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1. Introduction

This paper presents fixed point theorems for some classes of generalized
contraction on metric spaces. The results are in connection with similar theo-
rems established by Granas [7], [8], Frigon [6], Granas and Frigon [5], Precup
[11], [12], Agarwal and O’Regan [1], O’Regan [10], O’Regan and Precup [9],
and Avramescu [3]. Such type of results apply to semilinear equations and
inclusions. Section 2 present new local and global fixed point results for con-
tractions of the Riech-Rus type

d(Fx, Fy) ≤ ad(x, Fx) + bd(y, Fy) + cd(x, y),

where a, b, c are non-negative numbers with a + b + c < 1 (see Rus[13]).
Section 3 is devote to similar results for a contraction of the type

d(Fx, Fy) ≤ q max{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)}

where q ∈ [0, 1
2) (see Cirić [4]).

Throughout this article (X, d′) will be a complete metric space and d another
metric on X. If x0 ∈ X and r > 0 denote by B(x0, r) = {x ∈ X : d(x0, x) < r}
and by B(x0, r)d′ the d′−closure of B(x0, r).
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2. Fixed Point Results for Reich-Rus Generalized Contractions

Theorem 1. Let (X, d′) be a complete metric space, d another metric on X,

x0 ∈ X, r > 0, and F : B(x0, r)d′ −→ X. Suppose for any x, y ∈ B(x0, r)d′ we
have

d(Fx, Fy) ≤ ad(x, Fx) + bd(y, Fy) + cd(x, y),

where a,b,c are non-negative numbers with a + b + c < 1.

In addition assume the following three properties hold:

(1) d(x0, Fx0) < (1− a + c

1− b
)r,

(2)
if d � d′ then F is uniformly continuous from (B(x0, r), d) into (X, d′),

and

(3) if d 6= d′ then F is continuous from (B(x0, r)d′ , d′) into (X, d′).

Then F has a fixed point, that is there exists x ∈ B(x0, r)d′ with Fx = x.

Proof. Let x1 = Fx0. From (1), since a + b + c < 1, we have

d(x1, x0) < (1− a + c

1− b
)r ≤ r

so x1 ∈ B(x0, r).
Next let x2 = Fx1 and note that

d(x1, x2) = d(Fx0, Fx1)

≤ ad(x0, Fx0) + bd(x1, Fx1) + cd(x0, x1)

= ad(x0, x1) + bd(x1, x2) + cd(x0, x1).

Hence

(1− b)d(x1, x2) ≤ (a + c)d(x0, x1).

It follows that

d(x1, x2) ≤
a + c

1− b
d(x0, x1) ≤

a + c

1− b
(1− a + c

1− b
)r.
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Then

d(x0, x2) ≤ d(x0, x1) + d(x1, x2)

< (1− a + c

1− b
)r +

a + c

1− b
(1− a + c

1− b
)r

= (1− a + c

1− b
)r(1 +

a + c

1− b
)

≤ (1− a + c

1− b
)r[1 +

a + c

1− b
+ (

a + c

1− b
)2 + (

a + c

1− b
)3 + ...]

= (1− a + c

1− b
)r

1

1− a + c

1− b

= r.

So we have d(x0, x2) < r, that is x2 ∈ B(x0, r). Proceeding inductively we
obtain

d(xn+1, xn) ≤ a + c

1− b
d(xn, xn−1)

≤ ... ≤ (
a + c

1− b
)nd(x0, x1) < (

a + c

1− b
)n(1− a + c

1− b
)r

where xn = Fxn−1,n = 3, 4, ... . Since
a + c

1− b
∈ [0, 1) it follows that (

a + c

1− b
)n ∈

[0, 1) and thus

d(xn+1, xn) ≤ (1− a + c

1− b
)r.

The last inequality implies xn+1 ∈ B(x0, r) and, the sequence (xn) is a Cauchy
sequence with respect to d. We claim that

(4) (xn) is a Cauchy sequence with respect to d′.

If d ≥ d′ this is trivial. Next suppose d � d′. Let ε > 0 be given. Now (2)
guarantees that there exists δ > 0 such that

(5) d′(Fx, Fy) < ε whenever x, y ∈ B(x0, r) and d(x, y) < δ.

From above the sequence (xn) is a Cauchy sequence with respect to d, so we
know that there exists N with

(6) d(xn, xm) < δ for all n, m ≥ N.

