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1. Introduction

Let M be a nonempty set and ≤, some quasi-ordering (i.e., a reflexive and
transitive relation) over it. Also, let x ` ϕ(x) be a function from M to [0,∞[.
Call the point z in M , (≤, ϕ)-maximal, in case
(1D1) w ∈M, z ≤ w =⇒ ϕ(z) = ϕ(w).
(This may be compared with the property of being (strongly) (≤)-maximal
(1D2) w ∈M, z ≤ w =⇒ z = w.
Note that, in general, these are distinct ones). Concerning the existence of
such points, the following ordering principle in Brezis and Browder [6] is basic
to considerations below.

Theorem 1. Suppose that
(1H1) each ascending sequence in M has an upper bound
(1H2) x ≤ y =⇒ ϕ(x) ≥ ϕ(y) (i.e.: ϕ is decreasing).
Then, for each x ∈ M there exists a (≤, ϕ)-maximal element z ∈ M with
x ≤ z. So, if in addition, the pair (≤, ϕ) satisfies
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(1H3) x, y ∈M, x ≤ y, ϕ(x) = ϕ(y) =⇒ x = y,
the (≤, ϕ)-maximal element z above is (≤)-maximal too; hence (≤) is a Zorn
quasi-order.

A basic particular case of this result may be described as follows. Let (X, d)
be a complete metric space; and ψ : X → [0,∞[, a lower semicontinuous (in
short: lsc) function. The relation introduced as
(1D3) x ≤(ψ) y if and only if d(x, y) ≤ ψ(x)− ψ(y)
is an order (i.e.: antisymmetric quasi-order) which also fulfils (1H1); and,
moreover, (1H2)+(1H3) hold too (with ψ in place of ϕ). We thus derived

Theorem 2. The following are valid
(1.1) ≤(ψ) is a Zorn ordering (cf. the convention above)
(1.2) if the selfmap T of X fulfils evaluations like
(1H4) d(x, Tx) ≤ ψ(x)− ψ(Tx), for each x ∈ X,
then T has at least one fixed point in X.

Now, the first part of this is nothing but the variational Ekeland’s principle
[9]; while the second one is the Caristi-Kirk fixed point theorem [7]. Remember
that, the statements above found some interesting applications to (nonlinear)
mapping theory (cf. Kirk and Caristi [12]) or the normal solvability theory (as
developed by Downing and Ray [8]). Therefore, an extension of these is not
only useful from a theoretical perspective, but also from a practical one. For
example, a lot of such enlargements of Theorem 1 was obtained in the papers
by Altman [2] and Turinici [16]; see also Anisiu [4] or Kang and Park [11]. A
recent contribution in this area is the one obtained in the paper by Bae, Cho
and Yeom [5]. It is our aim in the following to show that, in the last analy-
sis, this is equivalent with the Brezis-Browder ordering principle (subsumed to
Theorem 1); details will be given in Section 2. Further, in Section 3, we show
that the fixed point result (extending Theorem 2) established (via the quoted
principle) by these authors is equivalent with the Caristi-Kirk fixed point the-
orem. Finally, in Section 4, the impact of these conclusions on the solvability
results obtained by the same authors is analyzed. Some other aspects will be
discussed elsewhere.

2. Main result

Let M be a nonempty set and /, some reflexive relation over it. Also, let
ϕ : M → [0,∞[ be a function. Call the point z ∈M , (/, ϕ)-maximal, if
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(2D1) w ∈M, z / w =⇒ ϕ(z) = ϕ(w).
(This may be compared with the property of being (strongly) (/)-maximal
(2D2) w ∈M, z / w =⇒ z = w.
Note that, in general, these are distinct notions). To establish under which
conditions such elements exist, we have to introduce some conventions. Call
the sequence (xn) in M , (/)-ascending when
(2D3) xn / xn+1, for all ranks n.
Also, we say that y ∈M is an asymptotic (/)-upper bound of (xn) provided
(2D4) for each n there exists m ≥ n with xm / y.
We are now in position to give an appropriate answer to the precised question.

