Fixed Point Theory, Volume 4, No. 1, 2003, 33-48 http://www.math.ubbcluj.ro/[∼]nodeacj/journal.htm

FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIONS

ADELA CHIS¸

Department of Mathematics Technical University of Cluj-Napoca,Romania E-mail address: Adela.Chis@math.utcluj.ro

Abstract. We present fixed point results for generalized contractions on spaces with two metrics. The focus is on continuation results for such type of mappings. Keywords: spaces with two metrics, generalized contractions, continuation principles AMS Subject Classification: 47H10, 54H25

1. INTRODUCTION

This paper presents fixed point theorems for some classes of generalized contraction on metric spaces. The results are in connection with similar theorems established by Granas [7], [8], Frigon [6], Granas and Frigon [5], Precup [11], [12], Agarwal and O'Regan [1], O'Regan [10], O'Regan and Precup [9], and Avramescu [3]. Such type of results apply to semilinear equations and inclusions. Section 2 present new local and global fixed point results for contractions of the Riech-Rus type

 $d(Fx, Fy) \leq ad(x, Fx) + bd(y, Fy) + cd(x, y),$

where a, b, c are non-negative numbers with $a + b + c < 1$ (see Rus[13]).

Section 3 is devote to similar results for a contraction of the type

$$
d(Fx, Fy) \le q \max\{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)\}\
$$

where $q \in [0, \frac{1}{2}]$ $(\frac{1}{2})$ (see Ciric [4]).

Throughout this article (X, d') will be a complete metric space and d another metric on X. If $x_0 \in X$ and $r > 0$ denote by $B(x_0, r) = \{x \in X : d(x_0, x) < r\}$ and by $\overline{B(x_0, r)^{d'}}$ the d' -closure of $B(x_0, r)$.

³³

2. Fixed Point Results for Reich-Rus Generalized Contractions

Theorem 1. Let (X, d') be a complete metric space, d another metric on X, $x_0 \in X$, $r > 0$, and $F: \overline{B(x_0, r)^{d'}} \longrightarrow X$. Suppose for any $x, y \in \overline{B(x_0, r)^{d'}}$ we have

$$
d(Fx, Fy) \le ad(x, Fx) + bd(y, Fy) + cd(x, y),
$$

where a,b,c are non-negative numbers with $a + b + c < 1$. In addition assume the following three properties hold:

(1)
$$
d(x_0, Fx_0) < (1 - \frac{a+c}{1-b})r,
$$

(2)

if $d \ngeq d'$ then F is uniformly continuous from $(B(x_0, r), d)$ into $(X, d'),$

and

(3) if $d \neq d'$ then F is continuous from $(\overline{B(x_0, r)^{d'}}, d')$ into (X, d') .

Then F has a fixed point, that is there exists $x \in \overline{B(x_0, r)^{d'}}$ with $Fx = x$.

Proof. Let $x_1 = F x_0$. From (1), since $a + b + c < 1$, we have

$$
d(x_1, x_0) < (1 - \frac{a+c}{1-b})r \le r
$$

so $x_1 \in B(x_0, r)$.

Next let $x_2 = F x_1$ and note that

$$
d(x_1, x_2) = d(Fx_0, Fx_1)
$$

\n
$$
\leq ad(x_0, Fx_0) + bd(x_1, Fx_1) + cd(x_0, x_1)
$$

\n
$$
= ad(x_0, x_1) + bd(x_1, x_2) + cd(x_0, x_1).
$$

Hence

$$
(1-b)d(x_1, x_2) \le (a+c)d(x_0, x_1).
$$

It follows that

$$
d(x_1, x_2) \le \frac{a+c}{1-b} d(x_0, x_1) \le \frac{a+c}{1-b} (1 - \frac{a+c}{1-b})r.
$$

Then

$$
d(x_0, x_2) \leq d(x_0, x_1) + d(x_1, x_2)
$$

\n
$$
< (1 - \frac{a + c}{1 - b})r + \frac{a + c}{1 - b}(1 - \frac{a + c}{1 - b})r
$$

\n
$$
= (1 - \frac{a + c}{1 - b})r(1 + \frac{a + c}{1 - b})
$$

\n
$$
\leq (1 - \frac{a + c}{1 - b})r[1 + \frac{a + c}{1 - b} + (\frac{a + c}{1 - b})^2 + (\frac{a + c}{1 - b})^3 + \dots]
$$

