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Abstract. At first, we will present the Collage Theorems for iterated multifunction systems
and, more generally, for respective continuation principles. Their application will be then
discussed in confrontation with numerical (digital) multivalued fractals generated either ran-
domly or (on the basis of an appropriate Shadowing Lemma) in a deterministic way. Some
illustrating examples will be given.
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1. INTRODUCTION

We begin with the extension (see [AGO01]) of the well-known theorem due to
J. E. Hutchinson [Hut81] and M. F. Barnsley [Bar88] based on the well-known

Banach contraction principle.

Theorem 1 (cf. [AGO01, AFGLO05]). Assume that (X,d) is a complete metric
space and
{pi: X =X, i=1,...,n; neN} (1)

is a system of multivalued contractions (with nonempty compact values), i.e.
du(vi(z), i(y)) < Lid(z,y), foral z,ye X, i=1,...,n, (2)
where L; € [0,1), 1 =1,...,n.
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Then there exists exactly one compact invariant subset A* C X of the
Hutchinson-Barnsley map

F(z):= Ucpi(ac), r e X, (3)
i=1

called the attractor (fractal) of (1) pr, equivalently, exactly one fixed-point A* €
K(X)={AcC X |A isnonempty and compact} of the induced Hulchinson-
Barnsley operator

F*(A) = | ] F(2) (: U F(a:)) , Ae K(X), (4)
z€A z€A

in the hyperspace (K(X),dgy), where dg stands |for the |[Hausdorff metric, de-
fined by

dp(A,B) :=inf{e >0| AC O.(B) and B C O.(A)},

where O:(C) = {x € X | d(z,C) K e}, for any nonempty, bounded, closed set
CcX.

Moreover,

lim dg(F*"(A),A*) =0, forevery A€ K(X), (5)

m—o0

and (Collage)
dir(A, 4% < 1 dn( A, F*(4), (6)

where (1 >) L = maxj—1, _n L.

There are several generalizations of this theorem for systems of (weak)
contractions, where the notion of weak contractions is understood in dif-
ferent ways (cf. [PetOl, Pet02, PRO1, PR]), iterated multifunction sys-
tems (IMS) of nonexpansive maps [AFGLO05] or IMS of compact maps
[AF04, Kie02, JGP00, LMO00]. Unfortunately, most generalizations are with
loss of the constructive part of Theorem 1.

On the other hand, for IMS of weak contractions the uniqueness can be guar-
anteed as well. Moreover, in [And] J. Andres developed now the continuation
principle for IMS of contractions (in the same paper and cf. [AFGL05, AG03],
continuation principle for compact maps was developed as well). Since the
Andres Theorem is based on the Granas continuation technique, which was
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completed by R. Precup [Pre02] by a computational part, we can simply com-

plete on this base Andres Theorem as follows.

Theorem 2. Let {p; : [0,1] xS — X;i=1,...,n} be a family of multivalued
(L;, M;)-Lipschitz maps with compact values, i.e. (i=1,...,n)

di(ei(\, ), 2:(\, y)) < Lid(x,y), for all A € [0,1] and z,y € S, (7)
and
dr(pi(A1,2), 0i(A2, ) S_Mi|/\1 — Xa|, for some M; > 0, (8)
for all x € S and A1, A2 € [0,1],
where L; € [0,1), M; € (0,00), fori =1,...,n, and S C X is a subset of
a complete metric space (X,d). Assume there is U C K(S) such that F} €
Co(U,K(X)) (= the set of all contractions F* :U = K(X) | Fix FFnou = (),
A€ [0,1].

In addition suppose that F§ has a fized point A(0) € U. Then, for each
A € [0,1], there exists a unique fized point A(X) € U of F¥.

