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Abstract. Let M be a closed convex non-empty set in a Banach space (X, ‖·‖) and let

Px = Ax + Bx be a mapping such that: (i) Ax + By ∈ M for each x, y ∈ M ; (ii) A is

continuous and AM compact; (iii) B is a contraction mapping. The theorem of Krasnoselskii

asserts that in these conditions the operator P has a fixed point in M . In this paper some

remarks about the hypothesis of this theorem are given. A variant for the cartesian product

of two operators is also considered.
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1. Introduction

Two main results of fixed point theory are Schauder’s theorem and the
contraction mapping principle. Krasnoselskii combined them into the following
result (see [5], p. 31 or [6], p. 501).

Theorem K (Krasnoselskii). Let M be a closed convex bounded non-empty
subset of a Banach space (X, ‖·‖) . Suppose that A, B map M into X such
that

i) Ax + By ∈ M, for all x, y ∈ M ;
ii) A is continuous and AM is contained in a compact set;
iii) B is a contraction mapping with constant α ∈ (0, 1) .

Then there exists x ∈ M , with

x = Ax + Bx.
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In [2] T.A. Burton remarks the difficulty to check the hypothesis i) and
replaces it with the weaker condition:

i’)

(x = Ax + By, y ∈ M) ⇒ (x ∈ M) .

The proof idea is the following: for every y ∈ M the mapping x → Bx+Ay

is a contraction. Therefore, there exists ϕ : M → M such that ϕ (y) =
Bϕ (y) + Ay, for every y ∈ M. Then the problem is reduced to prove that ϕ

admits a fixed point; to this aim Schauder’s theorem is used (see [6], p. 57).
In [3] the authors show that instead of Schauder’s theorem one can use

Schaefer’s fixed point theorem (see [5], p. 29) which yields in normed spaces
or more generally in locally convex spaces.

In the present paper, stimulated by the ideas contained in [2] and [3] we
shall continue the analysis of Krasnoselskii’s result. We shall give in addition a
variant of the result contained in [1] within we shall use Schaefer’s fixed point
theorem.

2. General results

Let (X, ‖·‖) be a Banach space, M ⊂ X be a convex closed (not necessary
bounded) subset of X. Let in addition A,B : M → X be two operators;
consider the equation

(1) x = Ax + Bx.

A way to proof that equation (1) admits solutions in M is to write (1) under
the equivalent form

(2) x = Hx

and to apply a fixed point theorem to operator H. There exist two possibilities
to build the operator H.

Case 1. The operator I −B admits a continuous inverse; then

(3) H = (I −B)−1 A.

Case 2. The operator B admits a continuous inverse; then

(4) H = B−1 (I −A) .
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If we want to apply Schauder’s theorem to operator H, then in the Case
1 we must suppose that A fulfills hypothesis ii) from Theorem K and in the
Case 2 we must suppose that I −A fulfills this hypothesis.

If we would suppose A,B : X → X, then it will exists another possibility
i.e. to consider the equation

x = (A + T ) x + (B − T ) x,

where T : X → X is an arbitrary operator chosen such that the Case 1 or the
Case 2 yields.

We state the following two general results.
Proposition 1. Suppose that
i) M is a closed convex set;
ii) I −B : X → X is an injective operator;
iii) (I −B)−1 is continuous;
iv) A : M → X is a continuous operator and A (M) is contained into a

compact set;
v) the following inequalities hold:

(5) A (M) ⊂ (I −B) (X)

(6) (I −B)−1 A (M) ⊂ M.

Then the equation (1) has solutions in M.

Indeed, by hypotheses one can apply to operator H Schauder’s fixed point
theorem. Remark that the condition (5) which assures the existence of oper-
ator H is automatically fulfilled if I −B is a surjective operator.

Proposition 2. Suppose that
i) M is a closed convex set;
ii) B : X → X is an injective operator;
iii) B−1 is a continuous operator;
iv) I − A : M → X is a continuous operator and (I −A) (M) is contained

into a compact set;
v) the following inequalities hold:

(7) (I −A) (M) ⊂ B (X)
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(8) B−1 (I −A) (M) ⊂ M.