\n
$$
= (1 - \frac{a + c}{1 - b})r \frac{1}{1 - \frac{a + c}{1 - b}} = r.
$$

So we have $d(x_0, x_2) < r$, that is $x_2 \in B(x_0, r)$. Proceeding inductively we obtain

$$
d(x_{n+1}, x_n) \leq \frac{a+c}{1-b} d(x_n, x_{n-1})
$$

$$
\leq \dots \leq (\frac{a+c}{1-b})^n d(x_0, x_1) < (\frac{a+c}{1-b})^n (1 - \frac{a+c}{1-b})r
$$

where $x_n = Fx_{n-1}, n = 3, 4, ...$. Since $\frac{a+c}{1-b} \in [0,1)$ it follows that $(\frac{a+c}{1-b})^n \in$ $[0, 1)$ and thus

$$
d(x_{n+1}, x_n) \le (1 - \frac{a+c}{1-b})r.
$$

The last inequality implies $x_{n+1} \in B(x_0, r)$ and, the sequence (x_n) is a Cauchy sequence with respect to d. We claim that

(4) (x_n) is a Cauchy sequence with respect to d' .

If $d \geq d'$ this is trivial. Next suppose $d \not\geq d'$. Let $\varepsilon > 0$ be given. Now (2) guarantees that there exists $\delta > 0$ such that

(5)
$$
d'(Fx, Fy) < \varepsilon \text{ whenever } x, y \in B(x_0, r) \text{ and } d(x, y) < \delta.
$$

From above the sequence (x_n) is a Cauchy sequence with respect to d, so we know that there exists N with

(6)
$$
d(x_n, x_m) < \delta \text{ for all } n, m \ge N.
$$

Now (5) and (6) imply

$$
d'(x_{n+1}, x_{m+1}) = d'(Fx_n, Fy_m) < \varepsilon \text{ whenever } n, m \ge N,
$$

which proves (4). Now since (X, d') is complete there exists $x \in \overline{B(x_0, r)^{d'}}$ with $d'(x_n, x) \to 0$ as $n \to \infty$. We claim now that

$$
(7) \t\t x = Fx.
$$

First consider the case when $d \neq d'$. Notice

$$
d'(x,Fx) \le d'(x,x_n) + d'(x_n,Fx) = d'(x,x_n) + d'(Fx_{n-1},Fx).
$$

Let $n \to \infty$ and using (3) we obtain

$$
d'(x,Fx) \le d'(x,x) + d'(Fx,Fx)
$$

so $d'(x, Fx) = 0$, and thus (7) is true in this case. Next suppose $d = d'$ ((2) and (3) do not hold). Then

$$
d(x, Fx) \leq d(x, x_n) + d(x_n, Fx) = d(x, x_n) + d(Fx_{n-1}, Fx)
$$

\n
$$
\leq d(x, x_n) + ad(x_{n-1}, Fx_{n-1}) + bd(x, Fx) + cd(x_{n-1}, x).
$$

Hence

$$
(1-b)d(x,Fx) \leq d(x,x_n) + cd(x_{n-1},x) + ad(x_{n-1},x_n).
$$

In the last inequality letting $n \to \infty$ we obtain

$$
(1-b)d(x,Fx) \le 0.
$$

So $d(x, F x) = 0$, and (7) holds. Thus, the proof of the theorem is complete. \Box Next we present an homotopy result for this type of generalized contractions.

Theorem 2. Let (X, d') be a complete metric space and d another metric on X. Let $Q \subset X$ be d'-closed and let $U \subset X$ be d-open and $U \subset Q$. Suppose $H: Q \times [0, 1] \longrightarrow X$ satisfies the following five properties:

(i) $x \neq H(x, \lambda)$ for $x \in Q \backslash U$ and $\lambda \in [0, 1]$;

(ii) for any $\lambda \in [0,1]$ and $x, y \in Q$ we have

$$
d(H(x, \lambda), H(y, \lambda)) \le ad(x, H(x, \lambda) + bd(y, H(y, \lambda)) + cd(x, y)
$$

with a, b, c non-negative numbers and $a + b + c < 1$;

(iii) $H(x, \lambda)$ is continuous in λ with respect to d, uniformly for $x \in Q$;

(iv) if $d \not\geq d'$ assume H is uniformly continuous from $U \times [0,1]$ endowed with the metric d on U into (X, d') ;

(v) if $d \neq d'$ assume H is continuous from $Q \times [0, 1]$ endowed with the metric d' on Q into (X, d') .

In addition assume H_0 has a fixed point. Then for each $\lambda \in [0,1]$ we have that H_{λ} has a fixed point $x_{\lambda} \in U$ (here $H_{\lambda}(.) = H(., \lambda)).$

Proof. Let

$$
A := \{ \lambda \in [0, 1]; \text{ there exists } x \in U \text{ such that } H(x, \lambda) = x \}.
$$

Since H_0 has a fixed point and (i) holds we have $0 \in A$, and so the set A is nonempty. We will show A is open and closed in $[0, 1]$ and so by the connectedness of [0, 1] we have $A = [0, 1]$ (see [2]) and the proof is finished.

