Fixed Point Theory, Volume 4, No. 1, 2003, 33-48 http://www.math.ubbcluj.ro/~nodeacj/journal.htm

FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIONS

ADELA CHIŞ

Department of Mathematics Technical University of Cluj-Napoca,Romania *E-mail address:* Adela.Chis@math.utcluj.ro

Abstract. We present fixed point results for generalized contractions on spaces with two metrics. The focus is on continuation results for such type of mappings.Keywords: spaces with two metrics, generalized contractions, continuation principlesAMS Subject Classification: 47H10, 54H25

1. INTRODUCTION

This paper presents fixed point theorems for some classes of generalized contraction on metric spaces. The results are in connection with similar theorems established by Granas [7], [8], Frigon [6], Granas and Frigon [5], Precup [11], [12], Agarwal and O'Regan [1], O'Regan [10], O'Regan and Precup [9], and Avramescu [3]. Such type of results apply to semilinear equations and inclusions. Section 2 present new local and global fixed point results for contractions of the Riech-Rus type

 $d(Fx, Fy) \le ad(x, Fx) + bd(y, Fy) + cd(x, y),$

where a, b, c are non-negative numbers with a + b + c < 1 (see Rus[13]).

Section 3 is devote to similar results for a contraction of the type

 $d(Fx, Fy) \le q \max\{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)\}$

where $q \in [0, \frac{1}{2})$ (see Cirić [4]).

Throughout this article (X, d') will be a complete metric space and d another metric on X. If $x_0 \in X$ and r > 0 denote by $B(x_0, r) = \{x \in X : d(x_0, x) < r\}$ and by $\overline{B(x_0, r)^{d'}}$ the d'-closure of $B(x_0, r)$.

³³

ADELA CHIŞ

2. FIXED POINT RESULTS FOR REICH-RUS GENERALIZED CONTRACTIONS

Theorem 1. Let (X, d') be a complete metric space, d another metric on X, $x_0 \in X, r > 0$, and $F : \overline{B(x_0, r)^{d'}} \longrightarrow X$. Suppose for any $x, y \in \overline{B(x_0, r)^{d'}}$ we have

$$d(Fx, Fy) \le ad(x, Fx) + bd(y, Fy) + cd(x, y),$$

where a,b,c are non-negative numbers with a + b + c < 1. In addition assume the following three properties hold:

(1)
$$d(x_0, Fx_0) < (1 - \frac{a+c}{1-b})r,$$

(2)

if $d \not\geq d'$ then F is uniformly continuous from $(B(x_0, r), d)$ into (X, d'),

and

(3) if $d \neq d'$ then F is continuous from $(\overline{B(x_0, r)^{d'}}, d')$ into (X, d').

Then F has a fixed point, that is there exists $x \in \overline{B(x_0, r)^{d'}}$ with Fx = x.

Proof. Let $x_1 = Fx_0$. From (1), since a + b + c < 1, we have

$$d(x_1, x_0) < (1 - \frac{a+c}{1-b})r \le r$$

so $x_1 \in B(x_0, r)$.

Next let $x_2 = Fx_1$ and note that

$$d(x_1, x_2) = d(Fx_0, Fx_1)$$

$$\leq ad(x_0, Fx_0) + bd(x_1, Fx_1) + cd(x_0, x_1)$$

$$= ad(x_0, x_1) + bd(x_1, x_2) + cd(x_0, x_1).$$

Hence

$$(1-b)d(x_1,x_2) \le (a+c)d(x_0,x_1).$$

It follows that

$$d(x_1, x_2) \le \frac{a+c}{1-b} d(x_0, x_1) \le \frac{a+c}{1-b} (1 - \frac{a+c}{1-b})r.$$

Then

$$d(x_0, x_2) \leq d(x_0, x_1) + d(x_1, x_2)$$

$$< (1 - \frac{a+c}{1-b})r + \frac{a+c}{1-b}(1 - \frac{a+c}{1-b})r$$

$$= (1 - \frac{a+c}{1-b})r(1 + \frac{a+c}{1-b})$$

$$\leq (1 - \frac{a+c}{1-b})r[1 + \frac{a+c}{1-b} + (\frac{a+c}{1-b})^2 + (\frac{a+c}{1-b})^3 + \dots]$$

$$= (1 - \frac{a+c}{1-b})r\frac{1}{1 - \frac{a+c}{1-b}} = r.$$

So we have $d(x_0, x_2) < r$, that is $x_2 \in B(x_0, r)$. Proceeding inductively we obtain

$$d(x_{n+1}, x_n) \leq \frac{a+c}{1-b} d(x_n, x_{n-1})$$

$$\leq \dots \leq (\frac{a+c}{1-b})^n d(x_0, x_1) < (\frac{a+c}{1-b})^n (1 - \frac{a+c}{1-b})r$$

where $x_n = Fx_{n-1}, n = 3, 4, \dots$. Since $\frac{a+c}{1-b} \in [0,1)$ it follows that $(\frac{a+c}{1-b})^n \in [0,1)$ and thus

$$d(x_{n+1}, x_n) \le (1 - \frac{a+c}{1-b})r.$$

The last inequality implies $x_{n+1} \in B(x_0, r)$ and, the sequence (x_n) is a Cauchy sequence with respect to d. We claim that

