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1. INTRODUCTION

In this paper, motivated by chapter 12 in [1], we present some existence

results for the system of periodic operator equations:

an { v (t) — A(t)y(t) = Ny(t) for a.e. t € [0,T]

Here N : C([0,T],R") — C([0,T],R™) ,N = (N1, Na, ..., Np,) is a continuous
operator.

By a solution of (1.1) we mean an absolutely continuous function

y: [OvT] _)Rn) Yy = (yl)y27"'7yn)a yGAC([OvT]an)

which satisfies (1.1) almost everywhere on [0,T]. Any such a function is ex-
tended to R by periodicity.
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First we present a general existence result, and next, we discuss the case when

A is identically zero and N is the integro-differential operator with delays:

(1.2) Ny(t) = r(t)+g(t,yt—01))yt—01)+ ht,y(t —62))
T

" /O Fa(t, $) fa (5. y(s))ds + /0 Fat, 5) fa(s. y(s))ds

The particular case of a single equation without delays was discussed in [1].
Our results extend those in [1] in two directions: to systems of equations,
and to delays equations. In addition, our results can be applied to high order
equations (by reducing them to systems of first order).

2. A GENERAL EXISTENCE PRINCIPLE

First we present a general existence principle for (1.1) which in particular,
for n =1, reduces to Theorem12.1.1 in [1].

Theorem 2.1. Assume

(2.1) N :C([0,T],R") — L*([0,T],R") is a continuous operator,

for each constant B > 0 there exists hg € L*[0,T) such that

(2) | foranyy e CQO.TL R with lyly = sup ly(t)]g: < B
te[0,T
we have ||Ny(t)||gn < hp(t) for a.e. t €[0,T7,
and
T
/ A(s)ds
(2.3) A e LY[0,T), Mpn(R)) with I, — e Jo invertible.

Here I, is the unity matriz from Mp,(R), and for a matric D € M,,(R)

o0
1
D ~ Nk
by e~ we mean E k!D .
k=0
In addition assume that there is a constant M independent of X with |ly||, #

M for any solution y € AC([0,T], R") to
y'(t) — A(t)y(t) = ANy(t) a.e. t €[0,T]
y(0) = y(T)
for each X € (0,1).
Then (1.1) has at least one solution y € AC([0,T], R") with ||y, < M.

(2.4)
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Proof. We consider the operator
$: C(0,7), k") — C(0. 7], R")

given by
Sy(t) = —b(T)- (I —bT) " b (1) /0 b(s) Ny(s)ds
T
(=T 0 [ BNy

b(t) = e /ot Als)ds.

Then problem (2.4) is equivalent to the fixed point problem ASy = y.

Let U = {ye€C([0,T],R") : |lyllo < M}. We show that S : U —
C([0,T], R™) is a completely continuous operator.
First note that since A € L1([0, T], M,,,(R)), there exists m4 > 0 such that

where

t
/ |A(s)||ds < ma for all t €[0,T).
0
Here by ||A(t)|| we mean sup |a;;(t)|, where A(t) = [aij(t)]lgi,jgn'

1<i,j<n
1) Now for any y € U and any t € [0,7] we have

= |ema ool- [ anois

1, — b(T)]—lH e2ma /tT har(s)ds < my

1Syl g < |
+]

my = (14 BT -

and so S(U) is bounded.
2) For any 0 < t; <ty <T and y € U we have

ISy(t1) = Sy(ta)l g < [[B(T) - 11 = (D))