First we show that A is closed in $[0, 1]$.

Let (λ_k) be a sequence in A with $\lambda_k \to \lambda \in [0,1]$ as $k \to \infty$. By definition of A for each k, there exists $x_k \in U$ such that $x_k = H(x_k, \lambda_k)$. Now we have

$$
d(x_k, x_j) = d(H(x_k, \lambda_k), H(x_j, \lambda_j))
$$

\n
$$
\leq d(H(x_k, \lambda_k), H(x_k, \lambda)) + d(H(x_k, \lambda), H(x_j, \lambda))
$$

\n
$$
+ d(H(x_j, \lambda), H(x_j, \lambda_j))
$$

\n
$$
\leq d(H(x_k, \lambda_k), H(x_k, \lambda))
$$

\n
$$
+ ad(x_k, H(x_k, \lambda)) + bd(x_j, H(x_j, \lambda)) + cd(x_k, x_j)
$$

\n
$$
+ d(H(x_j, \lambda), H(x_j, \lambda_j)).
$$

Hence

$$
(1-c)d(x_k, x_j) \le d(H(x_k, \lambda_k), H(x_k, \lambda))
$$

+ $d(H(x_j, \lambda), H(x_j, \lambda_j))$
+ $ad(H(x_k, \lambda_k), H(x_k, \lambda)) + bd(H(x_j, \lambda), H(x_j, \lambda_j))$
= $(1+a)d(H(x_k, \lambda_k), H(x_k, \lambda))$
+ $(1+b)d(H(x_j, \lambda), H(x_j, \lambda_j))$

and (iii) guarantees that (x_k) is a Cauchy sequence with respect to d. We claim that

(8) (x_k) is a Cauchy sequence with respect to d' .

If $d \geq d'$ this is trivial. If $d \not\geq d'$ then

$$
d'(x_k, x_j) = d'(H(x_k, \lambda_k), H(x_j, \lambda_j))
$$

and (iv) guarantees that (8) holds (note as well that (x_k) is a Cauchy sequence with respect to d and (λ_k) is Cauchy sequence in [0, 1]). Now since (X, d') is complete there exists an $x \in Q$ such that $d'(x_k, x) \to 0$ as $k \to \infty$. Claim now that

$$
(9) \t\t x = H(x, \lambda).
$$

We consider first the case $d \neq d'$. Then

$$
d'(x, H(x, \lambda)) \leq d'(x, x_k) + d'(x_k, H(x, \lambda))
$$

=
$$
d'(x, x_k) + d'(H(x_k, \lambda_k), H(x, \lambda))
$$

together with (v), letting $k \to \infty$, we have $d'(x, H(x, \lambda)) = 0$, so (9) holds. We consider now the case $d = d'$. Then

$$
d(x, H(x, \lambda)) \leq d(x, x_k) + d(H(x_k, \lambda_k), H(x, \lambda))
$$

\n
$$
\leq d(x, x_k) + d(H(x_k, \lambda_k), H(x, \lambda_k))
$$

\n
$$
+ d(H(x, \lambda_k), H(x, \lambda))
$$

\n
$$
\leq d(x, x_k) + ad(x_k, H(x_k, \lambda_k))
$$

\n
$$
+ bd(x, H(x, \lambda_k)) + cd(x, x_k)
$$

\n
$$
+ d(H(x, \lambda_k), H(x, \lambda))
$$

\n
$$
= (1 + c)d(x, x_k) + a.0
$$

\n
$$
+ bd(x, H(x, \lambda_k)) + d(H(x, \lambda_k), H(x, \lambda))
$$

\n
$$
\leq (1 + c)d(x, x_k) + bd(x, H(x, \lambda))
$$

\n
$$
+ bd(H(x, \lambda_k), H(x, \lambda_k))
$$

\n
$$
+ d(H(x, \lambda_k), H(x, \lambda))
$$

Now we have

$$
(1-b)d(x, H(x,\lambda)) \le (1+c)d(x,x_k) + (1+b)d(H(x,\lambda_k), H(x,\lambda))
$$

Letting $k \to \infty$ and using (iii) we obtain

$$
(1-b)d(x, H(x,\lambda)) \le 0.
$$

So we have $d(x, H(x, \lambda)) = 0$, that is (9) holds. Now from (9) and (i) we have $x \in U$. Consequently $\lambda \in A$ and so A is closed in [0,1].

We prove now A is open in $[0, 1]$.