Then the equation (1) has solutions in M.

The proof is like the proof of Proposition 1.

3. Particular results

Without loss of generality one can admit

(9) A0 = 0,

(or B0 = 0); indeed, one can write (1) under the form

x = A1x + B1x,

where A1x = Ax + B0, B1x = Bx−B0.

Clearly, the translated operators A1, B1 keep many algebraic and topological
properties of the operators A,B.

Suppose that B : X → X is a contraction mapping with constant α < 1.

By inequalities

(1− α) ‖x− y‖ ≤ ‖(I −B) x− (I −B) y‖ ≤ (1 + α) ‖x− y‖ , (∀) x, y ∈ X.

it follows in the case B0 = 0

(10) (1− α) ‖x‖ ≤ ‖(I −B) x‖ ≤ (1 + α) ‖x‖ , (∀) x ∈ X.

Admitting the hypotheses of Proposition 1 about A, let us set

hρ := sup
x∈Bρ

{‖Ax‖} ,

where

Bρ := {x ∈ X, ‖x‖ ≤ ρ} .

One has the following
Corollary 1. Suppose that B : X → X is a contraction mapping with

constant α ∈ (0, 1), B0 = 0, A : Bρ → X is continuous and A
(
Bρ

)
is compact.

If

(11) hρ ≤ (1− α) ρ,

then the equation (1) has solutions in Bρ.
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Indeed, as is known, I − B : X → X is homeomorphism. The operator H

given by (3) does exist and (11) assures the inclusion HM ⊂ M , since (10)
implies ∥∥∥(I −B)−1 x

∥∥∥ ≤ 1
1− α

‖x‖ .

Consider now the case when B is expansive, i.e. B satisfies the condition

(12) ‖Bx−By‖ ≥ β ‖x− y‖ , for all x, y ∈ X,

with β > 1.

Clearly, if B is expansive then B is injective and B−1 is continuous (it is
well known that if dim X < ∞, then every expansive mapping is surjective, so
it is a homeomorphism; since B−1 maps X into X it is a contraction mapping
having the constant 1

β ; hence every expansive mapping B : IRn → IRn admits
an unique fixed point).

From the inequalities

(13) ‖(I −B) x− (I −B) y‖ ≥ ‖Bx−By‖ − ‖x− y‖ ≥ (β − 1) ‖x− y‖ ,

it follows also I −B is injective and (I −B)−1 is continuous, since

(14)
∥∥∥(I −B)−1 x− (I −B)−1 y

∥∥∥ ≤ 1
β − 1

‖x− y‖ .

Therefore, by Proposition 1 one gets the following corollary.
Corollary 2. Suppose that B is an expansive mapping, B0 = 0 and I −B

is surjective. If A : Bρ → X is continuous with A
(
Bρ

)
compact and

(15) hρ ≤ ρ (β − 1) ,

then the equation (1) has solutions in Bρ.

One can renounce to surjectivity hypothesis of I − B replacing it by the
condition

ABρ ⊂ (I −B) X.

Consider now, as in Proposition 2 M = Bρ and set

(16) kρ := sup
x∈Bρ

{‖(I −A) x‖} .

Corollary 3. Let B : X → X be an expansive and surjective operator with
B0 = 0 and I − A : M → X a continuous operator with (I −A) Bρ compact.
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If

(17) kρ ≤ βρ,

then the equation (1) has solutions in Bρ.

Indeed, by (12) it follows for y = 0,∥∥B−1x
∥∥ ≤ 1

β
‖x‖ .

Corollary 4. Suppose that A satisfies the hypotheses of Corollary 3. Let
B : X → X be a linear injective continuous Fredholm operator having null
index. If

(18)
∥∥B−1

∥∥ ≤ ρ

kρ
,

then the equation (1) has solutions in Bρ.

An interesting particular case of Corollary 3 is the following.
Corollary 5. Suppose that
i) dim X < ∞;
ii) A : Bρ → X is continuous;
iii) B : X → X is an expansive mapping with constant β > 1.