+ |67 (t2)] H/ Ny(s)ds

-t

where

[In - b(T)]_lH '€2m‘4 . HhMHLl y

Hb (t1) —b tg H/ s)Ny(s)ds

|
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[Hb t1 H/ s)Ny(s)ds

2
<Aﬁ[Hb (t) — b7 ()H-ém%uthU—+¥mAl/ |Nwad%
t1

+ |07 (t1) — b (ta)| H/ Ny(s)ds

|

t2
ety e [ Vg6 ds o 0 =6 ) el
t1
to
< M {Hb —b” ( )H ™A ha|| g + e2ma / hM(s)ds]
t1
t2
+M2 [62m‘4 / hM dS + Hb — b ( )H . €mA . ‘hMHLI:|
t1
< ™A (My+ Mo) [|[b~1 (1) =07 (82)]| - 1ha | 1
to t1
+emA . [/ hM(s)ds—/ hM(s)d.s”
0 0
/ Als
Since b~ 1(t) = e is an uniformly continuous function on [0,77] , we

have that for any € > 0 there exists d1(¢) > 0 such that |[t; —t2] < d1(e)
implies

€
"4 (My + Ma) (€4 + [lharll 1)

|67 (1) — b (t2)]| < -

t
Similarly, the function f(t) = har(s)ds is uniformly continuous on [0, 77,

0
and there exists d2(¢) > 0 such that |t; — 2] < Ja2(e) implies
€

to t1
has(s)ds — har(s)ds|| < )
[ st [ hasts| < vy e

Therefore, if |t; — t2| < min(d1(g), d2(g)) we have

[Sy(t1) — Sy(ta)l| gn <

&
<
= ema (Mg + Ma) (™A A [|ha 1)

- (M + Mo) [em“ a2 + eQmA] <e

and so S(U) is echicontinuous. Hence by the Ascoli-Arzela Theorem, S is
completely continuous. Thus, from the Leray-Schauder Theorem (see [3]), we
obtain that (1.1) has at least one solution y in AC([0,T], R™) with ||y[|, < M.
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3. EXISTENCE OF NONNEGATIVE PERIODIC SOLUTIONS

Consider the problem

(3.1) { y (t) = Ny(t) for ae.tel0,T]
y(0) = y(T)
Here we discuss the particular case when N is given by (1.2), where
T [O,T] — R™,

h, f1, f2: [0,T] x R — R",
g:[0,T] x R — Mp,(R),
k?l : [O,T] X [O,t] — R,

ks : [0,T] % [0,T] — R.

Theorem 3.1. Assume that (2.1) and (2.2) are satisfied for N given by (1.2).
In addition assume:

(3.2) r(t) + h(t,0) <0 for ae. te€[0,T]

iy IR0 < @10 Il + Ba(0) for ae. t €0.7) and y >0,
' where 0 < o < 1 and ®1, 5 € L0, T]
(3.4)
there exists 3 € L*([0,T], R") and 7 € L([0,T], Ry) with
B(t) <9t y)y and |lg(t; )yl gn < 7(t) [yllgn for a.e. t €0, T]
and all y > 0; here 7(t) > 0 on a subset of [0,T] of positive measure.
(3.5)
there exists p € L'([0,T], R") with h(t,y) > p(t) a.e. t € [0,T] and y > 0

t T
sy ][RRt [k )i <o
for a.e. t € [0,T) and all y € C([0,T], R™)

there exists p1 € L'[0,T] and p2 € L'([0,T], R"™) with
(3.7) ki(t,s)fi(s,y) > pi(s)p2(t) for a.e. t € [0,T] and a.e. s € [0, 1]
and all y > 0

there exists p3 € L'[0,T) and py € L*([0,T], R™) with
(3.8) ka(t, s) fa(s,y) > p3(s)pa(t) for a.e. t € [0,T] and a.e. s € [0,T]
and ally >0
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(69)
| bt s peNds|| < @0 Il + 24(0) e t € 0.7

{ for any y € C([0,T], R}); where ®3,®4 € L'([0,T],R) and 0 <y <1

(3.10)
T
A kalt, ) 125,y 5| < B5(0) Iyl +@(8) e 1 € 0.T);

{ for any y € C([0,T], R); where ®5,®6 € L'([0,T],R) and 0 <w < 1

and
(3.11)
T T T
/ ()]dt</ lim inf[g(¢, x dt+/ liminf[h(t, z)]dt+
/ / hmlnf [k1(t, s) f1(s,x dsdt+/ / lim inf[ka(t, s) fa(s, z)]dsdt

Then (3.1) has at least one solution y € AC([0,T], R") with y(z) > 0 for all
x €1[0,T].

