Fixed Point Theory, Volume 4, No. 1, 2003, 3-13 http://www.math.ubbcluj.ro/[∼]nodeacj/journal.htm

SOME REMARKS ON KRASNOSELSKII'S FIXED POINT THEOREM

CEZAR AVRAMESCU AND CRISTIAN VLADIMIRESCU

Department of Mathematics University of Craiova, 13 A.I. Cuza Street, 1100 Craiova, ROMANIA E-mail addresses: cezaravramescu@hotmail.com vladimirescucris@hotmail.com

Abstract. Let M be a closed convex non-empty set in a Banach space $(X, \|\cdot\|)$ and let $Px = Ax + Bx$ be a mapping such that: (i) $Ax + By \in M$ for each $x, y \in M$; (ii) A is continuous and AM compact; (iii) B is a contraction mapping. The theorem of Krasnoselskii asserts that in these conditions the operator P has a fixed point in M . In this paper some remarks about the hypothesis of this theorem are given. A variant for the cartesian product of two operators is also considered.

Keywords: fixed point, compact mapping, contraction AMS Subject Classification: 47H10, 54H25

1. INTRODUCTION

Two main results of fixed point theory are Schauder's theorem and the contraction mapping principle. Krasnoselskii combined them into the following result (see [5], p. 31 or [6], p. 501).

Theorem K (Krasnoselskii). Let M be a closed convex bounded non-empty subset of a Banach space $(X, \|\cdot\|)$. Suppose that A, B map M into X such that

i) $Ax + By \in M$, for all $x, y \in M$;

ii) A is continuous and AM is contained in a compact set;

iii) B is a contraction mapping with constant $\alpha \in (0,1)$.

Then there exists $x \in M$, with

$$
x = Ax + Bx.
$$

$$
3 \\
$$

In [2] T.A. Burton remarks the difficulty to check the hypothesis i) and replaces it with the weaker condition:

i')

$$
(x = Ax + By, y \in M) \Rightarrow (x \in M).
$$

The proof idea is the following: for every $y \in M$ the mapping $x \to Bx+Ay$ is a contraction. Therefore, there exists $\varphi : M \to M$ such that $\varphi(y) =$ $B\varphi(y) + Ay$, for every $y \in M$. Then the problem is reduced to prove that φ admits a fixed point; to this aim Schauder's theorem is used (see [6], p. 57).

In [3] the authors show that instead of Schauder's theorem one can use Schaefer's fixed point theorem (see [5], p. 29) which yields in normed spaces or more generally in locally convex spaces.

In the present paper, stimulated by the ideas contained in [2] and [3] we shall continue the analysis of Krasnoselskii's result. We shall give in addition a variant of the result contained in [1] within we shall use Schaefer's fixed point theorem.

2. General results

Let $(X, \|\cdot\|)$ be a Banach space, $M \subset X$ be a convex closed (not necessary bounded) subset of X. Let in addition $A, B : M \to X$ be two operators; consider the equation

$$
(1) \t\t x = Ax + Bx.
$$

A way to proof that equation (1) admits solutions in M is to write (1) under the equivalent form

$$
(2) \t\t x = Hx
$$

and to apply a fixed point theorem to operator H . There exist two possibilities to build the operator H .

Case 1. The operator $I - B$ admits a continuous inverse; then

(3)
$$
H = (I - B)^{-1} A.
$$

Case 2. The operator B admits a continuous inverse; then

(4)
$$
H = B^{-1} (I - A).
$$

If we want to apply Schauder's theorem to operator H , then in the Case 1 we must suppose that A fulfills hypothesis ii) from Theorem K and in the Case 2 we must suppose that $I - A$ fulfills this hypothesis.

If we would suppose $A, B : X \to X$, then it will exists another possibility i.e. to consider the equation

$$
x = (A + T) x + (B - T) x,
$$

where $T: X \to X$ is an arbitrary operator chosen such that the Case 1 or the Case 2 yields.

We state the following two general results.