Now (5) and (6) imply

d′(xn+1, xm+1) = d′(Fxn, Fym) < ε whenever n, m ≥ N,
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which proves (4). Now since (X, d′) is complete there exists x ∈ B(x0, r)d′

with d′(xn, x) → 0 as n →∞. We claim now that

(7) x = Fx.

First consider the case when d 6= d′. Notice

d′(x, Fx) ≤ d′(x, xn) + d′(xn, Fx) = d′(x, xn) + d′(Fxn−1, Fx).

Let n →∞ and using (3) we obtain

d′(x, Fx) ≤ d′(x, x) + d′(Fx, Fx)

so d′(x, Fx) = 0, and thus (7) is true in this case. Next suppose d = d′ ((2)
and (3) do not hold). Then

d(x, Fx) ≤ d(x, xn) + d(xn, Fx) = d(x, xn) + d(Fxn−1, Fx)

≤ d(x, xn) + ad(xn−1, Fxn−1) + bd(x, Fx) + cd(xn−1, x).

Hence
(1− b)d(x, Fx) ≤ d(x, xn) + cd(xn−1, x) + ad(xn−1, xn).

In the last inequality letting n →∞ we obtain

(1− b)d(x, Fx) ≤ 0.

So d(x, Fx) = 0, and (7) holds. Thus, the proof of the theorem is complete. �

Next we present an homotopy result for this type of generalized contractions.

Theorem 2. Let (X, d′) be a complete metric space and d another metric on
X. Let Q ⊂ X be d′−closed and let U ⊂ X be d−open and U ⊂ Q. Suppose
H : Q× [0, 1] −→ X satisfies the following five properties:

(i) x 6= H(x, λ) for x ∈ Q\U and λ ∈ [0, 1];
(ii) for any λ ∈ [0, 1] and x, y ∈ Q we have

d(H(x, λ),H(y, λ)) ≤ ad(x,H(x, λ) + bd(y, H(y, λ)) + cd(x, y)

with a, b, c non-negative numbers and a + b + c < 1;
(iii) H(x, λ) is continuous in λ with respect to d, uniformly for x ∈ Q;
(iv) if d � d′ assume H is uniformly continuous from U × [0, 1] endowed

with the metric d on U into (X, d′);
(v) if d 6= d′ assume H is continuous from Q×[0, 1] endowed with the metric

d′ on Q into (X, d′).
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In addition assume H0 has a fixed point. Then for each λ ∈ [0, 1] we have
that Hλ has a fixed point xλ ∈ U (here Hλ(.) = H(., λ)).

Proof. Let

A := {λ ∈ [0, 1]; there exists x ∈ U such that H(x, λ) = x}.

Since H0 has a fixed point and (i) holds we have 0 ∈ A, and so the set
A is nonempty. We will show A is open and closed in [0, 1] and so by the
connectedness of [0, 1] we have A = [0, 1] (see [2]) and the proof is finished.

First we show that A is closed in [0, 1].
Let (λk) be a sequence in A with λk → λ ∈ [0, 1] as k → ∞. By definition

of A for each k, there exists xk ∈ U such that xk = H(xk, λk). Now we have

d(xk, xj) = d(H(xk, λk),H(xj , λj))

≤ d(H(xk, λk),H(xk, λ)) + d(H(xk, λ),H(xj , λ))

+d(H(xj , λ),H(xj , λj))

≤ d(H(xk, λk),H(xk, λ))

+ad(xk,H(xk, λ)) + bd(xj ,H(xj , λ)) + cd(xk, xj)

+d(H(xj , λ),H(xj , λj)).

Hence

(1− c)d(xk, xj) ≤ d(H(xk, λk),H(xk, λ))

+d(H(xj , λ),H(xj , λj))

+ad(H(xk, λk),H(xk, λ)) + bd(H(xj , λ),H(xj , λj))

= (1 + a)d(H(xk, λk),H(xk, λ))

+(1 + b)d(H(xj , λ),H(xj , λj))

and (iii) guarantees that (xk) is a Cauchy sequence with respect to d. We claim
that

(8) (xk) is a Cauchy sequence with respect to d′.

If d ≥ d′ this is trivial. If d � d′ then

d′(xk, xj) = d′(H(xk, λk),H(xj , λj))
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and (iv) guarantees that (8) holds (note as well that (xk) is a Cauchy sequence
with respect to d and (λk) is Cauchy sequence in [0, 1]). Now since (X, d′) is
complete there exists an x ∈ Q such that d′(xk, x) → 0 as k →∞. Claim now
that

(9) x = H(x, λ).