(4) (x_n) is a Cauchy sequence with respect to d'.

If $d \ge d'$ this is trivial. Next suppose $d \not\ge d'$. Let $\varepsilon > 0$ be given. Now (2) guarantees that there exists $\delta > 0$ such that

(5)
$$d'(Fx, Fy) < \varepsilon$$
 whenever $x, y \in B(x_0, r)$ and $d(x, y) < \delta$.

From above the sequence (x_n) is a Cauchy sequence with respect to d, so we know that there exists N with

(6)
$$d(x_n, x_m) < \delta \text{ for all } n, m \ge N.$$

Now (5) and (6) imply

$$d'(x_{n+1}, x_{m+1}) = d'(Fx_n, Fy_m) < \varepsilon$$
 whenever $n, m \ge N$

which proves (4). Now since (X, d') is complete there exists $x \in \overline{B(x_0, r)^{d'}}$ with $d'(x_n, x) \to 0$ as $n \to \infty$. We claim now that

(7)
$$x = Fx.$$

First consider the case when $d \neq d'$. Notice

$$d'(x, Fx) \le d'(x, x_n) + d'(x_n, Fx) = d'(x, x_n) + d'(Fx_{n-1}, Fx).$$

Let $n \to \infty$ and using (3) we obtain

$$d'(x, Fx) \le d'(x, x) + d'(Fx, Fx)$$

so d'(x, Fx) = 0, and thus (7) is true in this case. Next suppose d = d' ((2) and (3) do not hold). Then

$$d(x, Fx) \leq d(x, x_n) + d(x_n, Fx) = d(x, x_n) + d(Fx_{n-1}, Fx)$$

$$\leq d(x, x_n) + ad(x_{n-1}, Fx_{n-1}) + bd(x, Fx) + cd(x_{n-1}, x).$$

Hence

$$(1-b)d(x,Fx) \le d(x,x_n) + cd(x_{n-1},x) + ad(x_{n-1},x_n).$$

In the last inequality letting $n \to \infty$ we obtain

$$(1-b)d(x,Fx) \le 0.$$

So d(x, Fx) = 0, and (7) holds. Thus, the proof of the theorem is complete. \Box Next we present an homotopy result for this type of generalized contractions.

Theorem 2. Let (X, d') be a complete metric space and d another metric on X. Let $Q \subset X$ be d'-closed and let $U \subset X$ be d-open and $U \subset Q$. Suppose $H: Q \times [0,1] \longrightarrow X$ satisfies the following five properties:

(i) $x \neq H(x, \lambda)$ for $x \in Q \setminus U$ and $\lambda \in [0, 1]$;

(ii) for any $\lambda \in [0,1]$ and $x, y \in Q$ we have

$$d(H(x,\lambda),H(y,\lambda)) \le ad(x,H(x,\lambda) + bd(y,H(y,\lambda)) + cd(x,y))$$

with a, b, c non-negative numbers and a + b + c < 1;

(iii) $H(x, \lambda)$ is continuous in λ with respect to d, uniformly for $x \in Q$;

(iv) if $d \geq d'$ assume H is uniformly continuous from $U \times [0,1]$ endowed with the metric d on U into (X, d');

(v) if $d \neq d'$ assume H is continuous from $Q \times [0,1]$ endowed with the metric d' on Q into (X, d').

In addition assume H_0 has a fixed point. Then for each $\lambda \in [0, 1]$ we have that H_{λ} has a fixed point $x_{\lambda} \in U$ (here $H_{\lambda}(.) = H(., \lambda)$).

Proof. Let

$$A := \{\lambda \in [0, 1]; \text{ there exists } x \in U \text{ such that } H(x, \lambda) = x\}.$$

Since H_0 has a fixed point and (i) holds we have $0 \in A$, and so the set A is nonempty. We will show A is open and closed in [0, 1] and so by the connectedness of [0, 1] we have A = [0, 1] (see [2]) and the proof is finished.

First we show that A is closed in [0, 1].

