ aξ(k)+1 = 0. Combining this and (3.17), we have limk→∞ ak = 0.

Thus, {xk} and {yk} converge strongly to x∗. This completes the proof. �

4. Applications

In this section, we suppose that f, Si(i ∈ I) and g : C × C → R ∪ {+∞} satisfy
the following assumptions:

(1) The bifunction f is β−strongly monotone, weakly continuous and ∂ε2f(x, x)
is Lipschitz continuous on C with constant L > 0 for all ε > 0;

(2) The mappings {Si : i ∈ I} are βi−demicontractive;
(3) The bifunction g is pseudomonotone, weakly continuous, Lipschitz-type with

constants c1 > 0 and c2 > 0, g(x, x) = 0 for all x ∈ C.

When Si(i ∈ I) is the identity mapping and gj = g(j ∈ J), we obtain the following
corollary as an immediate consequence of Theorem 3.1.
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Corollary 4.1. Let positive parameter sequences {ρk}, {εk}, {γk} and {τk} satisfy
the restriction set:

τ ∈ (0, β), 0 < τk ≤ γk < min
{

2β
L2 ,

2(β−τ)
L2−τ2 ,

1
τ

}
,

0 < ā ≤ ρk ≤ b̄ < min
{

1
2c1
, 1
2c2

}
,

εk ≤ γk,
∑∞
k=0 ε

2
k < +∞,∑∞

k=0 γk = +∞,
∑∞
k=0 γ

2
k < +∞,

∑∞
k=0 γkτk < +∞.

Then, the sequences {xk} and {yk} defined by the iteration scheme:
x0 ∈ C,
yk = argmin

{
ρkg(xk, y) + 1

2‖y − x
k‖2 : y ∈ C

}
,

zk = argmin
{
ρkg(yk, y) + 1

2‖y − x
k‖2 : y ∈ C

}
,

xk+1 ∈ PrεkC (zk − γkuk), uk ∈ ∂τk2 f(zk, zk),

(4.1)

converge strongly to the unique solution of the bilevel equilibrium problem (1.5).

In the case gj = 0(j ∈ J), the problem (1.2) is formulated in the equilibrium
problem over the fixed point set of the demicontractive mappings Si(i ∈ I). By
Theorem 3.1, the iteration scheme for solving the problem (1.4) and its convergence
are given as the following results.

Corollary 4.2. Suppose that the sequences {xk} and {zk} are generated by the
scheme: 

x0 ∈ C,
yki = (1− αk,i)xk + αk,iSi(x

k), ∀i ∈ I,
yk := yki0 , where i0 = argmax{‖yki − xk‖ : i ∈ I},
xk+1 ∈ PrεkC (yk − γkuk), uk ∈ ∂τk2 f(yk, yk).

(4.2)

Let the positive parameter sequences {αk,i}(i ∈ I), {εk}, {γk} and {τk} be satisfied the
conditions: 

τ ∈ (0, β), 0 < τk ≤ γk < min
{

2β
L2 ,

2(β−τ)
L2−τ2 ,

1
τ

}
,

0 < a ≤ αk,i ≤ min
{

1−βi

2 : i ∈ I
}
,

εk ≤ γk,
∑∞
k=0 ε

2
k < +∞,∑∞

k=0 γk = +∞,
∑∞
k=0 γ

2
k < +∞,

∑∞
k=0 γkτk < +∞.

Then, the sequences {xk} and {yk} converge strongly to a unique solution x∗ of the
problem (1.4).

5. Numerical results

In this section, we give some numerical experiments for the schemes (4.1) and
(4.2). All the programming is implemented in MATLAB R2014a running on a PC
with Intel(R) Core(TM) i5-7360U CPU @ 2.30GHz 8.00GB Ram. We will compare
the convergence of Scheme (4.2) and the subgradient-type method proposed by Iiduka
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and Yamada in [33, Algorithm 3.2], the scheme (3.1) and the contraction proximal al-
gorithm in [18, Algorithm 4.1], Scheme (4.1) and the approximate subgradient method
of Anh in [5, Algorithm 2].

Example 5.1. [7, Example 5.1] Let C be a polyhedral convex set given by

C =


x ∈ R5

+,

0.1 ≤ x1, 0.1 ≤ x5, xi ≤ 1, ∀i = 1, ..., 5,

x1 + 2x2 + 3x3 + 4x4 + 5x5 ≤ 3.