Proposition 1. Suppose that

i) M is a closed convex set;

ii) $I - B : X \to X$ is an injective operator;

iii) $(I - B)^{-1}$ is continuous;

iv) $A: M \to X$ is a continuous operator and $A(M)$ is contained into a compact set;

v) the following inequalities hold:

$$
(5) \tA(M) \subset (I - B)(X)
$$

(6)
$$
(I-B)^{-1} A(M) \subset M.
$$

Then the equation (1) has solutions in M.

Indeed, by hypotheses one can apply to operator H Schauder's fixed point theorem. Remark that the condition (5) which assures the existence of operator H is automatically fulfilled if $I - B$ is a surjective operator.

Proposition 2. Suppose that

i) M is a closed convex set;

- ii) $B: X \to X$ is an injective operator;
- iii) B^{-1} is a continuous operator;

iv) $I - A : M \to X$ is a continuous operator and $(I - A)(M)$ is contained into a compact set;

v) the following inequalities hold:

$$
(7) \qquad \qquad (I - A) \left(M \right) \subset B \left(X \right)
$$

$$
(8) \t\t B^{-1} (I - A) (M) \subset M.
$$

Then the equation (1) has solutions in M. The proof is like the proof of Proposition 1.

3. Particular results

Without loss of generality one can admit

(9) A0 = 0,

(or $B0 = 0$); indeed, one can write (1) under the form

$$
x = A_1 x + B_1 x,
$$

where $A_1x = Ax + B0$, $B_1x = Bx - B0$.

Clearly, the translated operators A_1, B_1 keep many algebraic and topological properties of the operators A, B.

Suppose that $B: X \to X$ is a contraction mapping with constant $\alpha < 1$. By inequalities

$$
(1 - \alpha) \|x - y\| \le \|(I - B)x - (I - B)y\| \le (1 + \alpha) \|x - y\|, \quad (\forall) \ x, \ y \in X.
$$

it follows in the case $B0 = 0$

(10)
$$
(1 - \alpha) \|x\| \leq \|(I - B)x\| \leq (1 + \alpha) \|x\|, \quad (\forall) \ x \in X.
$$

Admitting the hypotheses of Proposition 1 about A , let us set

$$
h_{\rho} := \sup_{x \in \overline{B_{\rho}}} \{ ||Ax|| \},\,
$$

where

$$
\overline{B_{\rho}} := \{ x \in X, \ \|x\| \le \rho \} \, .
$$

One has the following

Corollary 1. Suppose that $B: X \rightarrow X$ is a contraction mapping with constant $\alpha \in (0,1)$, $B0 = 0$, $A : \overline{B_{\rho}} \to X$ is continuous and $A(\overline{B_{\rho}})$ is compact. If

$$
(11) \t\t\t\t\t h_{\rho} \le (1 - \alpha) \rho,
$$

then the equation (1) has solutions in $\overline{B_{\rho}}$.

Indeed, as is known, $I - B : X \to X$ is homeomorphism. The operator H given by (3) does exist and (11) assures the inclusion $HM \subset M$, since (10) implies

$$
||(I - B)^{-1}x|| \le \frac{1}{1 - \alpha} ||x||.
$$

Consider now the case when B is **expansive**, i.e. B satisfies the condition

(12)
$$
||Bx - By|| \ge \beta ||x - y||, \text{ for all } x, y \in X,
$$

with $\beta > 1$.

Clearly, if B is expansive then B is injective and B^{-1} is continuous (it is well known that if dim $X < \infty$, then every expansive mapping is surjective, so it is a homeomorphism; since B^{-1} maps X into X it is a contraction mapping having the constant $\frac{1}{\beta}$; hence every expansive mapping $B : \mathbb{R}^n \to \mathbb{R}^n$ admits an unique fixed point).

From the inequalities

(13)
$$
\|(I - B)x - (I - B)y\| \ge \|Bx - By\| - \|x - y\| \ge (\beta - 1) \|x - y\|,
$$

it follows also $I - B$ is injective and $(I - B)^{-1}$ is continuous, since

(14)
$$
\left\| (I - B)^{-1} x - (I - B)^{-1} y \right\| \le \frac{1}{\beta - 1} \|x - y\|.
$$

Therefore, by Proposition 1 one gets the following corollary.