Let $\lambda_0 \in A$ and $x_0 \in U$ such that $x_0 = H(x_0, \lambda_0)$. From U d-open there exists a d–ball $B(x_0, \delta) = \{x \in X; d(x, x_0) < \delta\}, \delta > 0$, and $B(x_0, \delta) \subset U$. From (iii) we have that H is uniformly continuous on $B(x_0, \delta)$.

Let $\varepsilon = (1 - \frac{a+c}{1-c})$ $\frac{a^2 + b}{1 - b}$) $\delta > 0$ and using the uniform continuity of H we have: there exists $\eta = \eta(\delta) > 0$ such that for each $\lambda \in [0,1] | \lambda - \lambda_0 | \leq \eta$ with $d(H(x, \lambda), H(x, \lambda_0)) < \varepsilon$ for any $x \in B(x_0, \delta)$. So this property holds for $x = x_0$, and then we have

$$
d(x_0, H(x_0, \lambda)) = d(H(x_0, \lambda_0), H(x_0, \lambda)) < (1 - \frac{a+c}{1-b})\delta
$$

for $\lambda \in [0, 1]$ and $|\lambda - \lambda_0| \le \eta$.

Using now (ii), (iv) and (v) together with the theorem (2.1) (in this case $r = \delta$ and $F = H_{\lambda}$ we get: there exists $x_{\lambda} \in \overline{B(x_0, \delta)^{d'}} \subset Q$ with $x_{\lambda} = H_{\lambda}(x_{\lambda})$ for $\lambda \in [0,1]$ and $|\lambda - \lambda_0| \leq \eta$. But $x_{\lambda} \in U$ (i) guarantees that) and so A contains all $\lambda \in [0,1]$ with $|\lambda - \lambda_0| \leq \eta$. Consequently A is open in [0, 1]. \Box

3. Fixed Point Result for Ciric Generalized Contractions ´

Theorem 3. Let (X, d') be a complete metric space, d another metric on X, $x_0 \in X$, $r > 0$, and $F: \overline{B(x_0, r)^{d'}} \longrightarrow X$. Assume that there exists $q \in [0, \frac{1}{2}]$ $\frac{1}{2})$ such that for any $x, y \in \overline{B(x_0, r)^{d'}}$ we have

$$
(10) \qquad d(Fx, Fy) \le q \max\{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)\}\
$$

In addition assume:

(11)
$$
d(x_0, Fx_0) < (1 - \frac{q}{1 - q})r
$$

(12)

- if $d \ngeq d'$ assume F is uniformly continuous from $(B(x_0, r), d)$ to (X, d')
- (13) if $d \neq d'$ assume F continuous from $(\overline{B(x_0, r)^{d'}}, d')$ to (X, d')

Then F has a fixed point i.e., there exists $x \in \overline{B(x_0, r)^{d'}}$ with $x = Fx$.

Proof. Let $x_1 = F x_0$. From inequality (11) we have

$$
d(x_1, x_0) = d(x_0, F x_0) < (1 - \frac{q}{1 - q})r \le r
$$

so $x_1 \in B(x_0, r)$. Next let $x_2 = F x_1$ and note that

$$
d(x_1, x_2) = d(Fx_0, Fx_1)
$$

\n
$$
\leq q \max\{d(x_0, x_1), d(x_0, Fx_0), d(x_1, Fx_1), d(x_0, Fx_1), d(x_1, Fx_0)\}
$$

\n
$$
= q \max\{d(x_0, x_1), d(x_0, x_1), d(x_1, x_2), d(x_0, x_2), d(x_1, x_1)\}
$$

\n
$$
= q \max\{d(x_0, x_1), d(x_0, x_2), d(x_1, x_2)\}
$$

\n
$$
\leq q \max\{d(x_0, x_1), d(x_0, x_1) + d(x_1, x_2), d(x_1, x_2)\}
$$

\n
$$
= q[d(x_0, x_1) + d(x_1, x_2)].
$$

Then

$$
d(x_1, x_2) \le \frac{q}{1-q} d(x_0, x_1).
$$

It follows that

$$
d(x_0, x_2) \leq d(x_0, x_1) + d(x_1, x_2)
$$

\n
$$
\leq (1 + \frac{q}{1-q})d(x_0, x_1)
$$

\n
$$
< [1 + \frac{q}{1-q} + (\frac{q}{1-q})^2 + ...](1 - \frac{q}{1-q})r = r.
$$

It follows that $x_2 \in B(x_0, r)$.