Theorem 3. Suppose that

(2H1)

{
each (/)-ascending sequence in M has an
asymptotic (/)-upper bound

(2H2) x / y =⇒ ϕ(x) ≥ ϕ(y) (i.e.: ϕ is (/)-decreasing).
Then, for each x ∈M there exists a (/, ϕ)-maximal element z ∈M with
(2.1) x / u1 / ... / uk / z, for some u1, ..., uk in M and some k ≥ 1.
So, if in addition, the pair (/, ϕ) satisfies
(2H3) x, y ∈M, x / y, ϕ(x) = ϕ(y) =⇒ x = y,
the (/, ϕ)-maximal element z above is (/)-maximal too; and then, (/) is a Zorn
type relation.

The second part of this statement is just the relational principle in Bae, Cho
and Yeom [5]. Moreover, as explicitly stated in that paper, their contribution
extends Theorem 1; hence, so does Theorem 3. But, in this case, the question
arises of which is the effectiveness of this extension. The answer is contained
in

Proposition 1. We have
(2.2) Theorem 1 =⇒ Theorem 3.
Hence (cf. the above) these two statements are logically equivalent to each
other.

Proof. Let (≤) be the quasi-order on M introduced by the convention

(2D5)

{
x ≤ y if and only if x / v1 / ... / vh / y,
for some v1, ..., vh ∈M and some h ≥ 1.

From (2H1)+(2H2), it is not hard to see that conditions (1H1)+(1H2) are
fulfilled for the pair (≤, ϕ). So, by the conclusion of Theorem 1 (the first
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half), it follows that for each x ∈ M there exists a (≤, ϕ)-maximal element
z ∈M with x ≤ z. And this, along with the generic inclusion
(2.3) (≤, ϕ)- maximal =⇒ (/, ϕ)-maximal
establishes the first half of the conclusion in Theorem 3. For the second half
of the same, it will sufice noting that
(2.4) (2H3) =⇒ (1H3), in the context of (2H2).
So, by the conclusion of Theorem 1 (the second half), the (≤, ϕ)-maximal
element z above is even (≤)-maximal. And this, combined with the generic
inclusion
(2.5) (≤)-maximal =⇒ (/)-maximal
ends the argument. The proof is complete. �

As a consequence, the statement in Bae, Cho and Yeom [5] is logically equiv-
alent with the Brezis-Browder ordering principle. This may have a theoretical
impact upon it; but, from a practical perspective, the situation is different.
Finally, we must note that some other versions of Theorem 1 – distinct from
the above one – were obtained by Altman [2] and Anisiu [4]; see also Kang
and Park [11]. But, as precised in Turinici [17], these are logically equivalent
with Theorem 1. For non-sequential extensions of this type we refer to Isac
[10] and the references therein.

3. Caristi-Kirk statements

Let (X, d) be a complete metric space; and x ` Tx, some selfmap of X.
The following fixed point result established in Bae, Cho and Yeom [5] is our
starting point.

Theorem 4. Suppose that, for some lsc function ϕ : X → [0,∞[ and some
function c : [0,∞[→ [0,∞[ with
(3H1) c is upper semicontinuous (in short: usc) over its domain
one has evaluations like
(3H2) d(x, Tx) ≤ max{c(ϕ(x)), c(ϕ(Tx))}(ϕ(x)− ϕ(Tx)), x ∈ X.
Then, T has at least one fixed point in X.

The (rather involved) proof of this result is based on Theorem 3 above (the
variant with (2H3) being accepted). In particular, when
(3D1) c(t) = γ, for all t ≥ 0 and some γ > 0
this statement is nothing but the (standard) Caristi-Kirk fixed point theorem.
Now, in the light of the developments made in Section 2, is is natural to ask
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of whether or not is this extension effective. As we shall see below, the answer
is negative; this will remain valid even for a certain counterpart of Theorem
4 which includes it as a particular case. Precisely, let H : [0,∞[2→ [0,∞[
be a function. (The objects of this type, with a practical relevance for us,
correspond to the choices
(3D2) H(t, s) = max(t, s), H(t, s) = min(t, s), t, s ≥ 0.
But, these are not the only possible ones). Further, let θ be arbitrary fixed in
]0,∞[; and h : [0, θ] → [0,∞[ be a function with
(3H3) h is continuous and increasing on [0, θ].
We say that the function c : [0,∞[→ [0,∞[ is (H,h)-proper on [0, θ], if

(3D3) H(c(t), c(s)) ≤ h(t)− h(s)
t− s

, for all (t, s) with 0 < s < t < θ.