Moreover, A()\) depends continuously on X\ and there exists 0 < r < oo,
mtegers m,n1,ng, ..., Nm—1 and numbers 0 < Ay < Ay < -+ < A1 < A =
1 such that for any Ay € K(X) satisfying dm (Ao, A(0)) < r, the sequences
(Ajp)kz0, 3 =1,2,...,m,

A1 = Ao
Ajpy1 = Fj\‘j (Ajr), k=0,1,...
Ajp10=Ajny, G=1,2,...,m—1

are well defined and satisfy

k
T 4n (A0 F5,(450))

(L:=max{L; |i=1,2,...,n},k € N).

du(Ajr, AAj)) <

To present the computational part of Theorem 2 in more detail, we sup-
pose the assumptions of the theorem to be satisfied, and a unique fixed point
A(0) of [} to exists. We wish to obtain an approximation A; of A(1) with
di (A1, A(1)) <.

We start with some Ay € U, which is an r-approximation of A(0) (i.e.

di(Aog, A(0)) < r), where
r <inf{dg(A(\),B) | B € oU,\ €[0,1]}.
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Furthermore, we find A > 0 such that for every A € U and X, u € [0,1],
|)‘ - /J,| < h:
ds (F3 (4), F(4) < (1 - Dy,
which guarantees

di(AA), A(p)) <

Finally, for 0 = Ag < A1 < -+- < App—1 < Ay = 1 such that A\j 1 — A < B,
7=0,1,...m — 1, we can compute the sequences

A, k=0,1,2,...,n5, j=1,2,...,m,

in the following way-.

For 5 =1,
Ao = Ao,
Arp = Fy,(A1p) = Fy, (Ao),
Az = F3(An) = F73,(Ao),
Al,n1 = F*Ki KA()),
where
Lk
d(Arg, A(M1)) < - LdH(Ao,F;f] (Ao)) =
Lk
= 7= LdH(Al,OaAl,l)-
It is clear that there exists n; € N such that dg (A1, A(A1)) <7.
For j =2,...,m — 1, we use an analogous procedure.
For j =m,
Am,O = Am—l,nm_la
Am,l = F;m KAm,O)a
Amvnm = F*;\L: (Am’()) =

= Fn(ENTC F(Ag) ),
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where
du(Amnm: AAm)) = du(Ammn,., A1) <.

Thus, A; := A n,, is an e-approximation of A(1).

As we can see, the computational part of Theorem 2 is based on iterations
of contractions. The remaining part of the paper is devoted to this topic with
the focus on (numerical) inaccuracy.

2. APPROXIMATION OF MULTIVALUED FRACTALS

As attractive fixed-poits of the Hutchinson-Barnsley operators of the IMS
of contractions with compact values, the multivalued fractals can be approxi-
mated by iterates of any compact set w.r.t. the Hutchinson-Barnsley operator.
Due to the nonaccurate character of numerical calculations, the IMS of con-
tractions with compact values lwill be alternatively studied, when applying the
Shadowing Lemma in metric spaces ([Z4c92], cf. also [Bie99]).

The existence of an accurate orbit in the proximity of a pseudo-orbit is
important for validity of numerical simulations. Numerically computed orbits
are in fact pseudo-orbits and, therefore, the problem of their being in a neigh-
bourhood of a real orbit for a sufficiently long time arises, i.e. the question
whether the numerical calculation has a real meaning.

Hence, let (X,d) be a metric space, f : X — X be a map, and § and ¢ be
positive reals.

A sequence {z},-, C X is called a d-pseudo-orbit of the map f if

d(f(.l’k), -Tk—f—l) < 6, k= 0, 1, 2, e (9)

We say that the d-pseudo-orbit {z},-, is e-shadowed by some real orbit
of f if there exists y € X such that

d(ffy),zp) <e, k=0,1,2,.... (10)

The shadowing property for the IMS of contractions with compact values
is stated in the following proposition (which is a weaker form of that for weak
contractions in [AFGLO05])

Proposition 1 (cf. [AFGLO05]). Let F* : K(X) — K(X) be the Hutchinson-
Barnsley operator of the IMS {p; : X — X,i=1,...,n} of contractions with

compact values.
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Then, for every ¢ > 0, there exist u € (0,e) and § > 0 such that every d-
pseudo-orbit { Ax}2, is e-shadowed by the orbit {F**(C)}, where C € K(X)

satisfies dg (A, C) < p.

For numerical d-pseudo-orbits, § means the upper estimate of the error in
each step, and so, it is not generally arbitrarily small positive, but there exists
a lower bound §y > 0 for the accuracy of calculations.