Proof. We use the notation 1,, = (1,1,...,1) € R™.
For any y € C([0,T], R") let

t
mez/km@ﬁmmmw
0
and
T
Kay(t) = [ halt. )l ls))ds
0
Consider the family of problems

y (1) = T()y(t) = A[f*(t,y) — T(0)y(t) + Kry(t) + Kay(t)]
(3.12) for a.e. t€[0,T]

where 0 < A < 1,7 is as in (3.4), and f* = (f7, f3,..., f), where

fi(ty(t) =

ri(t) + hi(t,0), if there exists j € {0, 1,...,n} such that y;(t) <0
=9 ri(t) + it —01)g(t, y(t — 61)) + hi(t — 62)),
ify;(t) > 0 for all j € {0,1,...,n}
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1) First will show that any solution y of (3.12) satisfies
(3.13) y(t) >0 for all t€]0,T].

Let y be a solution of (3.12). Suppose (3.12) does not hold. Then, there exists
i€{0,1,...,n}andty € [0,7] a point of negative global minimum for y;.
Because of the periodicity we may suppose ¢ty € [0,7). Then there exists
t1 < tg with

yi(t) <0 on [to,t1] and y;(t) > yi(to) on [to,t1].

Then, we have

0 < wyi(t1) — vi(to)

z/lDﬁﬁw@h+O—Aﬁ@w®+ﬁK@®+%K@@ﬂﬁ

to

= /t1 [Ari(t) + ARi(t,0) 4+ Ayi(t) + (1 — N T(0)yi(t) + AK{y(t) + AKgy(t)] dt

to

Using (3.2) and (3.6), since y;(t) < 0 on [to, t1] we obtain
0 < wi(t1) —wi(to) <0

a contradiction. Thus (3.13) is true.
2) Next we show that there exists a positive constant M with

llyllg < M for any solution y of (3.12).
If this is not true, then there exist two sequences (A,) C (0,1) and
(yn) C AC([0,T], R™) with
(3.14)
Yn(t) = T(O)yn(t) = Malr(t) + g(t, yn(t = 01))yn(t — 01) + h(t, ya(t — 62))
—T7(t)yn(t) + K1yn(t) + Koyn(t)] for a.e. t €[0,T]
yn(0) = yn(T)

”?/nHO — 00

Then, we easily see that

T T
02_1;%/0 T(t)yn(t)dt:/o [r(t) + g(t, ya(t — 01))yn(t — 01)+

Rt — 0)) + Krya(t) + Kaya(D)dt |
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and so
T T
/0 —r(t)dt > /0 (gt gt — 02))ym(t — 61)] di
T
+ /0 [h(t, Yt — 02)) + K1yn(t) + Koyn()] dit
Then

T T
[ v = timint [ (ot va(t — 00wt 6] de
0 0

n—oo

T T
4 lim inf/ [h(t, yn(t — 02)) dt+11m mf/ Ky, (t) dt+11m 1nf/ Koy, (t)dt
0

where n — oo in S1(5] is a subsequence of {1,2,....n}).
Now (3.4),(3.5), (3.7), (3.8) and Fatou’s lemma implies
(3.15)

T T
/ - ()]dt>/ tim inf [g(£,ya (¢ — 1))y (t — 0)] dt

+/ lim inf [h(t, y,(t — 62)) dt+/ / liminf [k1 (¢, $) f1(S, yn($))] dsdt
0

/ / hmmf [ka(t, s) f2(s,yn(s))] dsdt

when n — oo in 5.

Let v, = ——y,
l[ynllo
Then [|v, |y =1, va(0) = v,(T'), and
(3.16)

Un(t) = (1= A)T(t)0n(t) + Ang(t, ya(t — 01)) vt — 1)+

An [h(t, yn(t — 02)) + K1yn(t) + Koyn(t) + (1))
HynHO

+ ae. te[0,T].

