
Fixed Point Theory, Volume 7, No. 2, 2006, 315-322

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

SEHGAL CONTRACTIONS ON MENGER SPACES

VIOREL RADU

Dedicated to Professor Ioan A. Rus on the occasion of his 70th birthday

Department of Mathematics

West University of Timişoara
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1. Introduction

A Sehgal-contraction, or a B−contraction, on a probabilistic metric space

(S,F) is a self-mapping A of S such that

(BCL) FApAq(Lx) ≥ Fpq(x), ∀p, q ∈ S

for some L ∈ (0, 1) and every x. As it is well known [1, 2, 4, 10, 11, 12,

19, 20], every B−contraction on a complete Menger space (S,F , Min) has a

unique fixed point, which is globally attractive. Therefore B−contractions on

complete Menger spaces (S,F , Min) belong to the class of Picard operators,

extensively studied by I. A. Rus (see [15], [16] and [9]). In fact, the following

more general result holds:

Theorem 1.1. Every t-norm of Hadžić-type has the fixed point property

for B−contractions.

Indeed, let (S,F , T ) be a complete Menger space such that T is of Hadžić-type

and consider a B-contraction A : S → S. Without loss of generality, we can
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suppose L ∈ (0, 1
2 ]. Let p0 ∈ S and x ∈ (0,∞) be fixed. If m is a positive

integer, then

Fp0Amp0
(2x) ≥ T (Fp0Ap0

(x), FAp0Amp0
(x)) ≥ T (Fp0Ap0

(x), Fp0Am−1p0
(2x))

and we can see by induction that

Fp0Amp0
(2x) ≥ Tm(Fp0Ap0

(x)),∀m ≥ 1. (1.1)

Thus we have, for all integers n, m:

FAnp0An+mp0
(2x) ≥ Fp0Amp0

(2x/Ln) ≥ Tm(Fp0Ap0
(x/Ln)). (1.2)

Since T is of Hadžić-type (that is the iterates {Tm} are equicontinuous at

a = 1) and Fp0Ap0
∈ D+ (so that limt→∞ Fp0Ap0

(t) = 1), then

lim
n−→∞

FAnp0An+mp0
(2x) = 1, (1.3)

uniformly in m, for each x ∈ (0,∞). By definition, this means that {Anp0} is

F-Cauchy and the conclusion follows.

The proof of the following result of type Sherwood (compare with [20]) is

easy to reproduce:

Lemma 1.2. Let T be an lc-t-norm and fix an F in D+. Let S = {1, 2, ...}

and define a probabilistic metric by

{

Fnn+m(x) = Tm[F (2nx), F (2n+1x), ..., F (2n+mx)], n, m ∈ S

Fnn = ε0
(1.4)

Then (S,F , T ) is a Menger space and the mapping n
A
→ n + 1 is a

B−contraction with L = 1
2 .

The following theorem is a partial converse to Theorem 1.1:

Theorem 1.3. If T is a continuous t-norm with the fixed point property

for B−contractions, then T is of Hadžić-type.

Proof. Suppose that T is not of Hadžić-type. Then there exists a ∈ (0, 1)

such that for each 1 > b > a there is mb ≥ 1 for which Tmb
(b) < a. Now let

bn ∈ (a, 1) be increasing to 1. Then there exists mn ≥ 1 such that

Tmn(bn) < a, n = 1, 2, ... (1.5)
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Obviously we can suppose that mn is increasing on n. Let F ∈ D+ be defined

by

F (x) =











0 if x ≤ 1

b1 if x ∈ (1, 22+m1 ]

bn+1 if x ∈ (22n+mn , 22n+mn+1 ], n ≥ 1

(1.6)

If we consider the Menger space as in Lemma 1.2 with this F , then we have

successively:

Fn n+mn(1) ≤ Fn n+mn(2n) = Tmn [F (22n), F (22n+1), ..., F (22n+mn)] ≤

≤ Tmn [F (22n+mn), ..., F (22n+mn)] ≤ Tmn(bn) < a

Therefore the sequence {An1} is not Cauchy, so that T does not have the fixed

point property for B−contractions.

It is worth noting that in [1], G. L. Cain & R. Kasriel proved the Sehgal’s

result (for T = Min) by using the Nishiura pseudo-metrics dλ, defined by

dλ(p, q) = sup{x | Fpq(x) ≤ 1 − λ}, λ ∈ (0, 1), p, q ∈ S.

As a matter of fact, the family {dλ}λ∈(0,1) generates the (ε, λ)−topology on

S. Moreover, for every λ ∈ (0, 1),

dλ(Ap, Aq) ≤ Ldλ(p, q), ∀p, q ∈ S.