The mapping S : C → C is defined by

S(x) =

(
1

3
x1, sinx2,

1

3
x3, x4, sin

3(x5)

)
.

The equilibrium bifunction f : R5 ×R5 → R is given in the form

f(x, y) = 〈F (x) +Qy + q, y − x〉,
where A is a 5× 5 matrix, B is a 5× 5 skew-symmetric matrix, D is a 5× 5 diagonal
matrix, the matrix Q = AAT + B +D generated as suggested in [7], q is a vector in
R5, η > 1 + ‖Q‖ and the mapping F is defined by

F (x) = (ηx1 + ηx2 + sin(x1),−ηx1 + ηx2 + sin(x2), (η − 1)x3, (η − 1)x4, (η − 1)x5).

Then, f is strongly monotone with constant β = η−‖Q‖−1 in the case η > 1+‖Q‖.
For each x ∈ R5, the subdifferential is computed by

∂ε2f(x, x) = {F (x) +Qx+ q} , ∀ε > 0,

which is Lipschitz continuous with L =
√

2(2η2 + 2η + 1) + ‖Q‖. The scheme (4.1)
for solving the problem (1.4) is simply formulated as follows:

x0 ∈ C,
yki = (1− αk,i)xk + αk,iSi(x

k) i = 1, 2,

yk := yki0 , where i0 = argmax{‖yki − xk‖ : i = 1, 2},
uk = F (xk) +Qxk + q, xk+1 = PrεkC (yk − γkuk).

As usual, the tolerance error is ε-solution of the schemes (4.1) and (4.2), if

max{‖yk − xk‖, ‖xk+1 − xk‖} ≤ ε.
We choose in the Matlab that every entry of A and q is randomly and uniformly
generated from (−3, 3), every diagonal entry of D is randomly generated from (0, 1)
by

A = 6 ∗ rand(5, 5)− 3, B = skewdec(5, 1), D = diag(1 : 5).

Taking η := 50 + ‖Q‖ = 104.8319 and β = η + 9.3213. As usual, if

max{‖xk+1 − yk‖, ‖yk − xk‖} ≤ ε,
then xk is called ε− solution of the problem (1.4). The other parameters and data
processions in each iteration scheme are chosen as follows:

(i) The scheme (4.2): αk,i := 0.01+ 1
k+100 for all i = 1, 2, εk = τk = 0, γk = 1

7k+10 ,

for all k ∈ N , the starting point x0 = (0.25, 0.35, 0.0, 0.1, 0.3)T .
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(ii) The subgradient-type method (STM):

x0 = (1, 1, 1, 1, 1)T , ρ0 = ‖x0‖, εk = 0,

ξk = F (yk) +Q(2xk − yk) + q ∈ ∂2f(yk, xk).

It is clear that M ≤ L+ ‖Q‖ and we choose

M = 2L+ ‖Q‖, λk =
1

M2
∈
(

0,
2

M2

)
.

At each iteration step, yk ∈ Ck := {x ∈ R5 : ‖x‖ ≤ ρk + 1} which satisfies
f(yk, xk) ≥ 0 and max{f(y, xk) : y ∈ Ck} ≤ f(yk, xk) + εk. Then, computing
yk is defined in follows

yk = argmin
{
−f(y, xk) : y ∈ Ck

}
.

The termination criterion is ‖xk+1 − yk‖ ≤ ε.
The comparative results are reported in Table 1.

Scheme (4.2) STM
Problem Iter. CPU(s) Iter. CPU(s)

1 87 11.0156 178 28.9063
2 87 10.1250 174 28.6875
3 88 9.7813 168 27.2813
4 85 8.5469 172 27.5000
5 90 7.4063 177 30.3281
6 89 7.9375 176 28.8594
7 88 7.9375 171 27.1406
8 87 8.2813 175 28.0625
9 86 7.0094 178 27.8438
10 92 8.1031 170 27.2656

Table 1. Comparative results of Scheme (4.2) and the subgradient-
type algorithm with the tolerance ε = 10−3.