Thus, the theoretical shadowing result (Ve > 0 3§ > 0) needs to be modified
to the form (Ve = €(dp) > 0 36 > dp > 0), looking only for such situations
where we are able to describe the relations among €, §g and 6. As pointed out
in the following Proposition 2, this is possible for contractions, where we place

emphasis on approximation of related fixed-points.

2.1. Approximation of fixed-points of contractions. Obviously, every
orbit bf a contraction tends to the unique fixed-point. However, due to inac-
curacy of numerical calculations, we cannot reach this point with an arbitrary

precision in a real situation.

Proposition 2 (cf. [AFGLO05]). Let {¢; : X — X;i=1,...,n} be a system
of contractions with compact values on a complete metric space (X,d) with
Lipschitz constants L; < 1,1 =1,...,n, and with a multivalued fractal (fized-
point of F*) A*. Lete > 0,0 >0 and L := max{L; | i = 1,...,n} satisfy the
nequality

§<e(l—L). (11)

Then, for an arbitrary 6-pseudo-orbit {Ay}r— of the (Hutchinson-Barnsley
operator) F*, we have

dp(A*, An)) <e, (12)

whenever

e(l1—L)—0)\ 1
Q<) m=n ( dr (Ao, A1) ) InL’ (13)

(In particular, for dig(Ag, A1) € [0,6(1 — L) — §), the right hand side of the
inequality 13 is negative, and so we can obtain m =0, i.e. dg(A*, Ag) <e.)

Proof. From the definition of §-pseudo-orbit:

du(F*(Ax), Ak1) <6, keN.
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Thus
dr (F*(Ao), Ar) < g,
dp (F**(Ao), Az) < dr (F*(F*(Ao)), F*(A1)) + du (F* (A1), A2) <
< Ldu(F*(Ao), Ay) +6 < L6 +6,

+k k—1 9 1— [F
dr (F*" (Ao), Ak) < LMY A PO+ Lo+ 6= -,
k=
dn(A* A < 2
H y “oo S A

From the last inequality we can obtain the lower bound for € in (12) for possible

reasonable e-approximation of A* by some member of {4}, :
1)
* < — <e.
dH(A ,Aoo)_ 1- L S €

Inequality (13) can be obtained as follows. We want to get an e-
approximation of A* by some A,, € {Ax}r, i.e.

dH(A*a Am) S &,

dH(A*,Am) < dH(A*,W*m(Ao)) + dH(F*m(Ao),Am) <
Lm 1-Lm
< — * <
< 7o du(Ao, F¥(Ao) + ——F9
< LT (A0 A) + du( Ay F*(Ag)) + 2225 <
= 1_L H\/A0, A1 H\A1, 0 1- 7 >~
Lm 1-L™
< — =
< 2 (ntao )+ o)+ L2
_ L™mdg(Ag, A1)+ 6 <e
1-L

and so, for dy(Ap, A1) > 0,
len(a(l—L)—a) 1

dp(Ag, A1) ) InL’
In the case dg(Ap, A1) = 0 we can set m := 0, because
0

dg(A*, Ap) < T <e¢, forallm >0,

and so already A is e-approximation of A*, i.e. dy(A*, Ag) < e. O
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Remark 1. Tt is easy to see (from the proof of Proposition 2) that every such
d-pseudo-orbit {Ay},”, is e-shadowed (or, more precisely, %—shadowed) by

any orbit {F*(A)}, where A € K(X) satisfies di(A4p, A) < 4.

Remark 2. In the real situation, (11) could be completed by the lower bound
for 4:

50§5<€(1—L).

Remark 3. As observed in [GG04], the application of the Shadowing Lemma
is limited just by the IMS of contractions.

3. STOCHASTIC APPROXIMATION

In [LM94] one can find a result, which is related to the approximation
of fractals of iterated function systems by random iterations of generating
contractions. We show in Proposition 3 that it is (together with Proposition 2)
applicable to multivalued fractals of certain class of iterated multifunction
systems.

Proposition 3. Let
{pi: X > K(X)|i=1,...,n}, (14)

be an iterated multifunction system of contractions with compact values and
concractivity factors L; € [0,1), i = 1,...,n, F* its Hutchinson-Barnsley
operator, and A* its multivalued fractal.