Corollary 2. Suppose that B is an expansive mapping, $B0 = 0$ and $I - B$ is surjective. If $A : \overline{B_{\rho}} \to X$ is continuous with $A(\overline{B_{\rho}})$ compact and

(15) h^ρ ≤ ρ (β − 1),

then the equation (1) has solutions in $\overline{B_{\rho}}$.

One can renounce to surjectivity hypothesis of $I - B$ replacing it by the condition

$$
A\overline{B_{\rho}}\subset (I-B)\,X.
$$

Consider now, as in Proposition 2 $M = \overline{B_{\rho}}$ and set

(16)
$$
k_{\rho} := \sup_{x \in \overline{B_{\rho}}} \{ \|(I - A) x \| \}.
$$

Corollary 3. Let $B: X \to X$ be an expansive and surjective operator with $B0 = 0$ and $I - A : M \to X$ a continuous operator with $(I - A) \overline{B_{\rho}}$ compact.

If

$$
(17) \t\t k_{\rho} \leq \beta \rho,
$$

then the equation (1) has solutions in $\overline{B_{\rho}}$. Indeed, by (12) it follows for $y = 0$,

$$
||B^{-1}x|| \leq \frac{1}{\beta} ||x||.
$$

Corollary 4. Suppose that A satisfies the hypotheses of Corollary 3. Let $B: X \to X$ be a linear injective continuous Fredholm operator having null index. If

$$
(18)\qquad \qquad \left\|B^{-1}\right\| \le \frac{\rho}{k_{\rho}},
$$

then the equation (1) has solutions in $\overline{B_{\rho}}$.

An interesting particular case of Corollary 3 is the following.

Corollary 5. Suppose that

i) dim $X < \infty$;

ii) $A: \overline{B_o} \to X$ is continuous;

iii) $B: X \to X$ is an expansive mapping with constant $\beta > 1$.

Then, if the relation (17) yields, the equation (1) admits solutions in $\overline{B_{\rho}}$.

Indeed, as we remarked, by hypothesis i) it results B is homeomorphism. Applying to H given by (4) the fixed point theorem of Brouwer one obtains the result.

4. Results via Schaefer's theorem

In what follows we give a particular form of Schaefer's theorem which can be found in [5], p. 29.

Theorem S. (Schaefer) Let $(X, \|\cdot\|)$ be a normed space, H be a continuous mapping of X into X , which maps bounded sets of X into compact sets. Then either

I) the equation $x = \lambda Hx$ has a solution for $\lambda = 1$

or

II) the set of all such solutions x, for $0 < \lambda < 1$ is unbounded.

One can state now variants of Propositions 1, 2 by renouncing to completeness of X.

Proposition 3. Let $(X, \|\cdot\|)$ be a normed space. Suppose that

i) $A: X \to X$ is a continuous operator with A mapping bounded sets of X into compact sets;

ii) $I - B$ is a homeomorphism;

iii) the set

(19)
$$
\{x \in X, \ (\exists) \ \lambda \in (0,1), x = \lambda Hx\}
$$

is bounded, where H is given by (3) .

Then the equation (1) admits solutions in X.

Proposition 4. Let $(X, \|\cdot\|)$ be a normed space. Suppose that

i) $B: X \to X$ is a homeomorphism;

ii) $I - B$ is a continuous operator with $I - B$ mapping bounded sets of X into compact sets;

iii) the set (19) , where H is given by (4) , is bounded.

Then the equation (1) admits solutions in X.

5. Remarks

Reverting to Theorem K, let x be an arbitrary solution for (1) and y the unique fixed point of B.

Setting

$$
a := \inf_{x \in M} \left\{ \|Ax\| \right\}, b := \sup_{x \in M} \left\{ \|Ax\| \right\},\
$$

one has

$$
||x - y|| = ||Ax + Bx - By|| \le ||Ax|| + \alpha ||x - y|| \le b + \alpha ||x - y||,
$$

therefore

$$
||x - y|| \le \frac{b}{1 - \alpha}.
$$

Similarly,

$$
||x - y|| \ge ||Ax|| - \alpha ||x - y|| \ge a - \alpha ||x - y||,
$$

hence

$$
||x - y|| \ge \frac{a}{1 + \alpha}.
$$

Finally, between the unique fixed point of B and every fixed point of operator $A + B$ one has the relation

(20)
$$
\frac{a}{1+\alpha} \le ||x-y|| \le \frac{b}{1-\alpha}.
$$

If $B0 = 0$, then

$$
\frac{a}{1+\alpha} \le ||x|| \le \frac{b}{1-\alpha},
$$

relation true for each solution of equation (1).