Let

pn(t) = (1 = An)7(E)vn(t) + Ang(t, yn(t — 01))on(t — 61).

From

(1= Xp)7(t)vn(t) >0
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and
Mgty — 00))n(t — 01) > 20O
lynll
we obtain
(3:17) pin(t) = AniLE) a.e.te0,T]
ynllo

On the other hand, |Jv,||, = 1 implies

pn(t) < (1= An)7(H)vn(t) + AnT()vn(t = 01) < [[(1 = An)7(E)va ()| gn +

(3.18) AT (B on(t = 01) [ gn < (1= X)7(t) + An7(t) = 7(2)
and so, from (3.17) and (3.18) we get
|l pn ()| gn < max{ Hﬁ;j,'"fn T(t)} a.e.t €0,T]

Since ||yn ||, — oo there exists an integer n; such that
|ptn ()] g < max {||B(t)||gn,7(t)} for any n>ny and a.e. tec[0,T].
This, together with (3.3), (3.9), (3.10) and (3.16) implies

(3.19) < max {[|B(t)|| g, 7( }+Zﬁ )+ Ir () gn

on(®)|

Rn

a.e. t€[0,T], for any n > nj.
Then, there exists a subsequence S; of {ny,n; + 1,...} with

v, — v inC([0,T], R™)
(3.20) v, — v weakly in L'([0,T], R") when n — oo in Si.
An — A
Next, we consider the equation
(3.21)
Un (1) = (1= An)7(O)vn(t) + Ang(t, yn(t — 61))vn(t — 01)+
100 = 00) Kt K8 70, 7
nllo
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For n € Sy and ¢ € L*[0,T] we obtain

T , T
/O Up(t)b(t)dt = / (1 = A (E)on(t) + Ang(t, gt — 01))on(t — 00)] (0)dt+

PSRN g (OO RS PO RS R
From (3.3), (3.9), (3.10) and ||y,|| — oo we obtain
029 i 2, [ 0D il 0510

In addition (3.20) yields
T

! T/
(3.24) lim [ o, (t)y(t)dt = /O V(4 (t)dt .

n—oo

nes 0

Also

pn(t) < Loy - [[(1=A) 7@ on ()] g + Lo - [Ang(t yn(t = 01))vn(t = 01)]| g

< Lo 7(@) [llon(t = 01) [ ge + [lon (8] n] -
Then, from (3.17), we deduce

PO () < 1070 ot — 00)lln + on(®)] ]
ol

Since v, 22 v in C([0,T],R") and |lyn||, — oo , there exists an integer ng
such that

| pon ()] g < max{7(¢)[2 + v(t — 01) +v(t)], ||B(t)||gn} for n > no and n € S;.

Let So = {n € S1:n > ny}.
From the Dunford-Pettis Theorem (see [2]) the set

{F‘n € Ll([ovT]an)‘n S 82}

is weakly sequential compact, and so there exists S3 C Seand u €
L([0,T], R™) such that

(3.25) L, nef p weakly in L'([0,T], R").
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Let n — oo in S5 in (3.22), and using (3.23), (3.24) and (3.25) we get

T T
(3.26) /0 o (B (t)dt = /0 ()b (t)dt

Also v(0) = v(T).
Next we claim that

(3.27) w(t) >0 for a.et e |0,T]

1
Let m be an integer. Fix m and let e = —.
m

Then, from (3.4), |lynll;, — oo , and v, "%y inC([0,T], R™) there exists

ng such that
—e < gy (8) < (1= A)7i(t)vp,(t = 61) + A [lg(t, yn(t = 61))on(t = 01) | gn
< M) (1 4+€) + (1= A)7i(t) lon(t — 01)|| gn - M < 73(t)(1 +€)

for every n > ng and n € Ss.

