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ON THE INTEGRAL REPRESENTATION OF EXCESSIVE
FUNCTIONS UNDER BOCHNER SUBORDINATION

WAJDI TOUHAMI

Abstract. Let P be a semigroup of kernels on a Lusin space E with associated
resolvent U, let β be a Bochner subordinator and let Pβ be the subordinate
semigroup of P by means of β. In this paper we give sufficient conditions to
have an integral representation of Pβ-excessive functions in terms of U-exit laws
and β. As application, if P is the semigroup of a transient right Markov process
X, we derive a probabilistic representation of Pβ-excessive functions in terms of
additive functionals of X and β.
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1. INTRODUCTION

This paper is devoted to the integral representation of excessive functions
under the potential theory defined by a semigroup of kernels, obtained after
Bochner subordination. This subordination is a convenient way of transform-
ing semigroup of kernels and their functional energies. A usual problem is
to show that regularities properties are transferred from the given semigroup
to the subordinated one. Our problem is different but is related to the usual
problem, because we must have the stability of some properties such as the
properness and the unicity of charges (cf. [16]). The key of the representation
in our problem is the notion of resolvents’ exit laws which is well known in
the ergodic theory for resolvents [8, XII-3]. Thanks to this notion, authors in
[15] found an integral representation of potentials by additive kernels. Also
authors in [19] characterized subordinated exit laws in terms of initial entities.
This describes clearly the importance of resolvents’ exit laws.

Let P = (Pt)t>0 be a sub-Markovian semigroup of kernels on a Lusin mea-
surable space (E, E) and let U = (Up)p>0 be the associated resolvent. An exit
law for U is a family f := (fp)p>0 of non-negative measurable functions on E
satisfying

(1) fp = fq + (q − p)Upfq ; Uqfp = Upfq, 0 < p < q.

The author thanks the referee for the helpful comments and suggestions.
Corresponding author: Wajdi Touhami.

DOI: 10.24193/mathcluj.2025.1.10



2 On the integral representation of excessive functions 131

Let β = (βt)t>0 be a Bochner subordinator. The subordinate semigroup Pβ of
P by means of β is defined by

(2) P β
t :=

∫ ∞

0
Ps βt(ds), t > 0

We are interested in Bochner subordinator β of (K)-type, that is κ :=
∫∞
0 βs ds

is absolutely continuous with respect to λ and its density is completely mono-
tone. Let ρ be the associated measure on [0,∞[ given by κ = L(ρ) · λ and µ
be a reference measure for U. The first aim of the present paper is to prove,
under finiteness conditions, that

∫∞
0 fs ρ(ds) is equal µ-almost everywhere to

a Pβ-excessive function, for each U-exit law (fp). The natural question that

arises is the following: given a Pβ-excessive function h, can us find a (unique)
U-exit law (fp) such that h =

∫∞
0 fsρ(ds), µ-a.e.? The study of this question

is the main goal of this paper and we will solve, under some appropriate as-
sumptions, this converse problem. Precisely, we will suppose that P admits a

dual semigroup P̂, both are proper and the cones of their µ-a.e. finite excessive
functions are inf-stable and generates E . Moreover β will be supposed belong-
ing to a subclass of (K)-type subordinators as described later. Based on [17],
the idea is to represent first Uβ-purely excessive measures by U-entrance laws
and next by using Hunt’s approximation Theorem, where Uβ is the resolvent
of Pβ.

Our integral representation is a generalisation of some result given in [19],
without imposing restrictive conditions on excessive functions. Similar integral
representation by means of semigroups exit laws was studied in many papers,
see for example [1, 9, 10, 13, 14, 18].

Let X and X̂ be transient right Markov processes with associated semi-

groups P and P̂, in duality with respect to µ. As a consequence of the main
result we prove, for each µ-a.e. finite Pβ-excessive function, that there exists
a unique additive functional (At) for X such that h(x) = Ex(

∫∞
0 L(ρ)(t) dAt),

µ-a.e.. Integral representation of excessive functions in terms of additive func-
tionals was investigated in [20], for the particular case when β is the trivial
subordinator.

