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Abstract. Perov’s theorem states that if (X, d) is a generalized complete metric space

(the metric is d : X × X → Rn) and the operator T : X → X satisfies the inequallity

d(T (x), T (y)) ≤ A · d(x, y) for all x, y ∈ X, where A is a matrix convergent to zero (it’s

eigenvalues are in the interior of the unit disc), then the operator T is a Picard operator. In

[1] we have generalized the Banach fixed point theorem replacing the Lipschitz condition by

the following more general (so called convex contraction condition, see [4]) metric condition

d(T px, T py) ≤
p−1P

j=0

αj · d(T jx, T jy) for all x, y ∈ X

where (aj)j=1,n are fixed numbers and
p−1P

j=0

αj < 1. In this short note we answer the problem

1 from [1] by proving that this convex contraction condition guaranties the Picard quality of

the operator in a generalized metric space too if (aj)j=1,n are fixed matrices and
p−1P

j=0

‖αj‖ < 1

with an arbitrary matrix norm.
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1. Perov’s fixed point theorem

Let (X, d) be a generalized complete metric space and T : X → X an
operator. The metric d : X ×X → Rn has the following properties:

1. d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x);
3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (the inequalities are defined

by components in Rn).
The Perov fixed point theorem states that if d(Tx, Ty) ≤ A · d(x, y) for all

x, y ∈ X, where A is a matrix convergent to zero, then T has an unique fixed
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point and this can be obtained by succesive approximation (so T is a Picard
operator).

In [1] we’ve introduced the following notions:

1. The sequence (an)n≥1 is subconvex of order p if an+p ≤
p−1∑
i=0

αi · an+i for

all n ≥ 1 where αi ∈ (0, 1) for i = 0, p− 1 and
p−1∑
i=0

αi ≤ 1.

2. A sequence (an)n≥1is subconvex if there exists p ≥ 1 such that the
sequence is subconvex of order p.

3.The sequence (an)n≥1 is a convex sequence if there exist a natural number

p ≥ 1 such that an+p =
p−1∑
j=0

αj ·an+j ∀n ≥ 1 where αi ∈ (0, 1) for i = 0, p− 1

and
p−1∑
i=0

αi = 1.

and we’ve proved the following theorem:
Theorem 1. a) Every positive subconvex sequence is convergent.

b) If
p−1∑
i=0

αi < 1 and the sequence (an)n≥1 satisfies the rela-

tions an+p ≤
p−1∑
j=0

αj · an+j for all n ≥ 1 where αi ∈ (0, 1) for i = 0, p− 1

, then (an)n≥1 is convergent to 0 and
∞∑

k=1

ai is convergent.

The next theorem is a generalization of Perov’s fixed point theorem.
Theorem 2. If (X, d) is a generalized complete metric space and T : X →

X an operator which satisfies the condition d(T px, T py) ≤
p−1∑
j=0

Λj ·d(T jx, T jy)

for all x, y ∈ X and
p−1∑
j=0

‖Λj‖m < 1 with an arbitrary matrix norm ‖·‖m (which

is subordinated to a vector norm ‖·‖v on Rn), then
a) T has an unique fixed point x∗

b) the sequence (xn)n≥1defined with xn+1 = T (xn) is convergent
to x∗ for all x0 ∈ X.

c)‖d(x∗, xn)‖v ≤
∞∑

j=0
cj, where cn+p =

p−1∑
j=0

‖Λj‖m · cn+j for all

n≥ 1 and cj =
∥∥d

(
T j+1x, T jx

)∥∥
v

for 0 ≤ j ≤ p− 1.
Proof of theorem 2
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The sequence an =
∥∥d

(
Tn+1x, Tnx

)∥∥
v

= ‖d (xn, xn+1)‖v is strictly subcon-

vex because an+p ≤
p−1∑
j=0

‖Λj‖m · an+j with
p−1∑
j=0

‖Λj‖m < 1. Due to theorem 1,

lim
n→∞

an = 0 and
∞∑

n=0
an is convergent. From this we deduce

∞∑
n=0

d (xn, xn+1) is

convergent and so there exist nε such that

d(xn+m, xm) = d (Tm+nx, Tmx) ≤
n−1∑
j=0

d
(
Tm+jx, Tm+j+1x

)
=

n−1∑
j=0

d (xm+j , xm+j+1) ≤ ε if m ≥ nε.

Hence the sequence (xn)n≥1 is Cauchy sequence. X is a complete metric
space, so there exist x∗ such that lim

n→∞
xn = x∗. Using lim

n→∞
d (xn, xn+1) = 0 we

deduce that x∗ is a fixed point for T . Taking m fixed in the above inequality
and n →∞ we deduce that

‖d(x∗, xm)‖v ≤
∞∑

j=0
cj , where cn+p =

p−1∑
j=0

‖Λj‖m · cn+j ∀n ≥ 1 and

cj =
∥∥d

(
T j+1x, T jx

)∥∥
v

for 0 ≤ j ≤ p− 1.
x∗ is a fixed point for T . By the other hand the given relation implies that

T can’t have more than one fixed point, so the theorem is proved.

2. An application

In iterative numerical solutions of a linear algebraic system it is often used
the Banach fixed point theorem. Using theorem 2 we have the following con-
ditions on the convergence of an iterative method:

Theorem 3. If Q ∈ Mn(R) is a matrix, α is a positive number such that∥∥Q2 − αQ
∥∥

m
< 1 − α then the sequence xn+1 = b + Q · xn with x0 ∈ Rn is

convergent to the unique solution of the system (In −Q)x = b.
Proof. Let’s consider the operator T : Rn → Rn defined by T (x) = b+Q ·x.

T (T (x)) = b + Q · b + Q2 · x , so T 2(x)− T 2(y) = Q2(x− y) and∥∥T 2(x)− T 2(y)
∥∥

v
=

∥∥Q2(x− y)
∥∥

v
≤

∥∥(Q2 − αQ)(x− y)
∥∥

v
+ ‖αQ(x− y)‖v ≤

≤
∥∥Q2 − αQ

∥∥
m
‖x− y‖v + α · ‖T (x)− T (y)‖v <

(1− α) ‖x− y‖v + α · ‖T (x)− T (y)‖v

From this we deduce that the operator T is a Picard operator, so theorem
3 is true.
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Remark. If Q =

[
1/2 −2/3
2/3 1/2

]
and α = 1/8 we have

Q2 − αQ =

[
−37/144 −7/12

7/12 −37/144

]
so our theorem can be applied using the Minkovski matrix-norm. Indeed∥∥Q2 − αQ

∥∥ = 121/144 < 7/8. Using the same norm we have ‖Q‖ = 7/6 > 1
so the Banach fixed point theorem can’t be applied and neither the Perov
fixed point theorem, if we use this norm. In most applications it isn’t used
the euclidian matrix metric (because it needs the eigenvalues).
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