We consider first the case d 6= d′. Then

d′(x,H(x, λ)) ≤ d′(x, xk) + d′(xk,H(x, λ))

= d′(x, xk) + d′(H(xk, λk),H(x, λ))

together with (v), letting k →∞, we have d′(x,H(x, λ)) = 0, so (9) holds.
We consider now the case d = d′. Then

d(x,H(x, λ)) ≤ d(x, xk) + d(H(xk, λk),H(x, λ))

≤ d(x, xk) + d(H(xk, λk),H(x, λk))

+d(H(x, λk),H(x, λ))

≤ d(x, xk) + ad(xk,H(xk, λk))

+bd(x,H(x, λk)) + cd(x, xk)

+d(H(x, λk),H(x, λ))

= (1 + c)d(x, xk) + a.0

+bd(x,H(x, λk)) + d(H(x, λk),H(x, λ))

≤ (1 + c)d(x, xk) + bd(x, H(x, λ))

+bd(H(x, λ),H(x, λk))

+d(H(x, λk),H(x, λ))

Now we have

(1− b)d(x,H(x, λ)) ≤ (1 + c)d(x, xk) + (1 + b)d(H(x, λk),H(x, λ))

Letting k →∞ and using (iii) we obtain

(1− b)d(x,H(x, λ)) ≤ 0.

So we have d(x,H(x, λ)) = 0, that is (9) holds. Now from (9) and (i) we have
x ∈ U. Consequently λ ∈ A and so A is closed in [0,1].

We prove now A is open in [0, 1].



FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIONS 39

Let λ0 ∈ A and x0 ∈ U such that x0 = H(x0, λ0). From U d−open there
exists a d−ball B(x0, δ) = {x ∈ X; d(x, x0) < δ}, δ > 0, and B(x0, δ) ⊂ U.

From (iii) we have that H is uniformly continuous on B(x0, δ).

Let ε = (1 − a + c

1− b
)δ > 0 and using the uniform continuity of H we have:

there exists η = η(δ) > 0 such that for each λ ∈ [0, 1] | λ − λ0 |≤ η with
d(H(x, λ),H(x, λ0)) < ε for any x ∈ B(x0, δ). So this property holds for
x = x0, and then we have

d(x0,H(x0, λ)) = d(H(x0, λ0),H(x0, λ)) < (1− a + c

1− b
)δ

for λ ∈ [0, 1] and | λ− λ0 |≤ η.

Using now (ii), (iv) and (v) together with the theorem (2.1) (in this case r = δ

and F = Hλ) we get: there exists xλ ∈ B(x0, δ)d′ ⊂ Q with xλ = Hλ(xλ)
for λ ∈ [0, 1] and | λ − λ0 |≤ η. But xλ ∈ U ( (i) guarantees that) and so A

contains all λ ∈ [0, 1] with | λ− λ0 |≤ η. Consequently A is open in [0, 1]. �

3. Fixed Point Result for Cirić Generalized Contractions

Theorem 3. Let (X, d′) be a complete metric space, d another metric on X,
x0 ∈ X, r > 0, and F : B(x0, r)d′ −→ X. Assume that there exists q ∈ [0, 1

2)
such that for any x, y ∈ B(x0, r)d′ we have

(10) d(Fx, Fy) ≤ q max{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)}

In addition assume:

(11) d(x0, Fx0) < (1− q

1− q
)r

(12)
if d � d′ assume F is uniformly continuous from (B(x0, r), d) to (X, d′)

(13) if d 6= d′ assume F continuous from (B(x0, r)d′ , d′) to (X, d′)

Then F has a fixed point i.e., there exists x ∈ B(x0, r)d′ with x = Fx.

Proof. Let x1 = Fx0. From inequality (11) we have

d(x1, x0) = d (x0, Fx0) < (1− q

1− q
)r ≤ r
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so x1 ∈ B(x0, r). Next let x2 = Fx1 and note that

d(x1, x2) = d(Fx0, Fx1)

≤ q max{d(x0, x1), d(x0, Fx0), d(x1, Fx1), d(x0, Fx1), d(x1, Fx0)}

= q max{d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x2), d(x1, x1)}

= q max{d(x0, x1), d(x0, x2), d(x1, x2)}

≤ q max{d(x0, x1), d(x0, x1) + d(x1, x2), d(x1, x2)}

= q[d(x0, x1) + d(x1, x2)].