Let (λ_k) be a sequence in A with $\lambda_k \to \lambda \in [0, 1]$ as $k \to \infty$. By definition of A for each k, there exists $x_k \in U$ such that $x_k = H(x_k, \lambda_k)$. Now we have

$$d(x_k, x_j) = d(H(x_k, \lambda_k), H(x_j, \lambda_j))$$

$$\leq d(H(x_k, \lambda_k), H(x_k, \lambda)) + d(H(x_k, \lambda), H(x_j, \lambda))$$

$$+ d(H(x_j, \lambda), H(x_j, \lambda_j))$$

$$\leq d(H(x_k, \lambda_k), H(x_k, \lambda))$$

$$+ ad(x_k, H(x_k, \lambda)) + bd(x_j, H(x_j, \lambda)) + cd(x_k, x_j)$$

$$+ d(H(x_j, \lambda), H(x_j, \lambda_j)).$$

Hence

$$\begin{aligned} (1-c)d(x_k, x_j) &\leq d(H(x_k, \lambda_k), H(x_k, \lambda)) \\ &\quad + d(H(x_j, \lambda), H(x_j, \lambda_j)) \\ &\quad + ad(H(x_k, \lambda_k), H(x_k, \lambda)) + bd(H(x_j, \lambda), H(x_j, \lambda_j))) \\ &= (1+a)d(H(x_k, \lambda_k), H(x_k, \lambda)) \\ &\quad + (1+b)d(H(x_j, \lambda), H(x_j, \lambda_j))) \end{aligned}$$

and (iii) guarantees that (x_k) is a Cauchy sequence with respect to d. We claim that

(8) (x_k) is a Cauchy sequence with respect to d'.

If $d \ge d'$ this is trivial. If $d \not\ge d'$ then

$$d'(x_k, x_j) = d'(H(x_k, \lambda_k), H(x_j, \lambda_j))$$

and (iv) guarantees that (8) holds (note as well that (x_k) is a Cauchy sequence with respect to d and (λ_k) is Cauchy sequence in [0, 1]). Now since (X, d') is complete there exists an $x \in Q$ such that $d'(x_k, x) \to 0$ as $k \to \infty$. Claim now that

(9)
$$x = H(x, \lambda).$$

We consider first the case $d \neq d'$. Then

$$d'(x, H(x, \lambda)) \leq d'(x, x_k) + d'(x_k, H(x, \lambda))$$

= $d'(x, x_k) + d'(H(x_k, \lambda_k), H(x, \lambda))$

together with (v), letting $k \to \infty$, we have $d'(x, H(x, \lambda)) = 0$, so (9) holds. We consider now the case d = d'. Then

$$\begin{aligned} d(x, H(x, \lambda)) &\leq d(x, x_k) + d(H(x_k, \lambda_k), H(x, \lambda)) \\ &\leq d(x, x_k) + d(H(x_k, \lambda_k), H(x, \lambda_k)) \\ &\quad + d(H(x, \lambda_k), H(x, \lambda)) \\ &\leq d(x, x_k) + ad(x_k, H(x_k, \lambda_k)) \\ &\quad + bd(x, H(x, \lambda_k)) + cd(x, x_k) \\ &\quad + d(H(x, \lambda_k), H(x, \lambda)) \\ &= (1 + c)d(x, x_k) + a.0 \\ &\quad + bd(x, H(x, \lambda_k)) + d(H(x, \lambda_k), H(x, \lambda)) \\ &\leq (1 + c)d(x, x_k) + bd(x, H(x, \lambda)) \\ &\quad + bd(H(x, \lambda), H(x, \lambda_k)) \\ &\quad + d(H(x, \lambda_k), H(x, \lambda)) \end{aligned}$$

Now we have

$$(1-b)d(x, H(x, \lambda)) \le (1+c)d(x, x_k) + (1+b)d(H(x, \lambda_k), H(x, \lambda))$$

Letting $k \to \infty$ and using (iii) we obtain

$$(1-b)d(x, H(x,\lambda)) \le 0.$$

So we have $d(x, H(x, \lambda)) = 0$, that is (9) holds. Now from (9) and (i) we have $x \in U$. Consequently $\lambda \in A$ and so A is closed in [0,1].

We prove now A is open in [0, 1].

Let $\lambda_0 \in A$ and $x_0 \in U$ such that $x_0 = H(x_0, \lambda_0)$. From U d-open there exists a d-ball $B(x_0, \delta) = \{x \in X; d(x, x_0) < \delta\}, \delta > 0$, and $B(x_0, \delta) \subset U$. From (iii) we have that H is uniformly continuous on $B(x_0, \delta)$.