Let
K ={ucLY[0,T),R"| —e <u'(t) < (14 ¢e)r(t) a.e. t€]0,T]}

Since K is convex and closed, u, € K for n > n3,n € S3, and (3.25) is true,we
have that y € K.
Then

—e < pi(t) < (1 +e)r(t) ae. t €[0,T], 4 €{1,2,...,n}
1
We can do this for each e = —, m € {1,2,...,n} and so
m
0<ul(t) <7(t) ae. t€[0,T],i€{1,2,...n}.

Then, (3.27) is true.

This, together with (3.26) implies that v is nondecreasing on [0,T].

Since v(0) = v(T), v = ¢ > 0, where c is a constant. But |lv||, =1, and so
c>0.

Then, from vy, (t) Yn(t)

B HynHO

— v = ¢ there exists ng € S3 with

[on(t) = cllgn <

N O

This implies y, — v in S3 for any ¢ € [0,T].
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Then, from (3.15), we get

T T T
/0 [—r(t)]dt>/0 llmlnf[g(t,x)x]dt+/0 liminf [A(t, z)] dt+

T—00 T—00

T rt T T
+/ / liminf [k (¢, s) fi(s, x)] dsdt + / / liminf [k2(¢, s) fa(s, z)] dsdt

This contradicts (3.11) and so there exists a positive constant M with ||y, <
M for any solution y of (3.12).
The existence of a solution is now guaranteed by Theorem?2.1.

Example. The periodic integro-differential system

y
y (t) = |ly(t —0)|[% — —/ V's2+ 27w ds a.et € [0,
0

y(0) = y(T)
where 0 <w < 1,and 0 < v < 1.
Here, we take:

(3.28)

r(t) = -ttt
g=0in R"
h(t,y) = (lyllzn s [1ylE - lyllRn)
fi(s,y) = (el elvele=lunly

f2 =0m R"
ki(t,s) = —v/s2 +t2
kg =0wm R"

It is easy to see that (2.1), (2.2) and (3.2)-(3.11) are satisfied, and so, by
Theorem 3.1, problem (3.28) has a nonnegative solution.

4. SOME PARTICULAR CASES

1) If Ny(t) = h(t,y(t)) we obtain the following existence result

Theorem 4.1. Assume that
(4.1) h:[0,T] x R® — R" is a continuous function.

(4.2)
for each constant A > 0 there exists hy € L'[0,T] such that for any
y € O([0,T1, R") with |yl g < A we have [[h(t,y)]l g < ha(t)
for a.e. t € [0,T]
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(4.3) h(t,0) <0 a.e.t €[0,T]

oy { I < @O [l + (1) for ae. € [0.7] andy >0,
' where 0 < o < 1 and ®1, Py € L0, T]

(4.5)
there exists p € L'([0,T], R") with h (t,y) > p(t) a.e.t € [0,T]) and y >0

(4.6) 0< / " inf ()]t
0

l|z[|—o0
Then the problem
y'(t) =h(t,yt)) aetel0,T]
y(0) = y(T)

has a nonnegative solution.
2) If Ny(t) = y(t)g(t,y(t)) we obtain the following existence result

Theorem 4.2. Assume that

(4.7) g:10,T] x R" — Mp,(R) is a continuous function
(4.8)
for each constant A > 0 there exists ha € L'[0,T] such that for any
y € C(0,T1, ") withlyllpn < A we have lg(t, y)ylgn < ha(t)
for a.e. t €[0,T]
(4.9)
there exists 3 € L*([0,T], R") and 7 € L*([0,T], Ry) with

B(t) < gt y)y and |lg(t,y)yllgn < 7(8) yllgn for a.e. t €10,T]
and all y > 0; here 7 > 0 on a subset of [0,T] of positive measure.