Then

d(x1, x2) ≤
q

1− q
d(x0, x1).

It follows that

d(x0, x2) ≤ d(x0, x1) + d(x1, x2)

≤ (1 +
q

1− q
)d(x0, x1)

< [1 +
q

1− q
+ (

q

1− q
)2 + ...](1− q

1− q
)r = r.

It follows that x2 ∈ B(x0, r).
Now let x3 = Fx2.We have

d(x2, x3) = d(Fx1, Fx2)

≤ q max{d(x1, x2), d(x1, Fx1), d(x2, Fx2), d(x1, Fx2), d(x2, Fx1)}

= q max{d(x1, x2), d(x1, x3), d(x2, x3)}

≤ q max{d(x1, x2), d(x1, x2) + d(x2, x3), d(x2, x3)}

= q[d(x1, x2) + d(x2, x3)].

Hence

d(x2, x3) ≤
q

1− q
d(x1, x2) ≤ (

q

1− q
)2d(x0, x1).

Then

d(x0, x3) ≤ d(x0, x2) + d(x2, x3)

≤ [1 +
q

1− q
+ (

q

1− q
)2]d(x0, x1)

< [1 +
q

1− q
+ (

q

1− q
)2 + ...](1− q

1− q
)r = r.
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Thus x3 ∈ B(x0, r).
Inductively we obtain

d(xn+1, xn) ≤ q

1− q
d(xn, xn−1) ≤ ... ≤ (

q

1− q
)nd(x0, x1)(14)

< (
q

1− q
)n(1− q

1− q
)r

for xn = Fxn−1, n = 3, 4, ...which implies that

d(x0, xn+1) ≤ d(x0, xn) + d(xn, xn+1) < r.

Hence xn+1 ∈ B(x0, r).
Now,because q ∈ [0, 1

2) from (14) we deduce that (xn) is Cauchy sequence
with respect to d. We will prove that

(15) (xn) is a Cauchy sequence with respect to d′.

If d ≥ d′ this is trivial. Next assume d � d′.

Let ε > 0. From (12) we have: there exists δ > 0 such that

(16) d′(Fx, Fy) < ε for any x, y ∈ B(x0, r) and d(x, y) < δ.

From the start we know that there exists a positive natural number N with

(17) d(xn, xm) < δ for all n, m ≥ N.

Now (16)+(17) implies that

d′(xn+1, xm+1) = d′(Fxn, Fxm) < ε, for all n, m ≥ N,

so (15) holds. Since (X, d′) is complete we have that there exists x ∈ B(x0, r)d′

with d′(xn, x) → 0,as n →∞.

Claim now that

(18) Fx = x.

If (18) holds then the proof is complete. First take the case d 6= d′. Then we
have

d′(x, Fx) ≤ d′(x, xn) + d′(xn, Fx) = d′(x, xn) + d′(Fxn−1, Fx).

Letting n →∞ and using (13) we obtain

d′(x, Fx) ≤ 0 + 0 = 0 which implies x = Fx.
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So, in this case (18) holds.
Now assume d = d′. Then

d(x, Fx) ≤ d(x, xn) + d(xn, Fx) = d(x, xn) + d(Fxn−1, Fx)

≤ d(x, xn) + q max{d(xn−1, x), d(xn−1, Fxn−1),

d(x, Fx), d(xn−1, Fx), d(x, Fxn−1)}

= d(x, xn) + q max{d(xn−1, x), d(xn−1, xn),

d(x, Fx), d(xn−1, Fx), d(x, xn)}

≤ d(x, xn) + q max{d(xn−1, x), d(xn−1, xn)d(x, xn),

d(x, Fx), d(xn−1, x) + d(x, Fx)}.

Hence

d(x, Fx) ≤ d(x, xn)

+q max {d(x, xn), d(x, Fx), d(xn−1, xn), d(xn−1, x) + d(x, Fx)} .

Letting n →∞ we obtain

d(x, Fx) ≤ q max{0, d(x.Fx), 0, 0 + d(x, Fx)} = qd(x, Fx).

This implies
d(x, Fx) = 0.

So x = Fx and (18 ) holds. �

The following global result can be easy obtained from the above theorem.

Theorem 4. Let (X, d′) be a complete metric space, d another metric on X,

and F : X −→ X. Assume there exists q ∈ [0, 1
2) such that ∀x, y ∈ X we have

d(Fx, Fy) ≤ q max{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)}.