2. PRELIMINARIES

Let E be a Lusin measurable space equipped with its Borel σ-field E (which
denotes also the cone of all E-measurable functions). We denote by pE the cone
of positive functions of E and by M the cone of σ-finite positive measures on
E.

A kernel on E is a mapping K : E × E → [0,∞[ such that x → K(x,A)
is measurable for each A ∈ E and A → K(x,A) is a (positive) measure for
each x ∈ E . In this case, K acts to the right on pE and to the left on M by
Kf(x) :=

∫
f(y)K(x, dy) for f ∈ pE , x ∈ E and µK(A) :=

∫
K(x,A)µ(dx)

for µ ∈ M, A ∈ E . In the sequel we fix µ ∈ M, a property holds µ-a.e.
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means that this property holds except on a µ-negligible set. We put F :=
{u ∈ E : u is finite, µ-a.e.}. We endow R+ with its Borel field A and we
denote by λ the Lebesgue measure on R+. The notation L(τ) stands for the
Laplace transform of a positive measure τ on R+ and δt stands for the Dirac
measure at t ∈ [0,∞]. We denote by id the identity function on R+. Finally,
we abbreviate the expression “the monotone convergence theorem” by MCT.

In the following section we will introduce some definitions which will be
useful in the remainder of this paper, for more details see [8, Chap. VII], [6,
Sec. II-1,2,3] and [22, Sec. 1].

2.1. SEMIGROUPS AND RESOLVENTS OF KERNELS

A (sub-Markovian) semigroup P := (Pt)t>0 on E is a family of kernels on
(E, E) such that

(1) (t, x) → Ptf(x) is A⊗ E-measurable for each f ∈ E
(2) Pt1 ≤ 1 and PsPt = Ps+t for all s, t > 0

Two semigroups are said to be in duality with respect to µ ∈ M provided∫
Ptu v dµ =

∫
u P̂tv dµ for each u, v ∈ pE and all t > 0.

Let P := (Pt)t>0 be a semigroup on E, then the family U := (Up)p>0 defined
by

Up =

∫ ∞

0
exp(−pt)Pt dt, t > 0

is called the resolvent of P. It satisfies pUp1 ≤ 1 for each p > 0 and

Up = Uq + (q − p)UpUq ; UqUp = UpUq, 0 < p < q

Since the mapping p→ Up is decreasing then we may define the initial kernel
U of the resolvent U by U := U0 := supp>0 Up =

∫∞
0 Ps ds, which is called the

potential kernel of P. The resolvent equation may be extended to p = 0:

U = Uq + qUqU, q > 0

For a given q > 0, the family Uq := (Up+q)p>0 is the resolvent of Qq =
(e−qtPt)t>0. Following [8, VII, p. 7], we say that P is proper if there exists a
strictly positive function l such that Ul is bounded.

Remember that a set N ∈ E is called of potential zero if Up1N = 0 for some
p > 0. By using the resolvent equation we have the same property for all
p > 0.

If P and P̂ are in duality then their resolvents are also in duality, that is∫
Utu v dµ =

∫
u Ûtv dµ for every u, v ∈ pE and all p > 0.

The resolvent U is said to be µ-basic if there exists a mesurable function
G :]0,∞[×E × E → [0,∞] such that

Upu(x) =

∫
Gp(x, y)u(y)µ(dy), x ∈ E.
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Following [22, p. 271], a proper semigroup P is said to satisfy the principle
unicity of charges (UC), if for all positive measures ν1, ν2 on E.

ν1U = ν2U ∈ M ⇒ ν1 = ν2.