Let $\varepsilon = (1 - \frac{a+c}{1-b})\delta > 0$ and using the uniform continuity of H we have: there exists $\eta = \eta(\delta) > 0$ such that for each $\lambda \in [0,1] \mid \lambda - \lambda_0 \mid \leq \eta$ with $d(H(x,\lambda), H(x,\lambda_0)) < \varepsilon$ for any $x \in B(x_0,\delta)$. So this property holds for $x = x_0$, and then we have

$$d(x_0, H(x_0, \lambda)) = d(H(x_0, \lambda_0), H(x_0, \lambda)) < (1 - \frac{a+c}{1-b})\delta$$

for $\lambda \in [0, 1]$ and $|\lambda - \lambda_0| \le \eta$.

Using now (ii), (iv) and (v) together with the theorem (2.1) (in this case $r = \delta$ and $F = H_{\lambda}$) we get: there exists $x_{\lambda} \in \overline{B(x_0, \delta)^{d'}} \subset Q$ with $x_{\lambda} = H_{\lambda}(x_{\lambda})$ for $\lambda \in [0, 1]$ and $|\lambda - \lambda_0| \leq \eta$. But $x_{\lambda} \in U$ ((i) guarantees that) and so Acontains all $\lambda \in [0, 1]$ with $|\lambda - \lambda_0| \leq \eta$. Consequently A is open in [0, 1]. \Box

3. FIXED POINT RESULT FOR CIRIĆ GENERALIZED CONTRACTIONS

Theorem 3. Let (X, d') be a complete metric space, d another metric on X, $x_0 \in X, r > 0$, and $F : \overline{B(x_0, r)^{d'}} \longrightarrow X$. Assume that there exists $q \in [0, \frac{1}{2})$ such that for any $x, y \in \overline{B(x_0, r)^{d'}}$ we have

(10)
$$d(Fx, Fy) \le q \max\{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)\}$$

In addition assume:

(11)
$$d(x_0, Fx_0) < (1 - \frac{q}{1 - q})r$$

(12)

if $d \not\geq d'$ assume F is uniformly continuous from $(B(x_0, r), d)$ to (X, d')

(13) if $d \neq d'$ assume F continuous from $(\overline{B(x_0, r)^{d'}}, d')$ to (X, d')

Then F has a fixed point i.e., there exists $x \in \overline{B(x_0, r)^{d'}}$ with x = Fx.

Proof. Let $x_1 = Fx_0$. From inequality (11) we have

$$d(x_1, x_0) = d(x_0, Fx_0) < (1 - \frac{q}{1 - q})r \le r$$

so $x_1 \in B(x_0, r)$. Next let $x_2 = Fx_1$ and note that

$$\begin{aligned} d(x_1, x_2) &= d(Fx_0, Fx_1) \\ &\leq q \max\{d(x_0, x_1), d(x_0, Fx_0), d(x_1, Fx_1), d(x_0, Fx_1), d(x_1, Fx_0)\} \\ &= q \max\{d(x_0, x_1), d(x_0, x_1), d(x_1, x_2), d(x_0, x_2), d(x_1, x_1)\} \\ &= q \max\{d(x_0, x_1), d(x_0, x_2), d(x_1, x_2)\} \\ &\leq q \max\{d(x_0, x_1), d(x_0, x_1) + d(x_1, x_2), d(x_1, x_2)\} \\ &= q[d(x_0, x_1) + d(x_1, x_2)]. \end{aligned}$$

Then

$$d(x_1, x_2) \le \frac{q}{1-q} d(x_0, x_1).$$

It follows that

$$d(x_0, x_2) \leq d(x_0, x_1) + d(x_1, x_2)$$

$$\leq (1 + \frac{q}{1-q})d(x_0, x_1)$$

$$< [1 + \frac{q}{1-q} + (\frac{q}{1-q})^2 + \dots](1 - \frac{q}{1-q})r = r.$$

It follows that $x_2 \in B(x_0, r)$.

Now let $x_3 = Fx_2$. We have

$$d(x_2, x_3) = d(Fx_1, Fx_2)$$

$$\leq q \max\{d(x_1, x_2), d(x_1, Fx_1), d(x_2, Fx_2), d(x_1, Fx_2), d(x_2, Fx_1)\}$$

$$= q \max\{d(x_1, x_2), d(x_1, x_3), d(x_2, x_3)\}$$

$$\leq q \max\{d(x_1, x_2), d(x_1, x_2) + d(x_2, x_3), d(x_2, x_3)\}$$

$$= q[d(x_1, x_2) + d(x_2, x_3)].$$

Hence

$$d(x_2, x_3) \le \frac{q}{1-q} d(x_1, x_2) \le (\frac{q}{1-q})^2 d(x_0, x_1).$$

Then

$$d(x_0, x_3) \leq d(x_0, x_2) + d(x_2, x_3)$$

$$\leq [1 + \frac{q}{1-q} + (\frac{q}{1-q})^2] d(x_0, x_1)$$

$$< [1 + \frac{q}{1-q} + (\frac{q}{1-q})^2 + \dots] (1 - \frac{q}{1-q})r = r.$$

Thus $x_3 \in B(x_0, r)$.