When h (taken as in (3H3)) is generic, we shall say that c is H-proper on
[0, θ]; note that this last property is hereditary with respect to θ.

Having these precised, the following fixed point result is naturally coming
into our discussion.

Theorem 5. Suppose that, for some lsc function ϕ : X → [0,∞[, some
function H : [0,∞[2→ [0,∞[ and some function c : [0,∞[→ [0,∞[ with
(3H4) c is H-proper on [0, θ], for all θ > 0
one has evaluations like
(3H5) d(x, Tx) ≤ H(c(ϕ(x)),H(c(ϕ(Tx)))(ϕ(x)− ϕ(Tx)), x ∈ X.
Then, T has at least one fixed point in X.

Concerning the relationships with the preceding statement, note that a con-
dition like

(3H6)

{
c is locally bounded on [0,∞[
(µ(c, θ) = sup{c(t); 0 ≤ t ≤ θ} <∞, for each θ > 0)

implies

(3H4) (with H = max); because, for each θ > 0, (3D3) holds with
(3D4) h(t) = µ(c, θ)t, t ∈ [0, θ].
This, along with (3H1) =⇒ (3H6), shows that Theorem 4 is a particular case
of this statement. On the other hand, a condition like (3H7) c is decreasing

on ]0,∞[ and h(t) =
∫ t

0
c(s)ds <∞, ∀t ≥ 0

also gives (3H4) (with H = min); the proof being straightforward, we do not
give details. It is worth remarking at this moment that the written condition
is not reductible to (3H6) above. For, e.g., the function
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(3D5)

{
c(t) = arbitrary, for t = 0,

= t−1/2, for t > 0
fulfills evidently (3H7) (with h(t) = 2t1/2, t ≥ 0) but not (3H6); hence the
claim. So, technically speaking, Theorem 5 appears as a strict extension of
Theorem 4. But, from a logical viewpoint, the situation is opposite. This is
precised in

Proposition 2. We have
(3.1) Theorem 2 =⇒ Theorem 5 (=⇒ Theorem 4).
Hence, these atatements are logically equivalents to each other.

Proof. Clearly, all we have to do is to verify the former implication. Let
the premises of Theorem 5 be realized. Fix some θ > inf ϕ(X); note that (by
definition)
(3.2) ϕ(x0) < θ, for at least one x0 ∈ X.
Denote for simplicity
(3D5) X(x0) = {x ∈ X;ϕ(x) ≤ ϕ(x0)} (where x0 is as above).
By the lsc assumption about ϕ, this subset is (nonempty and) closed (hence
complete). Suppose (by contradiction) that
(3H8) T has no fixed point in X(x0).
As a direct consequence of this, we must have
(3.3) H(c(ϕ(x)), c(ϕ(Tx))) > 0, for all x ∈ X(x0).
(Because, any point with the opposite property is, by (3H5), fixed under T ,
contradiction). This, in turn, yields a relation like
(3.4) ϕ(x) ≥ ϕ(Tx)(≥ 0), for each x ∈ X(x0);
or, in other words, T is a selfmap of X(x0). Moreover, either of the inequalities
above must be strict; i.e.,
(3.5) ϕ(x) > ϕ(Tx)(> 0), for each x ∈ X(x0).
[For otherwise, if ϕ(x1) = ϕ(Tx1), then x1 is fixed under T , by (3H5); and,
if ϕ(Tx2) = 0, then Tx2 is fixed under T by the selfmap property, (3.4) and
(3H5). Hence the claim]. Let t ` h(t) be the continuous increasing function
from [0, θ] to [0,∞[ given by (3H4) and put
(3D7) ψ(x) = h(ϕ(x)), x ∈ X(x0).
This function is easily seen to be lsc over X(x0). Moreover, by (3H4)+(3H5)
one has (via (3.5))
(3.6) d(x, Tx) ≤ ψ(x)− ψ(Tx), for all x ∈ X(x0).
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This shows that Theorem 2 is applicable to these data. And, from its conclu-
sion, T has at least one fixed point in X(x0), in contradiction to (3H8). The
proof is complete. �

In particular, this shows that the (subsumed to Theorem 4) fixed point
result in Bae, Cho and Yeom [5] is but a reformulation of the Caristi-Kirk
fixed point theorem. This fact, aside from simplifying its proof, gives us the
exact place of Theorem 4 within this series of statements. For a number of
related aspects we refer to the paper by Ray and Walker [15]; see also Park
and Bae [13].