Now let $x_3 = F x_2$. We have

$$
d(x_2, x_3) = d(Fx_1, Fx_2)
$$

\n
$$
\leq q \max\{d(x_1, x_2), d(x_1, Fx_1), d(x_2, Fx_2), d(x_1, Fx_2), d(x_2, Fx_1)\}
$$

\n
$$
= q \max\{d(x_1, x_2), d(x_1, x_3), d(x_2, x_3)\}
$$

\n
$$
\leq q \max\{d(x_1, x_2), d(x_1, x_2) + d(x_2, x_3), d(x_2, x_3)\}
$$

\n
$$
= q[d(x_1, x_2) + d(x_2, x_3)].
$$

Hence

$$
d(x_2, x_3) \le \frac{q}{1-q}d(x_1, x_2) \le (\frac{q}{1-q})^2d(x_0, x_1).
$$

Then

$$
d(x_0, x_3) \leq d(x_0, x_2) + d(x_2, x_3)
$$

\n
$$
\leq [1 + \frac{q}{1-q} + (\frac{q}{1-q})^2]d(x_0, x_1)
$$

\n
$$
< [1 + \frac{q}{1-q} + (\frac{q}{1-q})^2 + ...](1 - \frac{q}{1-q})r = r.
$$

Thus $x_3 \in B(x_0, r)$.

Inductively we obtain

(14)
$$
d(x_{n+1}, x_n) \leq \frac{q}{1-q} d(x_n, x_{n-1}) \leq \dots \leq (\frac{q}{1-q})^n d(x_0, x_1)
$$

$$
< (\frac{q}{1-q})^n (1 - \frac{q}{1-q}) r
$$

for $x_n = F x_{n-1}, n = 3, 4, ...$ which implies that

$$
d(x_0, x_{n+1}) \le d(x_0, x_n) + d(x_n, x_{n+1}) < r.
$$

Hence $x_{n+1} \in B(x_0, r)$.

Now, because $q \in [0, \frac{1}{2}]$ $\frac{1}{2}$) from (14) we deduce that (x_n) is Cauchy sequence with respect to d. We will prove that

(15)
$$
(x_n)
$$
 is a Cauchy sequence with respect to d' .

If $d \geq d'$ this is trivial. Next assume $d \not\geq d'$.

Let $\varepsilon > 0$. From (12) we have: there exists $\delta > 0$ such that

(16)
$$
d'(Fx, Fy) < \varepsilon \text{ for any } x, y \in B(x_0, r) \text{ and } d(x, y) < \delta.
$$

From the start we know that there exists a positive natural number N with

(17)
$$
d(x_n, x_m) < \delta \quad \text{for all } n, m \ge N.
$$

Now $(16)+(17)$ implies that

$$
d'(x_{n+1}, x_{m+1}) = d'(Fx_n, Fx_m) < \varepsilon, \text{for all } n, m \ge N,
$$

so (15) holds. Since (X, d') is complete we have that there exists $x \in \overline{B(x_0, r)^{d'}}$ with $d'(x_n, x) \to 0$, as $n \to \infty$.

Claim now that

$$
(18) \t\t Fx = x.
$$

If (18) holds then the proof is complete. First take the case $d \neq d'$. Then we have

$$
d'(x,Fx) \le d'(x,x_n) + d'(x_n,Fx) = d'(x,x_n) + d'(Fx_{n-1},Fx).
$$

Letting $n \to \infty$ and using (13) we obtain

 $d'(x, Fx) \leq 0 + 0 = 0$ which implies $x = Fx$.

So, in this case (18) holds.

Now assume $d = d'$. Then

$$
d(x, Fx) \leq d(x, x_n) + d(x_n, Fx) = d(x, x_n) + d(Fx_{n-1}, Fx)
$$

\n
$$
\leq d(x, x_n) + q \max\{d(x_{n-1}, x), d(x_{n-1}, Fx_{n-1}),
$$

\n
$$
d(x, Fx), d(x_{n-1}, Fx), d(x, Fx_{n-1})\}
$$

\n
$$
= d(x, x_n) + q \max\{d(x_{n-1}, x), d(x_{n-1}, x_n),
$$

\n
$$
d(x, Fx), d(x_{n-1}, Fx), d(x, x_n)\}
$$

\n
$$
\leq d(x, x_n) + q \max\{d(x_{n-1}, x), d(x_{n-1}, x_n)d(x, x_n),
$$

\n
$$
d(x, Fx), d(x_{n-1}, x) + d(x, Fx)\}.
$$

Hence

$$
d(x, Fx) \leq d(x, x_n) + q \max \{d(x, x_n), d(x, Fx), d(x_{n-1}, x_n), d(x_{n-1}, x) + d(x, Fx)\}.
$$

Letting $n \to \infty$ we obtain

$$
d(x, Fx) \le q \max\{0, d(x.Fx), 0, 0 + d(x, Fx)\} = qd(x, Fx).
$$

This implies

$$
d(x,Fx)=0.
$$

So $x = Fx$ and (18) holds. \Box

The following global result can be easy obtained from the above theorem.