Then, if the relation (17) yields, the equation (1) admits solutions in Bρ.

Indeed, as we remarked, by hypothesis i) it results B is homeomorphism.
Applying to H given by (4) the fixed point theorem of Brouwer one obtains
the result.

4. Results via Schaefer’s theorem

In what follows we give a particular form of Schaefer’s theorem which can
be found in [5], p. 29.

Theorem S. (Schaefer) Let (X, ‖·‖) be a normed space, H be a continuous
mapping of X into X, which maps bounded sets of X into compact sets. Then
either

I) the equation x = λHx has a solution for λ = 1
or
II) the set of all such solutions x, for 0 < λ < 1 is unbounded.
One can state now variants of Propositions 1, 2 by renouncing to complete-

ness of X.

Proposition 3. Let (X, ‖·‖) be a normed space. Suppose that
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i) A : X → X is a continuous operator with A mapping bounded sets of X

into compact sets;
ii) I −B is a homeomorphism;
iii) the set

(19) {x ∈ X, (∃) λ ∈ (0, 1) , x = λHx}

is bounded, where H is given by (3) .

Then the equation (1) admits solutions in X.

Proposition 4. Let (X, ‖·‖) be a normed space. Suppose that
i) B : X → X is a homeomorphism;
ii) I − B is a continuous operator with I − B mapping bounded sets of X

into compact sets;
iii) the set (19), where H is given by (4) , is bounded.

Then the equation (1) admits solutions in X.

5. Remarks

Reverting to Theorem K, let x be an arbitrary solution for (1) and y the
unique fixed point of B.

Setting

a := inf
x∈M

{‖Ax‖} , b := sup
x∈M

{‖Ax‖} ,

one has

‖x− y‖ = ‖Ax + Bx−By‖ ≤ ‖Ax‖+ α ‖x− y‖ ≤ b + α ‖x− y‖ ,

therefore

‖x− y‖ ≤ b

1− α
.

Similarly,

‖x− y‖ ≥ ‖Ax‖ − α ‖x− y‖ ≥ a− α ‖x− y‖ ,

hence

‖x− y‖ ≥ a

1 + α
.

Finally, between the unique fixed point of B and every fixed point of oper-
ator A + B one has the relation

(20)
a

1 + α
≤ ‖x− y‖ ≤ b

1− α
.
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If B0 = 0, then
a

1 + α
≤ ‖x‖ ≤ b

1− α
,

relation true for each solution of equation (1) .

6. Theorems of Krasnoselskii’s type for a cartesian product of

operators

In [1] the problem of the existence of solutions (x, y) for the system

(21)

{
x = F (x, y)
y = G (x, y)

One can make the same remarks like in previous sections. To obviate the
repetition we deal only with the possibility of application Schaefer’s theorem
to the problem (21) .

Let (X1, ‖·‖1) , (X2, ‖·‖2) be two Banach spaces and let F : X1×X2 → X1,
G : X1 ×X2 → X2 be two operators.

We state and prove the following result.
Theorem A. Suppose that:
i) F (x, y) is continuous with respect to y, for every x ∈ X1 fixed;
ii)

‖F (x1, y)− F (x2, y)‖1 ≤ L ‖x1 − x2‖1 , for all x1, x2 ∈ X1 and y ∈ X2,

with L ∈ (0, 1) ;
iii) there exists a constant C > 0 such that

‖F (0, y)‖1 ≤ C ‖y‖2 , for all y ∈ X2;

iv) G (x, y) is continuous on X1 ×X2;
v) G is a compact operator.
Then either the system {

x = F (x, y)
y = G (x, y)

admits a solution or the set of all such solutions for λ ∈ (0, 1) of the system{
x = λF

(
x
λ , y

)
y = λG (x, y)

is unbounded.
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Proof. Firstly we prove that if λ ∈ (0, 1] then λF
(

x
λ , y

)
is contraction

mapping with respect to x, for every y ∈ X2.