Inductively we obtain

(14)
$$d(x_{n+1}, x_n) \leq \frac{q}{1-q} d(x_n, x_{n-1}) \leq \dots \leq (\frac{q}{1-q})^n d(x_0, x_1)$$
$$< (\frac{q}{1-q})^n (1 - \frac{q}{1-q})r$$

for $x_n = Fx_{n-1}, n = 3, 4, \dots$ which implies that

$$d(x_0, x_{n+1}) \le d(x_0, x_n) + d(x_n, x_{n+1}) < r.$$

Hence $x_{n+1} \in B(x_0, r)$.

Now, because $q \in [0, \frac{1}{2})$ from (14) we deduce that (x_n) is Cauchy sequence with respect to d. We will prove that

(15)
$$(x_n)$$
 is a Cauchy sequence with respect to d' .

If $d \ge d'$ this is trivial. Next assume $d \ge d'$.

Let $\varepsilon > 0$. From (12) we have: there exists $\delta > 0$ such that

(16)
$$d'(Fx, Fy) < \varepsilon$$
 for any $x, y \in B(x_0, r)$ and $d(x, y) < \delta$.

From the start we know that there exists a positive natural number N with

(17)
$$d(x_n, x_m) < \delta \text{ for all } n, m \ge N.$$

Now (16)+(17) implies that

$$d'(x_{n+1}, x_{m+1}) = d'(Fx_n, Fx_m) < \varepsilon, \text{ for all } n, m \ge N,$$

so (15) holds. Since (X, d') is complete we have that there exists $x \in \overline{B(x_0, r)^{d'}}$ with $d'(x_n, x) \to 0$, as $n \to \infty$.

Claim now that

(18)
$$Fx = x.$$

If (18) holds then the proof is complete. First take the case $d \neq d'$. Then we have

$$d'(x, Fx) \le d'(x, x_n) + d'(x_n, Fx) = d'(x, x_n) + d'(Fx_{n-1}, Fx).$$

Letting $n \to \infty$ and using (13) we obtain

 $d'(x, Fx) \leq 0 + 0 = 0$ which implies x = Fx.

So, in this case (18) holds.

Now assume d = d'. Then

$$\begin{aligned} d(x,Fx) &\leq d(x,x_n) + d(x_n,Fx) = d(x,x_n) + d(Fx_{n-1},Fx) \\ &\leq d(x,x_n) + q \max\{d(x_{n-1},x), d(x_{n-1},Fx_{n-1}), \\ & d(x,Fx), d(x_{n-1},Fx), d(x,Fx_{n-1})\} \\ &= d(x,x_n) + q \max\{d(x_{n-1},x), d(x_{n-1},x_n), \\ & d(x,Fx), d(x_{n-1},Fx), d(x,x_n)\} \\ &\leq d(x,x_n) + q \max\{d(x_{n-1},x), d(x_{n-1},x_n)d(x,x_n), \\ & d(x,Fx), d(x_{n-1},x) + d(x,Fx)\}. \end{aligned}$$

Hence

$$d(x, Fx) \leq d(x, x_n) + q \max \{ d(x, x_n), d(x, Fx), d(x_{n-1}, x_n), d(x_{n-1}, x) + d(x, Fx) \}$$

Letting $n \to \infty$ we obtain

$$d(x, Fx) \le q \max\{0, d(x, Fx), 0, 0 + d(x, Fx)\} = qd(x, Fx).$$

This implies

$$d(x, Fx) = 0.$$

So x = Fx and (18) holds. \Box

The following global result can be easy obtained from the above theorem.

Theorem 4. Let (X, d') be a complete metric space, d another metric on X, and $F: X \longrightarrow X$. Assume there exists $q \in [0, \frac{1}{2})$ such that $\forall x, y \in X$ we have

 $d(Fx, Fy) \le q \max\{d(x, y), d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)\}.$

In addition assume that the following proprieties hold: if $d \nleq d' F$ is uniformly continuous from (X, d') to (X, d'); if $d \neq d' F$ continuous from (X, d') to (X, d'). Then F has a fixed point.