For if dλ(p, q) < r then Fpq(r) > 1 − λ and the contraction condition (BCL)

implies FApAq(Lr) > 1−λ, which shows that dλ(Ap, Aq) < Lr. Hence one can

apply the Banach contraction principle in the uniform space (S, {dλ}λ∈(0,1)).

As we will see, the result in (Sehgal &Bharucha-Reid, [19]) is also a conse-

quence of the ”fixed point alternative” in generalized (Luxemburg) complete

metric spaces (see [6] or [13]). Incidentally, this method offers a sort of converse

of the fixed point principle in Menger spaces under the t-norm TM = Min,

by giving a suitable family of (generalized) metric topologies on such a space.

The method also suggests order theoretic proofs of the contraction principle

for probabilistic B−contractions.

For terminology and notations, we refer to [2], [4] and [18].
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2. Some generalized metrics on Menger spaces

Recall that D+ denotes the set of the distribution functions of all nonnega-

tive (real) random variables, which then are nondecreasing and left-continuous

on (0,∞) and have limit 1 at ∞. Let we are given a probabilistic metric

F : S → D+, such that (S,F , Min) is a Menger space, and consider an ele-

ment G of D+ which will be fixed. Recall that F(p, q) is usually denoted by

Fpq.

Theorem 2.1. If we define the two-place function dG by

dG(p, q) = inf{a | a > 0 and Fpq(ax) ≥ G(x) , ∀x ∈ R},

then

(i) dG is a Luxemburg metric on S;

(ii) The dG−topology is stronger than the (ε, λ)−topology ;

(iii) If (S,F) is complete, then (S, dG) is complete.

Proof. (i) Clearly dG is symmetric and dG(p, p) = 0. If dG(p, q) = 0 then, for

each a > 0 , Fpq(ax) ≥ G(x) for all x. Now, if y = ax is fixed and x → +∞ ,

then Fpq(y) ≥ limx→∞ G(x) = 1, that is p = q.

Suppose that dG(p, r) < ∞ and dG(r, q) < ∞. If dG(p, r) < a′ < a and

dG(r, q) < b′ < b, then

Fpq[(a
′ + b′)x)] ≥ Min{Fpr(a

′x), Frq(b
′x)} ≥ G(x)

which shows that dG(p, q) ≤ a′ + b′ < a + b. Therefore dG(p, q) ≤ dG(p, r) +

dG(r, q), and it follows that dG is a Luxemburg metric.

(ii) Now, suppose that {pn} is dG-convergent to p. Let ε > 0 and λ ∈ (0, 1)

be given. Since G ∈ D+, then there exists x0 such that G(x0) > 1 − λ. For

a < ε
x0

, we choose n0 such that dG(pn, p) < a for all n ≥ n0. Therefore

Fpnp(ε) ≥ Fpnp(ax0) ≥ G(x0) > 1 − λ, and we see that {pn} is F−convergent

to p.

(iii) Suppose that {pn} is dG−Cauchy and (S,F) is complete. Then, as above,

we obtain that {pn} is F-Cauchy and thus there exists p ∈ S such that {pn}

is F-convergent to p. Let a, δ > 0 be given. Then there exists n0 such that

Fpnpn+m
(ax) ≥ G(x) for all n > n0, all m ≥ 1 and each x. Let n > n0 and

x > 0 be fixed. Since

Fpnp((a + δ)x) ≥ Min{Fpnpn+m
(ax), Fpn+mp(δx)} ≥
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≥ Min{G(x), Fpn+mp(δx)},

then, by letting m → ∞, Fpnp((a + δ)x) ≥ Min{G(x), 1} = G(x). Therefore

dG(pn, p) ≤ a + δ, ∀n ≥ n0 and we can see that {pn} is dG-convergent.

Example 2.2. Since

G(x) = ε1(x) =

{

0, x ≤ 1

1, x > 1
⇒ dG(p, q) = inf{x | Fpq(x) = 1},

then dG needs not be nontrivial: Every metric space (S, d) is a Menger space

under TM = Min if we set Fpq(x) = x
x+d(p,q) , ∀x ≥ 0. Clearly, dG(p, q) <

∞ ⇔ p = q. On the other hand, (S, d) can also be regarded as a Menger

space under TM with Fpq(x) = εd(p,q)(x) = G( x
d(p,q)), for d(p, q) 6= 0 and it is

easily seen that dG(p, q) = d(p, q) in this case. The situation is reversed for

G(x) = x
x+1 , ∀x ≥ 0.