Example 5.2. In this example [19, Example 5.1], we compare the performance of
the subgradient extragradient method (4.2) (SubExtr) with the exact version and the
contraction proximal algorithm 4.2 (ContrPA) in [18]. Set

C = {x ∈ R3 : ‖x‖ ≤ 3},

f(x, y) = 〈Ax+By + d, Py − Px〉,
where

A =

5 2 1
0 6 1
1 2 7

 , B =

4 1 2
0 3 1
2 1 5

 , P =

4 2 1
2 5 3
1 3 6

 , d =

1
2
3

 .
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Let
D1 = {x ∈ R3 : x1 + 2x2 + 3x3 − 46 ≥ 0},
D2 = {x ∈ R3 : 2x1 − 2x2 + x3 − 5 ≥ 0}

and
D3 = {x ∈ R3 : −2x1 + x2 + x3 − 6 ≥ 0}.

Then, the mapping

T (x) = PrC

{
1

3
x+

2

3

[
1

6
PrD1(x) +

1

3
PrD2(x) +

1

2
PrD3(x)

]}
, ∀x ∈ R3

is nonexpansive.

Let H = {x ∈ H : 〈a, x〉 ≤ b, a 6= 0}. The projection of x ∈ H onto H is defined in
the form

PrH(x) = x− 〈a, x〉 − b
‖a‖2

a.

Therefore, PrDk
(x) (k = 1, 2, 3) is given in the explicit form. Then, f is strongly

monotone with constant
β = ‖PT (A−B)‖,

Lipschitz-type with constant

c1 = c2 =
1

2
‖PT (A−B)‖.

Now, consider the problem (1.2) with fj = 0(j ∈ J) and Si = T (i ∈ I). In both
schemes, we use the same stopping criteria ‖xk+1− xk‖ ≤ 10−3. Parameters and ∂2f
are chosen as follows:

• Scheme SubExtr: βi = 0, αk,i = 0.0001 + 1
5k+1 , γk = 1

100k+55 ,

∂2f(yk, yk) = {PT [(A+B)yk + d]}.
• Algorithm ContrPA: λk = 0.001

k0.9 for all k ≥ 1.

The performance of two results are tabulated in Table 2.

SubExtr ContrPA
St. point x0 Iter. CPU(s) Iter. CPU(s)

(0, 0, 0) 30 2.0469 28 2.7406
(0, 1, 0) 50 3.8281 29 2.9375
(0, 1, 1) 34 2.5313 39 3.2969
(1, 1, 0) 53 4.0000 42 3.0313
(1, 0, 0) 39 2.9219 41 3.2188
(1, 0, 1) 35 2.6250 40 3.4688
(2, 0, 0) 53 3.9844 41 3.0469
(2, 1, 0) 60 4.2344 44 3.2344
(2, 0, 1) 45 3.3281 42 3.2656
(1, 1, 2) 33 2.3750 47 4.6927

Table 2. Comparison of algorithms in Example 5.2.
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Example 5.3. Let H = Rn. The equilibrium bifunction f is given in Example 5.1.
Let the matrices P, P̄ be chosen such that P̄ is symmetric positive semidefinite and
P̄ − P is negative semidefinite. The second cost bifunction g and the domain C are
given in

g(x, y) =
〈
Px+ P̄ y + p, y − x

〉
, C = {x ∈ Rn : −1 ≤ xi ≤ 1, ∀i = 1, ..., 5}. (5.1)

Then, g is monotone and continuous, for each x ∈ Rn, g(x, ·) is differentiable
convex on Rn, Lipschitz-type with constants c1 = c2 = 1

2‖P − P̄‖. Every entry of
A,B, P, p and q is randomly and uniformly generated from (−3, 3), ξ = 58, every
diagonal entry of D is randomly generated from (0, 1), P = 3P̄ − I where I is the
identity matrix.

The parameters and data processions in each algorithm are chosen as follows:

• Scheme (4.1):

η = ξ − 1− ‖Q‖, ρk =
1

3c1 + 150 + k
, γk =

1

100k + 1
,

and the stopping rule max{‖yk − xk‖, ‖xk+1 − yk‖} ≤ ε;
• Approximate subgradient method (ASM): η := 5 + ‖Q‖, ξk := 1

k2+10 ,

λk = 200, βk = 1
7k+1 for all k ∈ N . Then,

uk ∈ ∂2f(yk, yk) = {F (yk) +Qyk + q},

wk ∈ ∂2g(xk, xk) = {(P + P̄ )xk + p},

and the stopping rule ‖xk+1 − xk‖ ≤ ε.