Proof. Let $x_0 \in X$ and take any r > 0 such that

$$d(x_0, Fx_0) < (1 - \frac{q}{1 - q})r.$$

Then from the above theorem there exists $x \in \overline{B(x_0, r)^{d'}}$ with x = Fx. \Box

Next we present an homotopy result for this type of generalized contractions.

Theorem 5. Let (X, d') be a complete metric space and let d another metric on X. Let $Q \subset X$ d'-closed and let $U \subset X$ d-open and $U \subset Q$. Suppose $H: Q \times [0,1] \longrightarrow X$ with the following properties:

(i) $x \neq H(x, \lambda)$ for $x \in Q \setminus U$ and $\lambda \in [0, 1]$;

(ii)there exists $q \in [0, \frac{1}{2})$ such that, for any $\lambda \in [0, 1]$ and $x, y \in Q$ we have

$$\begin{split} & d(H(x,\lambda),H(y,\lambda)) \\ & \leq & q \max\{d(x,y),d(x,H(x,\lambda)),d(y,H(y,\lambda)),d(x,H(y,\lambda)),d(y,H(x,\lambda))\} \end{split}$$

(iii) $H(x, \lambda)$ is continuous in λ with respect to d, uniformly for $x \in Q$;

(iv) if $d \geq d'$ assume H is uniformly continuous from $U \times [0,1]$ endowed with the metric d on U into (X, d'); and

(v) if $d \neq d'$ assume H is continuous from $Q \times [0, 1]$ endowed with the metric d' on Q into (X, d').

In addition assume H_0 has a fixed point. Then for each $\lambda \in [0, 1]$ we have that H_{λ} has a fixed point $x_{\lambda} \in U$ (here $H_{\lambda}(.) = H(., \lambda)$).

Proof. Let

$$A = \{\lambda \in [0,1]; \text{ exists } x \in U \text{ such that } H(x,\lambda) = x\}.$$

Since H_0 has a fixed point and (i) holds we have $0 \in A$, and so the set A is nonempty. We will show A is open and closed in [0, 1] and so by the connectedness of [0, 1] we have A = [0, 1] (see [2])and the proof is finished.

First we show that A is closed in [0, 1].

Let (λ_k) be a sequence in A with $\lambda_k \to \lambda \in [0, 1]$ as $k \to \infty$. By definition of A for each k, there exists $x_k \in U$ such that $x_k = H(x_k, \lambda_k)$. Now we have

$$\begin{split} d(x_k, x_j) &= d(H(x_k, \lambda_k), H(x_j, \lambda_j)) \\ &\leq d(H(x_k, \lambda_k), H(x_k, \lambda)) \\ &+ d(H(x_k, \lambda_k), H(x_j, \lambda)) + d(H(x_j, \lambda), H(x_j, \lambda_j))) \\ &\leq d(H(x_k, \lambda_k), H(x_k, \lambda)) \\ &+ q \max\{d(x_k, x_j), d(x_k, H(x_k, \lambda)), d(x_j, H(x_k, \lambda))\} \\ &+ d(H(x_j, \lambda)), d(x_k, H(x_j, \lambda)), d(x_j, H(x_k, \lambda))) \\ &+ d(H(x_j, \lambda), H(x_j, \lambda_j)) \\ &\leq d(H(x_k, \lambda_k), H(x_k, \lambda)) \\ &+ q \max\{d(x_k, x_j), d(H(x_k, \lambda_k), H(x_k, \lambda)), d(H(x_j, \lambda_j), H(x_k, \lambda))\} \\ &+ d(H(x_j, \lambda), H(x_j, \lambda))) \\ &\leq d(H(x_k, \lambda_k), H(x_k, \lambda)) + d(H(x_j, \lambda), H(x_j, \lambda)), d(H(x_j, \lambda_j), H(x_k, \lambda))) \\ &+ d(H(x_j, \lambda), H(x_j, \lambda))) \\ &\leq d(H(x_k, \lambda_k), H(x_k, \lambda)) + d(H(x_j, \lambda), H(x_j, \lambda_j), H(x_j, \lambda)), \\ &\quad d(H(x_k, \lambda_k), H(x_k, \lambda)) + d(H(x_k, \lambda_k), H(x_k, \lambda)), d(H(x_j, \lambda_j), H(x_j, \lambda)), \\ &\quad d(H(x_k, \lambda_k), H(x_j, \lambda))) + d(H(x_k, \lambda_k), H(x_k, \lambda))) \\ &\leq d(x_k, H(x_k, \lambda)) + d(x_j, H(x_j, \lambda)) \\ &\quad + q \max\{d(x_k, x_j) + d(x_k, H(x_k, \lambda)), d(x_k, x_j) + d(x_j, H(x_j, \lambda))\} \\ &\leq d(x_k, H(x_k, \lambda)) + d(x_j, H(x_j, \lambda)) \\ &\quad + q \max\{d(x_k, x_j) + d(x_k, H(x_k, \lambda)), d(x_j, H(x_j, \lambda))) \\ &\quad + q \max\{d(x_k, x_j), d(x_k, H(x_k, \lambda)), d(x_j, H(x_j, \lambda))) \\ &\quad d(x_k, x_j) + d(x_j, H(x_j, \lambda)) \\ &\quad + q \max\{d(x_k, x_j) + d(x_j, H(x_j, \lambda)) \\ &\quad + q \max\{d(x_k, x_j) + d(x_j, H(x_j, \lambda)), d(x_j, H(x_j, \lambda))) \\ &\quad d(x_k, x_j) + d(x_k, H(x_k, \lambda)), d(x_j, H(x_j, \lambda))) \\ &\quad d(x_k, x_j) + d(x_k, H(x_k, \lambda)), d(x_j, H(x_j, \lambda))) \\ &\quad d(x_k, x_j) + d(x_k, H(x_k, \lambda))\} \end{aligned}$$