Indeed, if x ∈ X1, then x
λ ∈ X1.

Evaluate for x1, x2 ∈ X1 and y ∈ X2,∥∥∥λF
(x1

λ
, y

)
− λF

(x2

λ
, y

)∥∥∥
1

= λ
∥∥∥F

(x1

λ
, y

)
− F

(x2

λ
, y

)∥∥∥
1
≤

≤ λL
∥∥∥x1

λ
− x2

λ

∥∥∥
1

= L ‖x1 − x2‖1 .

Consider y ∈ X2 arbitrary. Denote by g (y) the unique solution of equation

x = λF
(x

λ
, y

)
.

Therefore, for every y ∈ X2 there exists an unique g (y) ∈ X1 such that

g (y) = λF

(
g (y)

λ
, y

)
.

Define T : X2 → X2 by

(22) Ty := K (g (y) , y) , for every y ∈ X2.

We show that the hypotheses of Schaefer’s theorem are fulfilled.
Indeed, if (yn)n is a sequence converging to y in X2 as n →∞, then

‖g (yn)− g (y)‖1 =
∥∥∥∥λF

(
g (yn)

λ
, yn

)
− λF

(
g (y)

λ
, y

)∥∥∥∥
1

≤

≤ λ

∥∥∥∥F

(
g (yn)

λ
, yn

)
− F

(
g (y)

λ
, yn

)∥∥∥∥
1

+

+λ

∥∥∥∥F

(
g (y)

λ
, yn

)
− F

(
g (y)

λ
, y

)∥∥∥∥
1

≤ λL

∥∥∥∥g (yn)
λ

− g (y)
λ

∥∥∥∥
1

+

+λ

∥∥∥∥F

(
g (y)

λ
, yn

)
− F

(
g (y)

λ
, y

)∥∥∥∥
1

.

Hence,

(1− L) ‖g (yn)− g (y)‖1 ≤ λ

∥∥∥∥F

(
g (y)

λ
, yn

)
− F

(
g (y)

λ
, y

)∥∥∥∥
1

and λ
∥∥∥F

(
g(y)
λ , yn

)
− F

(
g(y)
λ , y

)∥∥∥
1
→ 0 as n → ∞ and the continuity of g

follows immediately.
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So, one has

‖Tyn − Ty‖2 = ‖G (g (yn) , yn)−G (g (y) , y)‖2

and since hypothesis iv) and y = lim
n→∞

yn it results the continuity of T.

Let M2 ∈ X2 be a bounded set. We prove that TM2 ⊂ X2 is compact.
Indeed, for y ∈ M2 we have succesively

‖g (y)‖1 =
∥∥∥∥λF

(
g (y)

λ
, y

)∥∥∥∥
1

= λ

∥∥∥∥F

(
g (y)

λ
, y

)∥∥∥∥
1

≤

≤ λ

∥∥∥∥F

(
g (y)

λ
, y

)
− F (0, y)

∥∥∥∥
1

+ λ ‖F (0, y)‖1 ≤

≤ λL

∥∥∥∥g (y)
λ

− 0
∥∥∥∥

1

+ λ ‖F (0, y)‖1 ≤

≤ L ‖g (y)‖1 + λC ‖y‖2 .

It results
‖g (y)‖1 ≤

λC

1− L
‖y‖2 , for all y ∈ M2.

Therefore the set g (M2) is bounded in X1. Since the set g (M2) × M2 is
bounded in X1 ×X2 and from hypothesis v) it follows that the set

T (M2) = G (g (M2)×M2)

is compact in X2.

By applying Schaefer’s theorem one gets either the equation

y = Ty

admits solutions in X2 or the set of all solutions for λ ∈ (0, 1) of the equation

y = λTy

is unbounded.
Equivalently, either the system{

x = F (x, y)
y = G (x, y)

admits a solution (g (y0) , y0) or the set of all such solutions (g (y0) , y0) for
λ ∈ (0, 1) of the system {

x = λF
(

x
λ , y

)
y = λG (x, y)
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is unbounded. �
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