(4.10) 0< /T lim inf[g(¢, x)z]dt
0

llz[|—o0
Then the problem
y'(t) = y(t)g(t,y(t) a.e.t € [0,T]
y(0) = y(T)

has a nonnegative solution.
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3) If Ny(t) = /0 k(t,s)f(s,y(s))ds we obtain

Theorem 4.3. Assume that
(4.11)
f:00,T] x R* — R"and k : [0,T] x [0,t] — R satisfies N is continuous

(4.12)
for each constant A > 0 there exists ha € L'[0,T] such that for any
y € C([0,T1, ") withlyllpn < A we have [Ny(®)llpn < ha(t)
for a.e. t € [0,T]

(4.13)
/ k(t,s)f(s,y(s))ds <0(e R") for a.e. t € [0,T] and all y € C([0,T], R™)
0

there exists p € L'[0,T] and p € L*([0,T], R™) with
(4.14) k(t,s)f(s,y) > p(s)p(t) for a.e. t €[0,T] and a.e. s € [0,1]
and ally > 0
(4.15)
¢
| [ ks atonis| <o 1ol + 90 ac. 1< 0.7
Rn
for any y € C([0,T), R), where ®,® € L*([0,T],R) and 0 < v < 1

and

(4.16) 0< / /0 lim inf[k(t, s) f (s, )] dsdt

Hérll—>OO

Then the problem

{ y () :/0 k(t,s)f(s,y(s))ds a.e.t €[0,T)
y(0) =y(T)

has a nonnegative solution.

T
4) If Ny(t) = /0 k(t,s)f(s,y(s))ds we obtain:
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Theorem 4.4. Assume that
(4.17)
f:[0,T] x R" — R"andk : [0,T] x [0,T] — R satisfies N is continuous

(4.18)
for each constant A > 0 there exists ha € L'[0,T] such that for any
y € C(0,T), R") withllyll, < A we have [|Ny(#)| g < ha(t)
for a.e. t €[0,T]

(419)
/ E(t,s)f(s,y(s))ds <0 for a.e. t €[0,T] and all y € C([0,T], R™)
0

there exists p € L'[0,T] and p € L' ([0, T), R) with
(4.20) k(t,s)f(s,y) > p(s)p(t) for a.e. t € [0,T] and a.e. s € [0,T]
and ally >0

(4.21)

T
{Lékwgﬂawwm (1) gl + 2(1) a.c. 1€ [0,7];
Rn
for any y € C([0,T), R); where ®,® € L'([0,T],R) and 0 <y < 1

and

(4.22) 0< / / lim inf[k(t, s) f (s, )] dsdt

T— 00

Then the problem

, T
{ y () = /0 k(t,s)f(s,y(s))ds a.e.t €[0,T)
y(0) = y(T)

has a nonnegative solution.

5) Consider the problem:

(
(4.23) y/(O) = y(T)
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We can easily show that problem (4.23) is equivalent to the following prob-

lem:
{ 2 (t) = r(t) + h(t, 2(t) + g(t, 2(t))2(¢)
2(0) = 2(T)
where
([ 2(t) = (y(t), v/ (1))
r(t) = (0, R(t))
h(t,z(t)) = (0, Hi(t, z1(t)) + Ha(t, z2(t))
0 1
ot =
From Theorem 3.1 we obtain
Theorem 4.5. Assume that
(4.24) R e L'0,T] and Hy, Hs € L*([0,T] x R, R)
(4.25) R(t) + Hi(t,0) + Ha(t,0) <0 a.e. t€ 0,7

gy | V(60 Hat )] < @1(0) (2 0) [ + @a(t) for ac. 0 € [0.7]
’ and z,y > 0 where 0 < a < 1 and ®1, Py € L0, T

(4.27) there exists p € L*[0,T] such that
' Hi(t,x) + Ha(t,xz) > p(t) a.e. t € [0,T] and x,y >0

r—00 r—00

T T T

(4.28) / [—R(t)] dt < / liminf[Hl(t,:U)]dt—l—/ lim inf[Hy(t, z)]dt
0 0 0

Then problem (4.23) has at least one nonnegative solution.
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