Theorem 4. Let (X, d') be a complete metric space, d another metric on X, and $F: X \longrightarrow X$. Assume there exists $q \in [0, \frac{1}{2}]$ $(\frac{1}{2})$ such that $\forall x, y \in X$ we have

 $d(Fx, Fy) \leq q \max\{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)\}.$

In addition assume that the following proprieties hold: if $d \not\geq d'$ F is uniformly continuous from (X, d') to (X, d') ; if $d \neq d'$ F continuous from (X, d') to (X, d') . Then F has a fixed point.

Proof. Let $x_0 \in X$ and take any $r > 0$ such that

$$
d(x_0, F x_0) < (1 - \frac{q}{1 - q})r.
$$

Then from the above theorem there exists $x \in \overline{B(x_0, r)^{d'}}$ with $x = Fx$.

Next we present an homotopy result for this type of generalized contractions.

Theorem 5. Let (X, d') be a complete metric space and let d another metric on X. Let $Q \subset X$ d' $-closed$ and let $U \subset X$ d−open and $U \subset Q$. Suppose $H: Q \times [0, 1] \longrightarrow X$ with the following properties:

(i) $x \neq H(x, \lambda)$ for $x \in Q \backslash U$ and $\lambda \in [0, 1]$;

(*ii*)there exists $q \in [0, \frac{1}{2}]$ $\frac{1}{2}$) such that, for any $\lambda \in [0,1]$ and $x, y \in Q$ we have

 $d(H(x, \lambda), H(y, \lambda))$ \leq q max $\{d(x, y), d(x, H(x, \lambda)), d(y, H(y, \lambda)), d(x, H(y, \lambda)), d(y, H(x, \lambda))\}$

(iii) $H(x, \lambda)$ is continuous in λ with respect to d, uniformly for $x \in Q$;

(iv) if $d \ngeq d'$ assume H is uniformly continuous from $U \times [0,1]$ endowed with the metric d on U into (X, d') ; and

(v) if $d \neq d'$ assume H is continuous from $Q \times [0, 1]$ endowed with the metric d' on Q into (X, d') .

In addition assume H_0 has a fixed point. Then for each $\lambda \in [0,1]$ we have that H_{λ} has a fixed point $x_{\lambda} \in U$ (here $H_{\lambda}(.) = H(., \lambda)).$

Proof. Let

 $A = \{\lambda \in [0, 1]; \text{ exists } x \in U \text{ such that } H(x, \lambda) = x\}.$

Since H_0 has a fixed point and (i) holds we have $0 \in A$, and so the set A is nonempty. We will show A is open and closed in $[0, 1]$ and so by the connectedness of [0, 1] we have $A = [0, 1]$ (see [2]) and the proof is finished.

First we show that A is closed in $[0, 1]$.

Let (λ_k) be a sequence in A with $\lambda_k \to \lambda \in [0,1]$ as $k \to \infty$. By definition of A for each k, there exists $x_k \in U$ such that $x_k = H(x_k, \lambda_k)$. Now we have

$$
d(x_k, x_j) = d(H(x_k, \lambda_k), H(x_j, \lambda_j))
$$

\n
$$
\leq d(H(x_k, \lambda_k), H(x_k, \lambda))
$$

\n
$$
+ d(H(x_k, \lambda_k), H(x_j, \lambda)) + d(H(x_j, \lambda), H(x_j, \lambda_j))
$$

\n
$$
\leq d(H(x_k, \lambda_k), H(x_k, \lambda))
$$

\n
$$
+ d \max\{d(x_k, x_j), d(x_k, H(x_k, \lambda)),
$$

\n
$$
d(x_j, H(x_j, \lambda)), d(x_k, H(x_j, \lambda)), d(x_j, H(x_k, \lambda))\}
$$

\n
$$
+ d(H(x_j, \lambda_k), H(x_k, \lambda))
$$

\n
$$
+ d \max\{d(x_k, x_j), d(H(x_k, \lambda_k), H(x_k, \lambda)),
$$

\n
$$
+ d \max\{d(x_k, x_j), d(H(x_k, \lambda_k), H(x_j, \lambda)), d(H(x_j, \lambda_j), H(x_k, \lambda))\}
$$

\n
$$
+ d (H(x_j, \lambda_j), H(x_j, \lambda_j))
$$

\n
$$
\leq d (H(x_k, \lambda_k), H(x_k, \lambda)) + d (H(x_j, \lambda_k), H(x_j, \lambda_j))
$$

\n
$$
+ d \max\{d(x_k, x_j), d(H(x_k, \lambda_k), H(x_k, \lambda)), d(H(x_j, \lambda_j), H(x_j, \lambda)),
$$