and

$$(1-2q)d(x_k, x_j) \le (1+q)[d(H(x_k, \lambda_k), H(x_k, \lambda)) + d(H(x_j, \lambda), H(x_j, \lambda_j))].$$

Hence

$$d(x_k, x_j) \le \frac{1+q}{1-2q} [d(H(x_k, \lambda_k), H(x_k, \lambda)) + d(H(x_j, \lambda), H(x_j, \lambda_j))]$$

and (iii) guarantees that (x_k) is a Cauchy sequence with respect to d. We claim that

(19)
$$(x_k)$$
 is a Cauchy sequence with respect to d' .

If $d \ge d'$ this is trivial. If $d \not\ge d'$ then

$$d'(x_k, x_j) = d'(H(x_k, \lambda_k), H(x_j, \lambda_j))$$

and (iv) guarantees that (19) holds (note as well that (x_k) is a Cauchy sequence with respect to d and (λ_k) is Cauchy sequence in [0, 1]). Now since (X, d') is complete there exists an $x \in Q$ such that $d'(x_k, x) \to 0$ as $k \to \infty$. Claim now that

(20)
$$x = H(x, \lambda).$$

We consider first the case $d \neq d'$. Then

$$d'(x, H(x, \lambda)) \leq d'(x, x_k) + d'(x_k, H(x, \lambda))$$

= $d'(x, x_k) + d'(H(x_k, \lambda_k), H(x, \lambda))$

together with (v), letting $k \to \infty$, we have $d'(x, H(x, \lambda)) = 0$, so (20) holds.

We consider now the case d = d'. Then

$$\begin{split} d(x, H(x, \lambda)) &\leq d(x, x_k) + d(x_k, H(x, \lambda)) \\ &\leq d(x, x_k) + d(H(x_k, \lambda_k), H(x, \lambda_k)) + d(H(x, \lambda_k), H(x, \lambda))) \\ &\leq d(x, x_k) \\ &+ q \max\{d(x, x_k), d(x_k, H(x_k, \lambda_k)), \\ d(x, H(x, \lambda_k)), d(x, H(x_k, \lambda_k)), \\ d(x, H(x, \lambda_k)), d(x_k, H(x, \lambda_k))\} \\ &+ d(H(x, \lambda_k), H(x, \lambda)) \\ &\leq d(x, x_k) \\ &+ q \max\{d(x, x_k), d(x, H(x, \lambda_k)), d(x_k, H(x, \lambda_k))\} \\ &+ d(H(x, \lambda_k), H(x, \lambda)) \\ &= d(x, x_k) \\ &+ q \max\{d(x, x_k), d(x, H(x, \lambda_k)), d(x, x_k) + d(x, H(x, \lambda_k))\} \\ &+ d(H(x, \lambda_k), H(x, \lambda)) \\ &\leq d(x, x_k) \\ &+ q \max\{d(x, x_k), d(x, H(x, \lambda_k)), d(x, x_k) + d(x, H(x, \lambda_k)))\} \\ &+ d(H(x, \lambda_k), H(x, \lambda)) \\ &\leq d(x, x_k) \\ &+ q [d(x, x_k) + d(x, H(x, \lambda_k))] \\ &+ d(H(x, \lambda_k), H(x, \lambda)) \\ &\leq d(x, x_k) \\ &+ q [d(x, x_k) + d(x, H(x, \lambda_k)) + d(H(x, \lambda), H(x, \lambda_k))] \\ &+ d(H(x, \lambda_k), H(x, \lambda)) \end{aligned}$$

and we have

$$d(x, H(x, \lambda)) \leq d(x, x_k)$$

+q[d(x, x_k) + d(x, H(x, \lambda)) + d(H(x, \lambda), H(x, \lambda_k))]
+d(H(x, \lambda_k), H(x, \lambda))