Let there exist an iterated function system of contractions

{fi: X >X|i=1,...,m}, Li€[0,1), (15)
which 61-approximates the IMS (14), i.e.
di (F*(A).[F*(4)) <61, A€ K(X),
where F* is the Hutchinson-Barnsley operator of (15).

Let

P1,...4PN, pi>07 izl:"'ana szzla
i€l
be a probabilistic vector and {&}r-, a sequence of independent random vari-
ables such that

prob(§, =) =p;, fori=1,...,n.
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For IFS with probabilities {(fi,pi),i =1,...,n}, consider its orbit {zy}r-

with an initial point xq and

xk—f—l:ffk(a:k:)a E:D,l,

Then for every xo € X and e > 0 there exist ko = ko(g) and jo = jo(e) such
that

)
prob(dug({zk, - .., xpy,}, A7) < ﬁ +e)>1—¢, (16)
for k> ko, 7> jo, and L =max{L; |i=1,...,n}.

It says the following. If we cancel the first kg or more elements of the orbit
{zr}r—y, then the probability that a sufficiently long segment zz;..., Tk ;
approximates A* with accuracy 1‘5_—1L + € is greater than 1 — ¢.

Proof. We denote by A* the fractal of (15).

The trivial case when (14) is a system of single-valued contractions (here
we can take (15)=(14) and so 1 = 0) is presented in [LM94].

For the case of a nontrivial (14), using Proposition 2, we can obtain the

following inequality

* A% <
d (A7, A% < 2,

which already gives (16). O

Our aim is to complete this result by the (numerical) inaccuracy part in the
following

Theorem 3. Let the assumptions of Proposition 3 be |fulfilled.
Let {&1}r- o be a d2-pseudo-orbit of (15) with an initial point Zo, i.e., for
all k > 0, there exists i € {1,...,m}, such that

d(Zg+1, fi(Zr)) < 02 (17)

Then for every &g € X and e > 0 there exist ko = ko(g) and jo = jo(e) such

that
o1 09

= 1-— 1
1—L+1—L+6)> g, (18)

jo, L = max{L;|i=1,...,n} and L =

prob(dug({Zk, . .., Tp+j}, A%) <

for k > kg, § >
max{IA/iH:l,...,m}.
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Proof. From the definition of d;-pseudo-orbit {Z},-, of (15), it is easy to see
that we can construct, for arbitrary zo € X, d(zo,Zo) < d2, the orbit {z;}r-,
of (15) such that zz1 = fi(x), choosing, for every k > 0, the same function
as in [17). Using Proposition 2 (and Remark 1) we can obtain the following
two Inequalities

1-L* 82
d(xy, Tp) < —0o < -,
(1, Tx) AL
00 ~ 00 62
dr({zetezo {8k }ezo) < ="
1-L
Thus, (cf. 18)
N . 42
du ({mka cen a$k+j} ) {xk, cee ,-Tk+j}) < E
The last inequality together with (16) in Proposition 3 gives (18). O

Now, Proposition 2 and Theorem 3 will be applied, in illustrating Exam-
ples 1 and 2, to a trivial system of one single-valued contraction and to an
IMS.

Example 1 (Shadowing of a single-valued contraction). Consider map (see
Fig.1)

f(x)z%a:, z€eR
10 10
9 9
8 8
7 7
6 6
y 5 5
4 A(k) 4
3 3
2 2 |
1 111 i
0 1] IR A W
01234567891 01234567891
X k

FIGURE 1. Map f(x) = %x, digitization f, and iterations w.r.t. f
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The induced map f*: L(R) — K(R) takes the form

ﬁM%:UZ@ A e K(R).

€A

f is obviously a contraction with constant %, and subsequently (cf. [AF04])
* 3 3

Thus, f* is a contraction with constant %, too.

Now, let {4,},~, be an orbit of f* in K(R) with 4y € K(R) and 4, =
f*"(Ap). Since f* is a contraction in a complete metric space (C(R),dz), A,
tends w.r.t. dg to a unique fixed-point (C(R) 2)A* = {0}.