In addition assume that the following proprieties hold:
if d � d′ F is uniformly continuous from (X, d′) to (X, d′);
if d 6= d′ F continuous from (X, d′) to (X, d′).
Then F has a fixed point.

Proof. Let x0 ∈ X and take any r > 0 such that

d(x0, Fx0) < (1− q

1− q
)r.
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Then from the above theorem there exists x ∈ B(x0, r)d′ with x = Fx. �

Next we present an homotopy result for this type of generalized contractions.

Theorem 5. Let (X, d′) be a complete metric space and let d another metric
on X. Let Q ⊂ X d′−closed and let U ⊂ X d−open and U ⊂ Q. Suppose
H : Q× [0, 1] −→ X with the following properties:

(i) x 6= H(x, λ) for x ∈ Q\U and λ ∈ [0, 1];

(ii)there exists q ∈ [0, 1
2) such that, for any λ ∈ [0, 1] and x, y ∈ Q we have

d(H(x, λ),H(y, λ))

≤ q max{d(x, y), d(x,H(x, λ)), d(y, H(y, λ)), d(x,H(y, λ)), d(y, H(x, λ))}

(iii) H(x, λ) is continuous in λ with respect to d, uniformly for x ∈ Q;

(iv) if d � d′ assume H is uniformly continuous from U × [0, 1] endowed
with the metric d on U into (X, d′); and

(v) if d 6= d′ assume H is continuous from Q×[0, 1] endowed with the metric
d′ on Q into (X, d′).

In addition assume H0 has a fixed point. Then for each λ ∈ [0, 1] we have
that Hλ has a fixed point xλ ∈ U (here Hλ(.) = H(., λ)).

Proof. Let

A = {λ ∈ [0, 1]; exists x ∈ U such that H(x, λ) = x}.

Since H0 has a fixed point and (i) holds we have 0 ∈ A, and so the set
A is nonempty. We will show A is open and closed in [0, 1] and so by the
connectedness of [0, 1] we have A = [0, 1] (see [2])and the proof is finished.

First we show that A is closed in [0, 1].
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Let (λk) be a sequence in A with λk → λ ∈ [0, 1] as k → ∞. By definition
of A for each k, there exists xk ∈ U such that xk = H(xk, λk). Now we have

d(xk, xj) = d(H(xk, λk),H(xj , λj))

≤ d(H(xk, λk),H(xk, λ))

+d(H(xk, λ),H(xj , λ)) + d(H(xj , λ),H(xj , λj))

≤ d(H(xk, λk),H(xk, λ))

+q max{d(xk, xj), d(xk,H(xk, λ)),

d(xj ,H(xj , λ)), d(xk,H(xj , λ)), d(xj ,H(xk, λ))}

+d(H(xj , λ),H(xj , λj))

≤ d(H(xk, λk),H(xk, λ))

+q max{d(xk, xj), d(H(xk, λk),H(xk, λ)),

d(H(xj , λj),H(xj , λ)), d(H(xk, λk),H(xj , λ)), d(H(xj , λj),H(xk, λ))}

+d(H(xj , λ),H(xj , λj))

≤ d(H(xk, λk),H(xk, λ)) + d(H(xj , λ),H(xj , λj))

+q max{d(xk, xj), d(H(xk, λk),H(xk, λ)), d(H(xj , λj),H(xj , λ)),

d(H(xk, λk),H(xj , λj)) + d(H(xj , λj),H(xj , λ)),

d(H(xj , λj),H(xk, λk)) + d(H(xk, λk),H(xk, λ))}

≤ d(xk,H(xk, λ)) + d(xj ,H(xj , λ))

+q max{d(xk, xj) + d(xk,H(xk, λ)), d(xk, xj) + d(xj ,H(xj , λ))}

≤ d(xk,H(xk, λ)) + d(xj ,H(xj , λ))

+q[2d(xk, xj) + d(xk,H(xk, λ)) + d(xj ,H(xj , λ))]

= d(xk,H(xk, λ)) + d(xj ,H(xj , λ))

+q max{d(xk, xj), d(xk,H(xk, λ)), d(xj ,H(xj , λ))

d(xk, xj) + d(xj ,H(xj , λ)),

d(xk, xj) + d(xk,H(xk, λ))}

and

(1− 2q)d(xk, xj) ≤ (1 + q)[d(H(xk, λk),H(xk, λ)) + d(H(xj , λ),H(xj , λj))].
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Hence

d(xk, xj) ≤
1 + q

1− 2q
[d(H(xk, λk),H(xk, λ)) + d(H(xj , λ),H(xj , λj))]

and (iii) guarantees that (xk) is a Cauchy sequence with respect to d. We claim
that

(19) (xk) is a Cauchy sequence with respect to d′.