6. Theorems of Krasnoselskii's type for a cartesian product of **OPERATORS**

In [1] the problem of the existence of solutions (x, y) for the system

(21)
$$
\begin{cases} x = F(x, y) \\ y = G(x, y) \end{cases}
$$

One can make the same remarks like in previous sections. To obviate the repetition we deal only with the possibility of application Schaefer's theorem to the problem (21).

Let $(X_1, \|\cdot\|_1)$, $(X_2, \|\cdot\|_2)$ be two Banach spaces and let $F: X_1 \times X_2 \to X_1$, $G: X_1 \times X_2 \rightarrow X_2$ be two operators.

We state and prove the following result.

Theorem A. Suppose that:

i) $F(x, y)$ is continuous with respect to y, for every $x \in X_1$ fixed; ii)

$$
||F(x_1, y) - F(x_2, y)||_1 \le L ||x_1 - x_2||_1
$$
, for all $x_1, x_2 \in X_1$ and $y \in X_2$,

with $L \in (0,1)$;

iii) there exists a constant $C > 0$ such that

$$
||F(0, y)||_1 \le C ||y||_2
$$
, for all $y \in X_2$;

iv) $G(x, y)$ is continuous on $X_1 \times X_2$;

v) G is a compact operator.

Then either the system

$$
\begin{cases}\nx = F\left(x, y\right) \\
y = G\left(x, y\right)\n\end{cases}
$$

admits a solution or the set of all such solutions for $\lambda \in (0,1)$ of the system

$$
\begin{cases}\nx = \lambda F\left(\frac{x}{\lambda}, y\right) \\
y = \lambda G\left(x, y\right)\n\end{cases}
$$

is unbounded.

Proof. Firstly we prove that if $\lambda \in (0,1]$ then $\lambda F\left(\frac{x}{\lambda}\right)$ $(\frac{x}{\lambda}, y)$ is contraction mapping with respect to x, for every $y \in X_2$.

Indeed, if $x \in X_1$, then $\frac{x}{\lambda} \in X_1$.

Evaluate for $x_1, x_2 \in X_1$ and $y \in X_2$,

$$
\left\|\lambda F\left(\frac{x_1}{\lambda},y\right) - \lambda F\left(\frac{x_2}{\lambda},y\right)\right\|_1 = \lambda \left\|F\left(\frac{x_1}{\lambda},y\right) - F\left(\frac{x_2}{\lambda},y\right)\right\|_1 \le
$$

$$
\leq \lambda L \left\|\frac{x_1}{\lambda} - \frac{x_2}{\lambda}\right\|_1 = L \left\|x_1 - x_2\right\|_1.
$$

Consider $y \in X_2$ arbitrary. Denote by $g(y)$ the unique solution of equation

$$
x = \lambda F\left(\frac{x}{\lambda}, y\right).
$$

Therefore, for every $y \in X_2$ there exists an unique $g(y) \in X_1$ such that

$$
g(y) = \lambda F\left(\frac{g(y)}{\lambda}, y\right).
$$

Define $T: X_2 \to X_2$ by

(22)
$$
Ty := K(g(y), y), \text{ for every } y \in X_2.
$$

We show that the hypotheses of Schaefer's theorem are fulfilled.

Indeed, if $(y_n)_n$ is a sequence converging to y in X_2 as $n \to \infty$, then

$$
\|g(y_n) - g(y)\|_1 = \left\|\lambda F\left(\frac{g(y_n)}{\lambda}, y_n\right) - \lambda F\left(\frac{g(y)}{\lambda}, y\right)\right\|_1 \le
$$

$$
\leq \lambda \left\|F\left(\frac{g(y_n)}{\lambda}, y_n\right) - F\left(\frac{g(y)}{\lambda}, y_n\right)\right\|_1 + \lambda \left\|F\left(\frac{g(y)}{\lambda}, y_n\right) - F\left(\frac{g(y)}{\lambda}, y\right)\right\|_1
$$

$$
\leq \lambda L \left\|\frac{g(y_n)}{\lambda} - \frac{g(y)}{\lambda}\right\|_1 + \lambda \left\|F\left(\frac{g(y)}{\lambda}, y_n\right) - F\left(\frac{g(y)}{\lambda}, y\right)\right\|_1.
$$