Remark 2.3. The condition limt→∞ G(t) = 1 is essential for the last

conclusions in Theorem 2.1, as shown by the following

Example 2.4. Let λ ∈ (0, 1) and G(x) =

{

0, x ≤ 1

1 − λ, x > 1
. Then

dG(p, q) = inf{x | Fpq(x) ≥ 1 − λ} =not Rλ(p, q).

Generally, Rλ is a pseudo-metric and the family {Rλ}λ∈(0,1) does generate the

F−uniformity:

Rλ(p, q) < ε ⇒ Fpq(ε) ≥ 1 − λ and Fpq(ε) > 1 − λ ⇒ Rλ(p, q) < ε.

Notice also that S = R is a complete Menger space under TP = Prod, if we

set

Fpq(x) = e−
|p−q|

x , ∀ x > 0, p, q ∈ R.

As it is easily seen, Rλ(p, q) = |p−q|
−log(1−λ) gives a complete metric for each λ,

although TP is strictly weaker than TM = Min. Moreover, each Rλ generates

the (ε, λ)−topology.

3. Other two proofs of the fixed point principle

The proof of the following result is easy to reproduce:

Lemma 3.1. Every Sehgal-contraction on (S,F) is a Banach-contraction

on (S, dG). Namely, if A : S → S verifies the condition (BCL), then

dG(Ap, Aq) ≤ LdG(p, q),∀p, q ∈ S.
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By using this lemma and the alternative of fixed point, we can prove the Sehgal

& Bharucha-Reid theorem ([19]).

Theorem 3.2. Let A be a Sehgal-contraction on the complete Menger

space (S,F , Min). Then A has a unique fixed point p⋆ and, for each p ∈ S,

p⋆ = lim
n→∞

Anp in the (ε, λ)−topology.

Proof. Let p ∈ S and G := FpAp. By Lemma 3.1, A is dG-contractive.

Moreover, dG(p, Ap) = 1 < ∞. By the fixed point alternative (see [6] or [7]),

the sequence An(p) converges to a fixed point p⋆ of A, in the metric dG, and

so in the (ε, λ)−topology. Clearly p⋆ is unique.

Remark 3.3. For G as in the above proof, Sp := {q, dG(p, q) < ∞} is a

complete metric space. And Anp ∈ Sp for all n ≥ 1. Therefore A has a unique

fixed point in Sp. Since A has a unique fixed point in S, the theorem follows

also in this way.

Remark 3.4. Let (S,F , Min) be a complete Menger space and suppose

that, for some G ∈ D+, the dG-topology and the (ε, λ)−topology are identical.

Then, for every Sehgal-contraction A on S, we have:

(i) For every p ∈ S, Anp is convergent to the unique fixed point of A;

(ii) For each p ∈ S there exists n ≥ 0 such that

FAnpAn+1p(x) ≥ G(x), ∀ x.

Indeed, the first assertion follows from Theorem 3.2. The second assertion

follows from the fixed point alternative, since (i) is always true. In fact, this

assertions indicate, to a certain extent, the behavior of the values of F :

Example 3.5. For β > 0, let G(x) =

{

0, x ≤ 1

1 − 1
xβ , x > 1

. It is easy to see

that dG(p, q) = sup α
1

β dα(p, q). If dG induces the (ε, λ)-topology on S, then

for each p ∈ S there exists m ≥ 0 such that

FAnpAn+1p(x) ≥ 1 −
1

xβ
, ∀x ≥ 1 , ∀n ≥ m.

Generally, from the fixed point alternative we obtain the following.

Theorem 3.6. If A is a B-contraction on a complete Menger space

(S,F , Min) then, for each G ∈ D+ and each p ∈ S, either

(A1) Anp is dG convergent to the unique fixed point of A, or
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(A2) for each n ≥ 0 and each a > 0 there exists xn,a > 0 such that

FAnpAn+1p(axn,a) < G(xn,a).

Remark 3.7. Having in mind the above results as well as the methods in

[3], [5], [9] and [21], one can introduce the following relation on S × R:

(p, λ) ≤G (q, µ) ⇔ λ ≤ µ and Fpq ≥ (µ − λ) ◦ G.

Recall that ν ◦ G(x) = G(x
ν
) for ν 6= 0 and ν ◦ G = ε0 ⇔ ν = 0. Since

(a + b) ◦ G = τM (a ◦ G, b ◦ G), ∀a, b ≥ 0, then ≤G is a partial order for every

Menger space (S,F , Min) and any G ∈ D+. Now, the method of DeMarr

can be applied to the monotone mapping B(p, λ) := (Ap, Lλ) and we have an

alternative proof of Theorem 3.2.
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