If d ≥ d′ this is trivial. If d � d′ then

d′(xk, xj) = d′(H(xk, λk),H(xj , λj))

and (iv) guarantees that (19) holds (note as well that (xk) is a Cauchy sequence
with respect to d and (λk) is Cauchy sequence in [0, 1]). Now since (X, d′) is
complete there exists an x ∈ Q such that d′(xk, x) → 0 as k →∞. Claim now
that

(20) x = H(x, λ).

We consider first the case d 6= d′. Then

d′(x,H(x, λ)) ≤ d′(x, xk) + d′(xk,H(x, λ))

= d′(x, xk) + d′(H(xk, λk),H(x, λ))

together with (v), letting k →∞, we have d′(x,H(x, λ)) = 0, so (20) holds.
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We consider now the case d = d′. Then

d(x,H(x, λ)) ≤ d(x, xk) + d(xk,H(x, λ))

≤ d(x, xk) + d(H(xk, λk),H(x, λk)) + d(H(x, λk),H(x, λ))

≤ d(x, xk)

+q max{d(x, xk), d(xk,H(xk, λk)),

d(x,H(x, λk)), d(x, H(xk, λk)), d(xk,H(x, λk))}

+d(H(x, λk),H(x, λ))

≤ d(x, xk) + q max{d(x, xk), d(xk, xk),

d(x,H(x, λk)), d(xk,H(x, λk))}

+d(H(x, λk),H(x, λ))

= d(x, xk)

+q max{d(x, xk), d(x,H(x, λk)), d(xk,H(x, λk))}

+d(H(x, λk),H(x, λ))

≤ d(x, xk)

+q max{d(x, xk), d(x,H(x, λk)), d(x, xk) + d(x,H(x, λk))}

+d(H(x, λk),H(x, λ))

≤ d(x, xk)

+q[d(x, xk) + d(x,H(x, λk))]

+d(H(x, λk),H(x, λ))

≤ d(x, xk)

+q[d(x, xk) + d(x,H(x, λ)) + d(H(x, λ),H(x, λk))]

+d(H(x, λk),H(x, λ))

and we have

d(x,H(x, λ)) ≤ d(x, xk)

+q[d(x, xk) + d(x,H(x, λ)) + d(H(x, λ),H(x, λk))]

+d(H(x, λk),H(x, λ))
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Letting k →∞ we have

d(x,H(x, λ)) ≤ 0 + q[0 + d(x,H(x, λ)) + 0] + 0

d(x,H(x, λ)) ≤ qd(x,H(x, λ))

so d(x,H(x, λ)) = 0 and (20) holds.We have now H(x, λ) = x for x ∈ Q and
with (i) we have H(x, λ) = x for x ∈ U. Consequently λ ∈ A and so A is closed
in [0,1].

We prove now A is open in [0, 1].
Let λ0 ∈ A and x0 ∈ U such that x0 = H(x0, λ0). From U d−open there

exists a d−ball B(x0, δ) = {x ∈ X; d(x, x0) < δ}, δ > 0, and B(x0, δ) ⊂ U.

From (iii) we have that H is uniformly continuous on B(x0, δ).
Let ε = (1 − q

1− q
)δ > 0 and using the uniform continuity of H we have:

there exists η = η(δ) > 0 such that for each λ ∈ [0, 1] | λ − λ0 |≤ η with
d(H(x, λ),H(x, λ0)) < ε for any x ∈ B(x0, δ). So this property holds for
x = x0, and then we have

d(x0,H(x0, λ)) = d(H(x0, λ0),H(x0, λ)) < (1− q

1− q
)δ

for λ ∈ [0, 1] and | λ− λ0 |≤ η.

Using now (ii), (iv) and (v) together with the theorem (3) (in this case r = δ

and F = Hλ) we get: there exists xλ ∈ B(x0, δ)d
′
⊂ Q with xλ = Hλ(xλ)

for λ ∈ [0, 1] and | λ − λ0 |≤ η. But xλ ∈ U ( (i) guarantees that) and so A

contains all λ ∈ [0, 1] with | λ− λ0 |≤ η. Consequently A is open in [0, 1]. �
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