Hence,

$$
(1 - L) \|g(y_n) - g(y)\|_1 \le \lambda \left\| F\left(\frac{g(y)}{\lambda}, y_n\right) - F\left(\frac{g(y)}{\lambda}, y\right) \right\|_1
$$

and $\lambda \parallel$ $F\left(\frac{g(y)}{\lambda}\right)$ $\left(\frac{y}{\lambda}, y_n\right) - F\left(\frac{g(y)}{\lambda}\right)$ $\left\| \frac{y}{\lambda}, y \right\rangle \Big\|_1 \to 0$ as $n \to \infty$ and the continuity of g follows immediately.

So, one has

$$
||Ty_n - Ty||_2 = ||G(g(y_n), y_n) - G(g(y), y)||_2
$$

and since hypothesis iv) and $y = \lim_{n \to \infty} y_n$ it results the continuity of T.

Let $M_2 \in X_2$ be a bounded set. We prove that $TM_2 \subset X_2$ is compact. Indeed, for $y \in M_2$ we have succesively

$$
\|g(y)\|_1 = \left\|\lambda F\left(\frac{g(y)}{\lambda}, y\right)\right\|_1 = \lambda \left\|F\left(\frac{g(y)}{\lambda}, y\right)\right\|_1 \le
$$

\n
$$
\leq \lambda \left\|F\left(\frac{g(y)}{\lambda}, y\right) - F(0, y)\right\|_1 + \lambda \left\|F(0, y)\right\|_1 \le
$$

\n
$$
\leq \lambda L \left\|\frac{g(y)}{\lambda} - 0\right\|_1 + \lambda \left\|F(0, y)\right\|_1 \le
$$

\n
$$
\leq L \left\|g(y)\right\|_1 + \lambda C \left\|y\right\|_2.
$$

It results

$$
||g(y)||_1 \le \frac{\lambda C}{1-L} ||y||_2
$$
, for all $y \in M_2$.

Therefore the set $g(M_2)$ is bounded in X_1 . Since the set $g(M_2) \times M_2$ is bounded in $X_1 \times X_2$ and from hypothesis v) it follows that the set

$$
T\left(M_{2}\right)=G\left(g\left(M_{2}\right)\times M_{2}\right)
$$

is compact in X_2 .

By applying Schaefer's theorem one gets either the equation

$$
y = Ty
$$

admits solutions in X_2 or the set of all solutions for $\lambda \in (0,1)$ of the equation

$$
y = \lambda Ty
$$

is unbounded.

Equivalently, either the system

$$
\begin{cases}\nx = F(x, y) \\
y = G(x, y)\n\end{cases}
$$

admits a solution $(g(y_0), y_0)$ or the set of all such solutions $(g(y_0), y_0)$ for $\lambda \in (0,1)$ of the system

$$
\begin{cases}\nx = \lambda F\left(\frac{x}{\lambda}, y\right) \\
y = \lambda G\left(x, y\right)\n\end{cases}
$$

is unbounded. $\hfill \square$

REFERENCES

- [1] C. Avramescu, On a fixed point theorem, Studii și Cercetări Matematice, 9, Tome 22, 2(1970), pp. 215-220 (in Romanian).
- [2] T.A. Burton, A fixed point theorem of Krasnoselskii, Appl. Math. Letters, 11(1998), pp. 85-88.
- [3] T.A. Burton and C. Kirk, A fixed point theorem of Krasnoselskii's type, Math. Nachr., 189(1998), pp. 23-31.
- [4] M.A. Krasnoselskii, Some problems of nonlinear analysis, American Mathematical Society Translations, Ser. 2, 10(1958), pp. 345-409;
- [5] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1980.
- [6] E. Zeidler, Nonlinear functional analysis and its applications, I. Fixed- point theorems, Springer-Verlag, New-York, 1991.