4. Applications to mapping theory

Let X be an abstract set and (Y, ||.||) a Banach space. Take a mapping
x ` P (x) from X to Y . Loosely speaking, the objective of the (nonlinear)
mapping theory is to determine those (infinitesimal type) conditions upon our
data so that a certain y ∈ Y be in the range of P ; or, equivalently (by a
suitable translation) that the operator equation
(OE) P (x) = 0 (=the null element of Y )
should have a solution in X. Some basic results in this direction were obtained
under the regularity assumption
(4H1) P has a closed range (P (X) is closed in Y ).
[The closed graph case - which necessitates a topological structure upon X

- will be not discussed here]. For example, in the Altman’s monograph
[1,ch.5,Sect.2], the following answer to the posed question is given (by means
of a transfinite induction argument).

Theorem 6. Suppose that a constant γ in [0, 1[ may be found so as: for
each x ∈ X there exist x′ ∈ X and ε in ]0, 1] with
(4H2) ||P (x′)− (1− ε)P (x)|| ≤ εγ||P (x)||.
Then, (OE) has at least on solution in X.

A different way of proving this result is the one described by Theorem 2;
see, for instance, Kirk and Caristi [12]. Further extensions of it were given
by Altman [3], Turinici [18] and in the references therein. Here, we shall
concentrate on the following version of the statement above. (The regularity
condition (4H1) prevails).

Theorem 7. Suppose that, a function c : [0,∞[→ [0, 1[ with
(4H3) µ(c, θ) < 1, for each θ > 0 (cf. (3H6))
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may be found so as: for each x ∈ X, there exists x′ ∈ X and ε in ]0, 1] with
(4H4) ||P (x′)− (1− ε)P (x)|| ≤ εmax{c(||P (x)||), c(||P (x′)||)}||P (x)||.
Then, conclusion of Theorem 6 is retainable.

In particular, (4H3) holds under (3H1). Hence, this result includes the con-
tribution in this area due to Bae, Cho and Yeom [5], obtained via Theorem
4. On the other hand, if the function t ` c(t) is taken as in (3D1), Theo-
rem 7 reduces to the Altman’s result (subsumed to Theorem 6). Now, by the
developments in the preceding section, one may conjecture that the converse
implication must be true as well. It is our objective to show that this is indeed
the case.

Proposition 3. We have
(4.1) Theorem 6 =⇒ Theorem 7.
Hence, these results are logically equivalent to each other.

Proof. Fix some x0 in X and put
(4D1) X0 = {x ∈ X; ||P (x)|| ≤ τ}, where τ = ||P (x0)||.
Clearly, the closed range assumption (4H1) remains true with X0 in place of
X. Denote also
(4D2) γ = µ(c, τ) (where τ is the above one).
Let x be arbitrary fixed in X0. By the (accepted) premises of Theorem 7,
there must be some x′ in X and ε in ]0, 1] such that (4H4) be valid. As a
consequence,
(4.2) ||P (x′)− (1− ε)P (x)|| ≤ ε||P (x)|| (if we take (4H3) into account);
and this, in turn, yields
(4.3) ||P (x′)|| ≤ (1− ε)||P (x)||+ ε||P (x)|| = ||P (x)|| (≤ τ).
Hence, the point x′ given by (4H4) belongs to X0. This, again by the quoted
relation gives (cf. (4D2) above)
(4.4) ||P (x′)− (1− ε)P (x)|| ≤ εγ||P (x)||.
Summing up, Theorem 6 applies to our data; and, from this, conclusion is
clear. �

In other words, the (nonlinear) mapping result in Bae, Cho and Yeom
[op.cit.] is equivalent with Altman’s. For a number of related aspects we
refer to Ray [14] and the references therein.
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