\n
$$
+ d \max\{d(x_k, x_j), d(H(x_k, \lambda_k), H(x_k, \lambda)), d(H(x_j, \lambda_j), H(x_j, \lambda)),
$$

\n
$$
d (H(x_j, \lambda_j), H(x_k, \lambda_k)) + d (H(x_k, \lambda_k), H(x_k, \lambda)),
$$

\n
$$
+ d \max\{d(x_k, x_j) + d(x_k, H(x_k, \lambda)), d(x_k, x_j) + d(x_j, H(x_j, \lambda))\}
$$

\n
$$
\leq d(x_k, H(x_k, \lambda)) + d(x_j, H(x_j, \lambda))
$$

\n
$$
+ d \max\{d(x_k, x_j) + d(x_k, H(x_k, \lambda)), d(x_k, x_j) + d(x_j, H(x_j, \lambda))\}
$$

\n
$$
+ d \max\{d(x_k, x_j
$$

and

$$
(1-2q)d(x_k, x_j) \le (1+q)[d(H(x_k, \lambda_k), H(x_k, \lambda)) + d(H(x_j, \lambda), H(x_j, \lambda_j))].
$$

Hence

$$
d(x_k, x_j) \le \frac{1+q}{1-2q} [d(H(x_k, \lambda_k), H(x_k, \lambda)) + d(H(x_j, \lambda), H(x_j, \lambda_j))]
$$

and (iii) guarantees that (x_k) is a Cauchy sequence with respect to d. We claim that

(19)
$$
(x_k)
$$
 is a Cauchy sequence with respect to d'.

If $d \geq d'$ this is trivial. If $d \not\geq d'$ then

$$
d'(x_k, x_j) = d'(H(x_k, \lambda_k), H(x_j, \lambda_j))
$$

and (iv) guarantees that (19) holds (note as well that (x_k) is a Cauchy sequence with respect to d and (λ_k) is Cauchy sequence in [0, 1]). Now since (X, d') is complete there exists an $x \in Q$ such that $d'(x_k, x) \to 0$ as $k \to \infty$. Claim now that

$$
(20) \t\t x = H(x, \lambda).
$$

We consider first the case $d \neq d'$. Then

$$
d'(x, H(x, \lambda)) \leq d'(x, x_k) + d'(x_k, H(x, \lambda))
$$

=
$$
d'(x, x_k) + d'(H(x_k, \lambda_k), H(x, \lambda))
$$

together with (v), letting $k \to \infty$, we have $d'(x, H(x, \lambda)) = 0$, so (20) holds.

We consider now the case $d = d'$. Then

$$
d(x, H(x, \lambda)) \leq d(x, x_k) + d(x_k, H(x, \lambda))
$$

\n
$$
\leq d(x, x_k) + d(H(x_k, \lambda_k), H(x, \lambda_k)) + d(H(x, \lambda_k), H(x, \lambda))
$$

\n
$$
\leq d(x, x_k)
$$

\n
$$
+ q \max\{d(x, x_k), d(x_k, H(x_k, \lambda_k)),
$$

\n
$$
d(x, H(x, \lambda_k)), d(x, H(x_k, \lambda_k)), d(x_k, H(x, \lambda_k))\}
$$

\n
$$
+ d(H(x, \lambda_k), H(x, \lambda))
$$

\n
$$
\leq d(x, x_k) + q \max\{d(x, x_k), d(x_k, x_k),
$$

\n
$$
d(x, H(x, \lambda_k)), d(x_k, H(x, \lambda_k))\}
$$

\n
$$
+ d(H(x, \lambda_k), H(x, \lambda))
$$

\n
$$
= d(x, x_k)
$$

\n
$$
+ q \max\{d(x, x_k), d(x, H(x, \lambda_k)), d(x_k, H(x, \lambda_k))\}
$$

\n
$$
+ d(H(x, \lambda_k), H(x, \lambda))
$$

\n
$$
\leq d(x, x_k)
$$

\n
$$
+ q \max\{d(x, x_k), d(x, H(x, \lambda_k)), d(x, x_k) + d(x, H(x, \lambda_k))\}
$$

\n
$$
+ d(H(x, \lambda_k), H(x, \lambda))
$$

\n
$$
\leq d(x, x_k)
$$

\n
$$
+ q[d(x, x_k) + d(x, H(x, \lambda_k))]
$$

\n
$$
+ d(H(x, \lambda_k), H(x, \lambda))
$$

\n
$$
\leq d(x, x_k)
$$

\n
$$
+ q[d(x, x_k) + d(x, H(x, \lambda)) + d(H(x, \lambda), H(x, \lambda_k))]
$$

