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1. Introduction

Fixed point theory constitutes an important and the core part of the subject
of nonlinear functional analysis and is useful for proving the existence theo-
rems for nonlinear differential and integral equations. The local fixed point
theory is useful for proving the existence of the local solution of the prob-
lems governed by nonlinear differential or integral equations. In the present
paper we shall obtain the local versions of the well- known fixed point theo-
rems of Krasnoselskii [5] and Nashed and Wong [7] and discuss some of their
applications to functional integral equations.

Throughout this paper let X denote a Banach space with a norm ‖ · ‖.
Let a ∈ X and let r be a positive real number. Then by Br(a) and Br(a)
we respectively denote an open and a closed ball in X centered at the point
a ∈ X and of radius r. A mapping T : X → X is called a contraction if there
exists a constant 0 ≤ α < 1 such that

(1.1) ‖Tx− Ty‖ ≤ α‖x− y‖
49
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for all x, y ∈ X and the constant α is called a contraction constant of T . The

local version of the well-known Banach fixed point theorem is

Theorem 1.1. ( [5, page 10-11] ) Let T : Br(a) → X be the contraction with
contraction constant α. If T satisfies

(1.2) ‖a− Ta‖ ≤ (1− α)r

for some a ∈ X and r > 0, then T has a unique fixed point in Br(a).

A mapping T : X → X is called compact if T (X) is a compact subset of X

and totally bounded if T (S) is a totally bounded subset of X for any bounded
subset S of X. Again a map T : X → X is called completely continuous if it
is continuous and totally bounded.

The local version of the famous Schauder fixed theorem may be given as
follows.

Theorem 1.2. Let a ∈ X and let r be a positive real number. If T : Br(a) →
Br(a) be a completely continuous operator, then T has a fixed point.

Theorems 1.1 and 1.2 have been extensively used in the literature for proving
the existence of the solution of nonlinear differential and integral equations in
the neighborhood of a point in the function space in question.

The next important topological fixed point theorem in its original form is

Theorem 1.3. (Krasnoselskii [6]) Let S be a closed convex and bounded subset
of X and let A,B : S → X be two operators such that

(a) A is a contraction,
(b) B is completely continuous, and
(c) Ax + By ∈ S for all x, y ∈ S.

Then the operator equation Ax + Bx = x has a solution in S .

Theorem 1.3 is useful in the study of nonlinear integral equations of mixed
type which arise as a inversion of the perturbed differential equations and
so it has attracted the attention of the several authors. See Burton [1] and
the references therein. Attempts have been made to improve or generalize
Theorem 1.3 in the course of time by weakening of the hypothesis (a) or (b)
or (c) of it. We focus our attention on the hypothesis (c) of Theorem 1.3.
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The following reformulation of Theorem 1.3 is note-worthy and is proved in
Reinermann [10].

Theorem 1.4. Let S be a closed convex and bounded subset of a Banach space
X and let A,B : S → X be two operators such that

(a) A is contraction,
(b) B is completely continuous, and
(c) Ax + Bx ∈ S for all x ∈ S.

Then the operator equation Ax + Bx = x has a solution.

Remark 1.1. Unlike Theorem 1.3, the operators A and B in Theorem 1.4 need
not map S into itself and the hypothesis (c) is also considerably weakened.

The following two more re-formulations of Theorem 1.4 have been recently
obtained in the literature by Regan [9] and Burton [1] under some weaker
hypothesis (c) thereof.

Theorem 1.5. (Regan [9]) Let S be a closed convex and bounded subset of a
Banach space X and let A,B, : X → X be two operators such that

(a) A + B : S → X.
(b) A + B is condensing, and
(c) If {(xj , λj)} is a sequence in ∂S × [0, 1] converging to (x, λ) with x =

λ(A+B)x and 0 < λ < 1, where ∂S is the boundary of S, then λj(A+B)x ∈ S

for large j.

The measures of noncompactness and condensing mappings require a high
technicalities which a nonspecialist working in the field of nonlinear problems
may find difficulty to tackle it with and therefore, Theorem 1.3 is generally
used as a handy tool in applications to perturbed nonlinear equations. For
the more details of condensing maps the readers are referred to Zeidler [13].

Theorem 1.6. (Burton [1]) Let S be a closed convex and bounded subset of
X and A : X → X and B : S → X such that

(a) A is a contraction.
(b) B is completely continuous, and
(c) {x = Ax + By for all y ∈ S} ⇒ x ∈ S.

Then the operator equation Ax + Bx = x has a solution.
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In this paper we shall prove another formulation of Theorem 1.3 again by
modifying the hypothesis (c) in a different way which ultimately yields the
local version of Theorem 1.3.