However, in a real situation, to reach the fixed-point A* numerically, we are

restricted by limited accuracy and finite number of iterations. Inequality (13)
in Lemma 2 says how many iterations m are sufficient in order to approximate
A* with given accuracy €. Number § relates to the accuracy of a single iteration
and dp(Ap, A1) stands for the distance between the original and the first
iteration, provided (11), i.e. § < (1 — L), where L is the contraction constant.
L is related to the given map, while § depends on the technical possibilities of
computation. Inequality (11) thus relates to the highest accuracy of e.

Since we can only compute with rational numbers with limited number of
decimal places, let us only compute, for the sake of simplicity, with no decimal
place, i.e. with step 1. Considering such a mesh on R, it can be easily checked
that any subset of R can be approximated by the subsets of the mesh with
the accuracy § = % in the Hausdorff metric. Obviously, for our purpose, only
compact subsets of R will be taken into account.

Hence, working on such a %—mesh, every value of f* will be approximated
with the accuracy of § = % For I, = %,
(11), namely 2 < e(1—32), ie. e > 2, which refers to the unreachable limit of

one can make an estimate for € in

2. Since only integer multiples of ¥ are meaningful for the required accuracy,
let us take € = 5%.

Denoting by f the digitization of f (see Fig. 1), its first iteration, for Ag =
{10}, is Ay = {8}, where dr (Ao, A1) = 2.

Hence, substituting for f* into formula (13), we get

(
5(1_3y_1
m > In (% Lﬁ9.6.
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For m > 10, we have thus guaranteed the s=accuracy (¢ = 3) to approximate
A* = {0}. By practical computation, we obtain orbit {A,}, -, as follows:

AU:{lo}a A1={8}, SRR A5={3}a AG:{2}a AkZAGv kE>17,

where the Hausdorff distance dg(Ag, A*) = 2 is indeed less than ¢ = 3.

Analogously, we present the computations for Ag = [0, 10] (interval). Here,
A; = {0,...,8}, and so the estimate for m is the same, i.e. m > 10. The
iterations (see Fig.1):

Ap=1[0,10], ..., A5 =1{0,...,3}, Ag=1{0,...,2}, A= Ag, k>T,

where the Hausdorff distance dp(Ag, A*) is 2, too. Thus, even for a single-
valued contraction, we obtain multivalued %—approximation {0,1,2} of the
fixed-point {0}, iterating the digitization.

Example 2 (IMS of contractions: shadowing and stochastic generating).
Consider the following iterated multifunction system on the unite square
X =10,1] x [0,1] C R

f(0) - G G)G)
(o) - () G)ee)
()= G G)e)
f(0) -G G)0)

x
go( ) = BBU,
Yy

where ¢ : X — K(X) is a constant multivalued map, which maps every
point to letters BBU, positioned in the center of X. IMS (19) consists of a
multivalued contraction and of four single-valued contractions.

In order to apply Lemma 2, we have to find the constants in inequality (13).

1

Following the arguments in the foregoing Example 1, we can take L = 5, and
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0.5

0.4

0.2

0.17i%

0.0

FIGURE 2. 1is-approximation of fractal of IMS (19)

6= %, for two decimal places computing, and for the Manhattan metric, i.e.

d((z1,22), (y1,y2)) = |y1 — 1|+ |y2 — z2|. Then, for e = 0.1 and Ag = {(0,0)},

we have
- fomuion (). (02).(22))

di(Ag, A1) = ‘% - 0|+ ‘% —-0| = 2, and so

4 1 2
m > In (W (1=3) = W) EIEYYY
h’lg

4
3

Thus, the sufficient number of iterations is m = 5 (see Fig.2).
Furthermore, the stochastically generated fractal of IMS (19) in Fig.3 is

based on application of Theorem 3, where §; = d = ﬁ, L=1= % and
li—lL H- 1(i21i = 2%% = %. Thus, we obtain ktochastical %—approximation.

Finally, we conclude these approximations by a graphically obtained multi-
valued fractal in Figure 4.
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0.5
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Lo

FIGURE 3. Stochactically generated %—approximation of fractal
of IMS (19)
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