Scheme (4.1) ASM
Test prob. Dim.No. Iter. CPU(s) Iter. CPU(s)

1 n = 5 7 1.1406 14 1.4688
2 n = 5 12 2.8438 12 1.3906
3 n = 10 12 2.8281 148 20.2969
4 n = 10 10 2.3750 36 3.7969
5 n = 15 14 3.7500 76 9.1875
6 n = 15 16 4.8125 113 17.2188
7 n = 20 19 5.7188 360 56.4844
8 n = 20 18 5.0469 281 43.9688
9 n = 25 17 5.5156 126 20.3281
10 n = 25 16 4.9844 409 54.6601

Table 3. Comparative results of Scheme (4.1) and Method (ASM)
with the tolerance ε = 10−3.
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Example 5.4. Let H be the infinite dimensional Hilbert space H := L2([0, 1]) with
the inner product

〈x, y〉 :=

1∫
0

x(t)y(t)dt

for all x, y ∈ H and the norm associated with this inner product

‖x‖ :=

 1∫
0

|x(t)|2dt


1
2

.

The feasible set C := {x ∈ H : ‖x‖ ≤ 1}. The cost bifunction gj : H ×H → R is of
the form

gj(x(t), y(t)) = 〈max{0, x(t)}, y(t)− x(t)〉
for all t ∈ [0, 1], j ∈ J and x ∈ H and the Lyapunov-type functional

f(x, y) := ‖x− y‖2 + 〈ηx+ ξy + q, y − x〉,
where η > ξ + 2. Then, we have

f(x, y) + f(y, z)− f(x, z) =‖x− y‖2 + 〈ηx+ ξy + q, y − x〉+ ‖y − z‖2

+ 〈ηy + ξz + q, z − y〉 − ‖x− z‖2 − 〈ηx+ ξz + q, z − x〉
=(η − ξ − 2)〈y − x, z − y〉
≥(η − ξ − 2)‖y − x‖‖z − y‖

≥η − ξ − 2

2
‖y − x‖2 +

η − ξ − 2

2
‖z − y‖2.

Thus, f is Lipschitz-type with constants c1 = c2 = η−ξ−2
2 . For each x, y ∈ H, we

have

f(x, y) + f(y, x) =‖x− y‖2 + 〈ηx+ ξy + q, y − x〉+ ‖x− y‖2 + 〈ηy + ξx+ q, x− y〉
=− (η − ξ − 2)‖x− y‖2.

So, f is (η − ξ − 2)−strongly monotone, ∂ν2 f(x, x) = {(η + ξ)x+ q} is Lipschitz con-
tinuous with constant L := η+ ξ for all ν > 0. It is clearly that gj is pseudomonotone
and Lipschitz-type with constant c1j = c2j = 1

2 . Let also Hi(i ∈ I := {1, 2, 3}) be
half-spaces defined by Hi := {x ∈ H : 〈ai, x〉 ≤ bi}, where ai, bi ∈ H. Furthermore,
we assume that for each i ∈ I, the mapping Si = PrCPrHi is demicontractive with
constant βi = 0. Note that for each x ∈ H, the projection of x onto Hi is defined as
follows:

PrHi
(x) =

{
x− 〈ai,x〉−bi‖ai‖2 ai if x /∈ Hi,

x if x ∈ Hi.

We take

ai(t) = (2i+ 1)t+ 3, bi(t) = 2t2 + (4i− 5)t+ i, ∀i ∈ I, t ∈ R.
We compute that

zkj = PrC [yk − ρk,j max{0, yk}],
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z̄kj = PrC [yk − ρk,j max{0, zkj }],
uk = (η + ξ)zk + q,

and
xk+1 = PrC [zk − γkuk].

The parameters of the scheme (3.1) are chosen as follows

αk,i = 0.0001 +
1

5k + 1
, ρk,j = 0.5, γk =

1

100k + 55
.

The stopping criterion is ‖xk+1−xk‖ ≤ ε where ε = 10−3. Computational results are
reported in Figure 1 for different starting points x0(t).

0 5 10 15 20 25

Elapsed Time [sec]

0

0.1

0.2

0.3

0.4

0.5

||x
k+

1
-x

k ||

x0(t)=2t+5

x0(t)=t2+1

x0(t)=1/(t+1)

Figure 1. Example 4 for different starting points x0(t).

Denote that

- Test prob.: The tested problem;
- Iter.: The number of iteration loops;
- CPU(s): The averaged CPU-computation times (in second);
- Dim. No: The number of dimension n;
- St. point: The starting point x0 ∈ C.
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