\n
$$
+ d(H(x, \lambda_k), H(x, \lambda))
$$

and we have

$$
d(x, H(x, \lambda)) \leq d(x, x_k)
$$

+
$$
q[d(x, x_k) + d(x, H(x, \lambda)) + d(H(x, \lambda), H(x, \lambda_k))]
$$

+
$$
d(H(x, \lambda_k), H(x, \lambda))
$$

Letting $k \to \infty$ we have

$$
d(x, H(x, \lambda)) \le 0 + q[0 + d(x, H(x, \lambda)) + 0] + 0
$$

$$
d(x, H(x, \lambda)) \le qd(x, H(x, \lambda))
$$

so $d(x, H(x, \lambda)) = 0$ and (20) holds. We have now $H(x, \lambda) = x$ for $x \in Q$ and with (i) we have $H(x, \lambda) = x$ for $x \in U$. Consequently $\lambda \in A$ and so A is closed in [0,1].

We prove now A is open in $[0, 1]$.

Let $\lambda_0 \in A$ and $x_0 \in U$ such that $x_0 = H(x_0, \lambda_0)$. From U d-open there exists a d-ball $B(x_0, \delta) = \{x \in X; d(x, x_0) < \delta\}, \delta > 0$, and $B(x_0, \delta) \subset U$. From (iii) we have that H is uniformly continuous on $B(x_0, \delta)$.

Let $\varepsilon = (1 - \frac{q}{1-q})$ $\frac{q}{1-q}$) $\delta > 0$ and using the uniform continuity of H we have: there exists $\eta = \eta(\delta) > 0$ such that for each $\lambda \in [0,1] \mid \lambda - \lambda_0 \mid \leq \eta$ with $d(H(x, \lambda), H(x, \lambda_0)) < \varepsilon$ for any $x \in B(x_0, \delta)$. So this property holds for $x = x_0$, and then we have

$$
d(x_0, H(x_0, \lambda)) = d(H(x_0, \lambda_0), H(x_0, \lambda)) < (1 - \frac{q}{1-q})\delta
$$

for $\lambda \in [0, 1]$ and $|\lambda - \lambda_0| \le \eta$.

Using now (ii), (iv) and (v) together with the theorem (3) (in this case $r = \delta$ and $F = H_{\lambda}$ we get: there exists $x_{\lambda} \in \overline{B(x_0, \delta)^{d}} \subset Q$ with $x_{\lambda} = H_{\lambda}(x_{\lambda})$ for $\lambda \in [0,1]$ and $|\lambda - \lambda_0| \leq \eta$. But $x_{\lambda} \in U$ ((i) guarantees that) and so A contains all $\lambda \in [0,1]$ with $|\lambda - \lambda_0| \leq \eta$. Consequently A is open in [0, 1]. \Box

REFERENCES

- [1] R. P. Agarwal and D. O'Regan, Fixed point theory for contraction on spaces with two metrics, J. Math. Anal. Appl. **248** (2000), 402-414.
- [2] V. Anisiu, Topologie si teoria măsurii, Universitatea Babeș-Bolyai Cluj, 1993.
- [3] C. Avramescu, Fixed point theorems for contractive set-valued maps in uniform spaces (Romanian), An. Univ. Craiova 1 (1970), 63-67.
- [4] L. Cirić, On a family of contractive maps and fixed point, Publ. Math. L'Inst. Math., N.S. Tome 17 (31) (1974), 45-51.
- [5] M. Frigon et A. Granas, Resultats du type de Leray-Schauder pour des contractions multivoques, Topological Methods Nonlinear Anal. 4 (1994), 197-208.
- [6] M. Frigon, On continuation methods for contractive and nonexpansive mappings, Recent Advances on Metric Fixed Point Theory, Sevilla 1996, 19-30.

48 ADELA CHIS¸

- [7] A. Granas, Continuation method for contractive maps, Topological Methods Nonlinear Anal. 3 (1994), 375-379.
- [8] A. Granas, On the Leray-Schauder alternative, Topological Methods Nonlinear Anal. 2 (1993), 225-231.
- [9] D. O'Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon and Breach Science Publishers, Amsterdam, 2001.
- [10] D. O' Regan, Fixed point theorem for nonlinear operators, J. Math. Anal. Appl. 202 (1996), 413-432.
- [11] R. Precup, Discrete continuation method for boundary value problems on bounded sets in Banach spaces, J. Comput. Appl. Math. 113 (2000), 267-281.
- [12] R. Precup, Continuation Results For Mappings of Contractive Type, Seminar on Fixed Point Theory Cluj-Napoca 2, (2001), 23-40.
- [13] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj, 2001.