Letting $k \to \infty$ we have

$$d(x, H(x, \lambda)) \le 0 + q[0 + d(x, H(x, \lambda)) + 0] + 0$$
$$d(x, H(x, \lambda)) \le qd(x, H(x, \lambda))$$

so $d(x, H(x, \lambda)) = 0$ and (20) holds. We have now $H(x, \lambda) = x$ for $x \in Q$ and with (i) we have $H(x, \lambda) = x$ for $x \in U$. Consequently $\lambda \in A$ and so A is closed in [0,1].

We prove now A is open in [0, 1].

Let $\lambda_0 \in A$ and $x_0 \in U$ such that $x_0 = H(x_0, \lambda_0)$. From U *d*-open there exists a *d*-ball $B(x_0, \delta) = \{x \in X; d(x, x_0) < \delta\}, \delta > 0$, and $B(x_0, \delta) \subset U$. From (iii) we have that H is uniformly continuous on $B(x_0, \delta)$.

Let $\varepsilon = (1 - \frac{q}{1 - q})\delta > 0$ and using the uniform continuity of H we have: there exists $\eta = \eta(\delta) > 0$ such that for each $\lambda \in [0, 1] \mid \lambda - \lambda_0 \mid \leq \eta$ with $d(H(x, \lambda), H(x, \lambda_0)) < \varepsilon$ for any $x \in B(x_0, \delta)$. So this property holds for $x = x_0$, and then we have

$$\begin{aligned} d(x_0, H(x_0, \lambda)) &= d(H(x_0, \lambda_0), H(x_0, \lambda)) < (1 - \frac{q}{1 - q})\delta \\ \text{for } \lambda &\in [0, 1] \text{ and } \mid \lambda - \lambda_0 \mid \leq \eta. \end{aligned}$$

Using now (ii), (iv) and (v) together with the theorem (3) (in this case $r = \delta$ and $F = H_{\lambda}$) we get: there exists $x_{\lambda} \in \overline{B(x_0, \delta)^{d'}} \subset Q$ with $x_{\lambda} = H_{\lambda}(x_{\lambda})$ for $\lambda \in [0, 1]$ and $|\lambda - \lambda_0| \leq \eta$. But $x_{\lambda} \in U$ ((i) guarantees that) and so Acontains all $\lambda \in [0, 1]$ with $|\lambda - \lambda_0| \leq \eta$. Consequently A is open in [0, 1]. \Box

References

- R. P. Agarwal and D. O'Regan, Fixed point theory for contraction on spaces with two metrics, J. Math. Anal. Appl. 248 (2000), 402-414.
- [2] V. Anisiu, Topologie si teoria măsurii, Universitatea Babeş-Bolyai Cluj, 1993.
- C. Avramescu, Fixed point theorems for contractive set-valued maps in uniform spaces (Romanian), An. Univ. Craiova 1 (1970), 63-67.
- [4] L. Cirić, On a family of contractive maps and fixed point, Publ. Math. L'Inst. Math., N.S. Tome 17 (31) (1974), 45-51.
- [5] M. Frigon et A. Granas, Resultats du type de Leray-Schauder pour des contractions multivoques, Topological Methods Nonlinear Anal. 4 (1994), 197-208.
- [6] M. Frigon, On continuation methods for contractive and nonexpansive mappings, Recent Advances on Metric Fixed Point Theory, Sevilla 1996, 19-30.

ADELA CHIŞ

- [7] A. Granas, Continuation method for contractive maps, Topological Methods Nonlinear Anal. 3 (1994), 375-379.
- [8] A. Granas, On the Leray-Schauder alternative, Topological Methods Nonlinear Anal. 2 (1993), 225-231.
- [9] D. O'Regan and R. Precup, *Theorems of Leray-Schauder Type and Applications*, Gordon and Breach Science Publishers, Amsterdam, 2001.
- [10] D. O' Regan, Fixed point theorem for nonlinear operators, J. Math. Anal. Appl. 202 (1996), 413-432.
- [11] R. Precup, Discrete continuation method for boundary value problems on bounded sets in Banach spaces, J. Comput. Appl. Math. 113 (2000), 267-281.
- [12] R. Precup, Continuation Results For Mappings of Contractive Type, Seminar on Fixed Point Theory Cluj-Napoca 2, (2001), 23-40.
- [13] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj, 2001.