2. Local Fixed Point Theorems

Theorem 2.1. Let a ∈ X, r a positive real number. Let A : X → X and
B : Br(a) → X be two operators such that

(a) A is a contraction with a contraction constant α.
(b) B is completely continuous, and
(c) ‖a− (Aa + By)‖ ≤ (1− α)r for all y ∈ Br(a).

Then the operator equation Ax + Bx = x has a solution in Br(a).

Proof. The proof follows by applying Theorem 1.2 to the operator T defined
by

T = (I −A)−1B.

First we claim that T is well defined and

T : Br(a) → Br(a).(2.1)

Notice that (I − A)−1 exists and is continuous on X in view of hypothesis
(a). Hence the mapping T in ( 2.1) is well defined. Let y ∈ X and define a
mapping Ay on Br(a) by

Ay(x) = Ax + By.

We show that Ay is a contraction on Br(a). For any x1, x2 ∈ Br(a), we have

‖Ay(x1)−Ay(x2)‖ = ‖Ax1 −Ax2‖ ≤ α‖x1 − x2‖,

where 0 < α < 1, and so Ay is a contraction on Br(a). Again by hypothesis
(c),

‖a−Ay(a)‖ = ‖a− (Aa + By)‖ ≤ (1− α)r.

Hence an application of Theorem 1.1 yields that there is a unique point x∗

in Br(a) such that

Ay(x∗) = x∗, i.e., x∗ = Ax∗ + By or (1−A)x∗ −By(2.2)

Now applying (1−A)−1 on both the sides of (2.3), we obtain

x∗ = (1−A)−1By
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or equivalently, Ty = x∗. This guarantees the claim (2.1). The operator T ,
which is the composition of a continuous and a completely continuous operator,
is completely continuous. Now the desired conclusion follows by an application
of Theorem 1.2. This completes the proof. �

Taking a = 0, the origin of X, in Theorem 2.1 we obtain

Corollary 2.1. Let A : X → X and B : Br(0) → X be two operators such
that

(a) A is a contraction with the contraction constant α,
(b) B is a completely continuous, and
(c) ‖A0 + By‖ ≤ (1− α)r for all y ∈ Br(0).

Then the operator equation Ax + Bx = x has a solution in Br(0).

Next we prove a local version of the following fixed point theorem of Nashed
and Wong [7], which is also useful for applications in the theory of differential
and integral equations.

Theorem 2.2. Let S be a closed convex and bounded subset of X and let
A,B : S → X be two operators such that

(a) A is linear and bounded and there is a positive integer p such that Ap is
a contraction,

(b) B is a completely continuous, and
(c) Ax + By ∈ S for all x, y ∈ S.

Then the operator equation Ax + Bx = x has a solution.

Theorem 2.3. Let A : X → X and B : Br(a) → X be two operators such
that

(a) A is linear and bounded and there exists a p ∈ N such that Ap is a
contraction with contraction constant α,

(b) B is completely continuous, and
(c) ‖a−Apa‖+ (1−‖A‖p

1−‖A‖ )‖By‖ ≤ (1− α)r for all y ∈ Br(a).
Then operator equation Ax + Bx = x has a solution in Br(a).

Proof. The proof involves applying Theorem 1.2 to the operator T defined by

(2.3) T = (l −A)−1B.
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We claim that T is well defined and

(2.4) T : Br(a) → Br(a).

Now

(1−A)−1 = 1 + A + A2 + · · ·

= (1−A)−1

(
p−1∑
j=0

Aj

)

Clearly (1 − A)−1 exists since Ap is a contraction. Also, the operator
(
∑p−1

j=0 Aj) is bounded and so the composition (1 − A)−1(
∑p−1

j=0 Aj) and con-
sequently the operator T is well defined. Now we shall prove the claim (2.4).
Let y ∈ Br(a) be fixed and define a mapping Ay on Br(a) by

Ay(x) = Ax + By.

We shall show that Ap
y is a contraction. Let x1, x2 ∈ Br(a). Then by

hypothesis (a),

‖Ay(x1)−Ay(x2)‖ = ‖Ax1 −Ax2‖.

Again

‖A2
y(x2)−A2

y(x2)‖ = ‖Ay(Ay(x1))−Ay(Ay(x2))‖

= ‖A2x1 −A2x2‖

Similarly,

‖Ap
y(x1)−Ap

y(x2)‖ = ‖Apx1 −Apx2‖ ≤ α‖x1 − x2‖,

where 0 ≤ α < 1. As a result, Ay is a contraction on Br(a).
Now

Ay(x) = Ax + By

A2
y(x) = Ay(Ay(x))

= Ay(Ax + By) + By

= A(Ax + By) + By

= A2x + ABy + By
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Similarly

A3
y(x) = Ay(A2

yx)

= A(A2x + ABy + By)

= A3x + A2By + ABy + By

By induction,

Ap
y(x) = Apx + Ap−1By + Ap−2By + · · ·+ By.

Therefore,

‖a−Apy(a)‖ =

∥∥∥∥∥a−Apa−

(
p−1∑
j=0

Aj

)
By

∥∥∥∥∥
≤ ‖a−Apa‖+

∥∥∥∥∥
p−1∑
j=0

Aj

∥∥∥∥∥‖By‖

≤ ‖a−Aa‖+

(
p−1∑
j=0

‖Aj‖

)
‖By‖

≤ ‖a−Apa‖+
(

1− ‖A‖p

1− ‖A‖

)
‖By‖

≤ (1− α)r.

An application of Theorem 1.1 yields that there is a unique point x∗ = Br(a)
such that

Ay(x∗) = x∗, Ax∗ + By = x∗

or, equivalently (1−A)−1By = x∗, i.e., Ty = x∗.
This proves the claim (2.4). Since A is linear bounded, it is continuous,

and as a result (1 − A)−1 is continuous on X. Now the operator T , which is
a composition of a continuous and a completely continuous operator, is com-
pletely continuous on Br(a). Hence the conclusion follows by an application
of Theorem 1.2. �

Taking a = 0, the origin of X, in Theorem 2.3 we obtain

Corollary 2.2. Let A : X → X and B : Br(0) → X be two operators such
that
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(a) A is linear, bounded, and there exist a p ∈ N such that Ap is a contrac-
tion with contraction constant α,

(b) B is completely continuous, and
(c) ‖By‖ ≤ ( 1−‖A‖

1−‖A‖p )(1− α)r for all y ∈ Br(0).
Then the operator equation Ax + Bx = x has a solution in Br(0).

3. Nonlinear Functional Integral Equations

Given a closed and boundary interval J = [0, 1] of the real line R, consider
the nonlinear functional integral equation ( in short FIE )

(3.1) x(t) = q(t) +
∫ µ(t)

0
f(s, x(θ(s))ds +

∫ σ(t)

0
g(s, x(η(s))ds

for t ∈ J , where q : J → R, µ, θ, σ, η : J → J and f, g : J ×R → R.
The special cases of FIE (3.1) have been studied in the literature extensively

via different fixed point methods. We shall prove the existence of the local
solution of FIE (3.1) by the application of our newly developed local fixed
point theorem of the previous section.

We shall seek the solution of FIE (3.1) in the space BM(J,R) of all bounded
and measurable real-valued functions on J . Define a norm ‖·‖BM in BM(J,R)
by

‖x‖BM = max
t∈J

|x(t)|.

Clearly BM(J,R) becomes a Banach space with this maximum norm. By
L1(J,R) we denote the space of all Lebesgue integrably real-valued functions
on J with usual norm ‖ · ‖L1 . We need the following definition in this sequel.

Definition 3.1. A function β : J × R → R is said to satisfy a condition of
L1-Caratheodory or simply L1-Caratheodory if

(i) t → β(t, x)is measurable for each x ∈ R,
(ii) x → β(t, x) is almost everywhere continuous for t ∈ J and
(iii) for each real number k > 0 these exists a function hk ∈ L1(J,R) such

that

|β(t, x)| ≤ hk(t), a.e. t ∈ J

for all x ∈ R with |x| ≤ k.
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We consider the following set of assumptions.
(A0) The functions µ, θ, σ, η : J → J are continuous,
(A1 ) The function q : J → R is continuous,
(A2) The function f : J ×R → R is continuous and there exists a function

α ∈ L1(J,R) such that

|f(t, x)− f(t, y)| ≤ α(t)|x− y|, a.e. t ∈ J

for all x, y ∈ R.
(A3) The function g(t, x) is L1-Caratheodory.

Theorem 3.1. Suppose that the assumption (A0)-(A3) hold. Further if there
exists a real number r > 0 such that

(3.2) r ≥ ‖q‖BM + F + ‖hr‖L1

1− ‖α‖L1

, ‖α‖L1 < 1,

where F = sups∈J |f(s, 0)|ds, then the FIE(3.1) has a solution u on J with
‖u‖ ≤ r.

Proof. Consider the ball Br(0) in the Banach space BM(J,R), where the real
number r satisfies the inequality (3.2). Define two operators A and B on
BM(J,R) by

(3.3) Ax(t) =
∫ µ(t)

0
g(s, x(θ(s)))ds, t ∈ J

and

(3.4) Bx(t) = q(t) +
∫ µ(t)

0
g(s, x(η(s)))ds, t ∈ J.

Then the FIE (3.1) is equivalent to the fixed point equation Ax + Bx = x

on J . Hence the problem of the existence of the solution to FIE (3.1) is just
reduced to finding the solution of the operator equation Ax + Bx = x. We
shall show that the operators A and B satisfy all the conditions of Corollary
2.1. First we show that A is a contraction on BM(J,R). Let x, y ∈ BM(J,R).
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Then by (A2)

|Ax(t)−Ay(t)| ≤
∫ µ(t)

0
|f(s, x(θ(s)))ds

≤
∫ µ(t)

0
α(s)|x(θ(s))− y(θ(s))ds

≤
∫ 1

0
α(s)‖x− y‖BMds

Taking the maximum over t, we obtain

‖Ax−Ay‖BM ≤ ‖α‖L1‖x− y‖BM

where ‖α‖L1 < 1, and so A is a contraction on BM(J,R).
Notice that (A0), (A3) and the Lebegue dominated convergence theorem

guarantees that B : Br(0) → X is continuous. Let {xn} be a sequence in
Br(0). Notice (A3) implies

‖Bxn‖ ≤ ‖q‖BM + sup
t∈J

∫ µ(t)

0
g(s, xn(η(s)))ds,

≤ ‖q‖BM + ‖hr‖L1 ,

and so {Bxn} is uniformly bounded. Also for t1, t2 ∈ J , notice

|Bxn(t1)−Bxn(t2)| ≤ |q(t1)− q(t2)|+
∣∣∣∣ ∫ σ(t2)

σ(t1)
hr(s)ds

∣∣∣∣
= |q(t1)− q(t2)|+ |p(t1)− p(t2)|,

where p(t) =
∫ σ(t)
0 hr(s)ds. Since p and q as uniformly continuous functions

on J , we conclude that {Bxn} is an equi-continuous set in BM(J,R). Hence
B : Br(a) → BM(J,R) is compact in view of Arzela-Aseoli theorem.

Finally for any y ∈ Br(0) , we have

‖A0 + By‖BM ≤ ‖A0‖BM + ‖By‖BM

≤ ‖q‖BM + sup
t∈J

∫ µ(t)

0
|f(s, 0)|ds + ‖hr‖L1

≤ (1− ‖α‖L1)r(3.5)

Now an easy application of Corollary 2.1 implies that the FIE (3.1) has a
solution in Br(0). The proof is complete. �
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Below we show that Theorem 3.1 could also be used to discuss the existence
result for a certain differential equation. Consider the initial value problem of
nonlinear perturbed first order functional differential equation (in short FDE)

(3.6)

{
x′(t) = f(t, x(θ(t)) + g(t, x(η(t))), a.e, t ∈ J,

x(0) = x0 ∈ R,

where θ, η, J → J are continuous and f, g : J ×R → R.
By the solution of the FDE (3.6), we mean a function x ∈ AC(J,R) that

satisfies FDE(3.6) on J , where AC(J,R) is a space of all absolutely real-valued
functions on J .

Notice that AC(J,R) ⊂ BM(J,R).

Theorem 3.2. Suppose that the assumptions (A2) and (A3) hold. Further if
there exists a real number r > 0 such that condition (3.3) holds with ‖q‖BM =
|x0|, then the FDE (3.6) has a solution u on J with ‖u‖ ≤ r.

Proof. Notice that FDE (3.6) is equivalent to

(3.7) x(t) = x0 +
∫ t

0
f(s, x(θ(s)))ds +

∫ t

0
gf(s, x(η(s)))ds

for t ∈ J . Applying Theorem 3.1 directly to the FIE (3.7) yields that it
has a solution u in Br(0) ⊂ BM(J,R). From the nature of the equation
(3.7), it follows that u is continuous on J . As a result u ∈ AC(J,R) with
‖u‖ = supt∈J |u(t)| ≤ r. �

4. Remarks and Conclusion

Applications of fixed point theory to nonlinear differential and integral equa-
tions is an art and it depends upon the clever selection of the fixed point the-
orem suitable for the given data or conditions. Notice that the local solution
of the FIE(3.1) could also be obtained via a nonlinear alternative of Leray-
Schauder type recently proved in Dhage and Regan [4]. But in that case, we
need the equation to satisfy certain boundary conditions. In the present situ-
ation this is not the case. At the present, we do not know which approach out
of above two is better for dealing with the nonlinear equations. We conclude
this paper by a remark that Corollary 2.2 could also be used to discuss the
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existence of the local solution to the FIE of the type,

(4.1) x(t) = q(t) +
∫ µ(t)

0
k(t, s)x(θ(s))ds +

∫ σ(t)

0
v(t, s)g(s, x(η(s)))ds.

For a another approach to the FDEs (3.1) and (4.1) the readers are referred
to Dhage [2] and Dhage and Ntouyas [3].
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