2.2. EXCESSIVE STRUCTURE

A function h ∈ pE is called P-excessive (resp.U-excessive) if Pth ≤ h for
all t > 0 (supermedianity) and Pth → h as t → 0 (resp. pUph ↑ h as p →
∞). In the same way, a measure m ∈ M is called P-excessive (resp. U-
excessive) provided mPt ↑ m as t → 0 (resp. pmUp ↑ m as p → ∞). We
say that m ∈ M is U-purely excessive if it is U-excessive and pmUp ↓ 0
as p ↓ 0. For m ∈ M satisfying mU ∈ M, it is known that mU is U-
purely excessive. According to [8, XII 18], P-excessive functions are exactly
U-excessive functions. Analogously, we can prove that there is identity between
excessive measures for P and U. We denote by Exc(P) the cone of P-excessive
measures and by S(P) the cone of P-excessive functions belonging to F . If P
admits a dual P̂ with respect to µ, it is well known that the set {h · µ : h ∈
S(P)} ⊂ Exc(P̂). Let P be a proper resolvent, the function L : S(P)×Exc(P) →
[0,∞] defined by

L(h, l) := sup{ν(h) : νU ∈ M, νU ≤ l}

was introduced by Meyer [8, p. 23-24] and called the energy functional asso-
ciated to P.

In the sequel we suppose that µ is a reference measure for U that is U is
µ-basic and µ is U-excessive. In this case sets of potential zero are exactly

µ-negligeable sets. We index by “ ̂ ” all entities associated to P̂.

3. EXIT AND ENTRANCE LAWS FOR RESOLVENTS

The following notions of exit laws and entrance laws are taken from [8, p.
38-40].

A U-entrance law is a familym := (mp)p>0 ⊂ M such that for all 0 < p < q:

mp = mq + (q − p)mqUp ; mpUq = mqUp

Let m be a U-entrance law, then the mapping p 7→ mp is increasing as p ↓ 0
and m0 := supp>0mp is a positive measure.

A U-exit law is a family f := (fp)p>0 of nonnegative functions of F satisfying
the functional equation (1).

If (1) holds µ-a.e. we say that (fp) is a µ-exit law for U. Let f be a U-exit
law, then the mapping p 7→ fp is increasing as p ↓ 0 and f0 := supp>0 fp is
P-supermedian. Moreover f∞ = infp>0 fp is finite and satisfies f∞ = 0, µ-a.e..
So the function fp is equal µ-a.e. to some Qp-excessive function for each p ≥ 0.
For more examples of U-exit laws we refer the reader to [15, p. 125]. Note
that the family (fp+q)p>0 is a Uq-exit law for each q > 0.
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Lemma 3.1. Let f be a U exit law. Then Up+sfq+s ↑ Upfq as s → 0, for
each p, q > 0.

Lemma 3.2. Let P and P̂ be semigroups in duality with respect to µ. Let
(mp) be a U-entrance law such that mp is absolutely continuous with respect

to µ for each p > 0 and let f̂p := dmp/dµ. Then (f̂p) is a µ-exit law for Û.

Proof. Since mp ∈ M, then fp ∈ F for each p > 0. For 0 < p < q, we have
from the entrance law equation

(f̂p − f̂q) · µ = f̂p · µ− f̂q · µ = (q − p)(f̂q · µ)Up = (q − p)(Ûpf̂q) · µ

and (Ûpf̂q)·µ = (f̂q ·µ)Up = (f̂p ·µ)Uq = (Ûqf̂p)·µ. Which yields the result. □

Lemma 3.3. Let (gp) be a µ-exit law for U, then there exists a U-exit law
(fp) such that fp = gp, µ-a.e.

Proof. Define for n ∈ N∗: gnp (x) := nUngp(x). Let p > 0, n > p and r = n−p
then

gnp = (r + p)Ur+pgp =
r + p

r
rUr+pgp

Since gp is Qp-supermedian then r → rUr+pgp is increasing as r ↑ ∞. Hence
fp(x) := limn→∞ gnp (x) exists and belongs to F for each p > 0 and x ∈ E. By
(1) and the fact that U is µ-basic we get for all 0 < p < q

(3) nUngp(x)− nUngq(x) = (q − p)Up(nUngq)(x), x ∈ E

Letting n→ ∞ in (3) and using MCT we deduce that (fp) is a U-exit law. In
the other hand

nUngp = r Ur+pgp = gp − gr+p

By letting r → ∞ we obtain fp = gp, µ-a.e. □

4. BOCHNER SUBORDINATION AND INTEGRAL REPRESENTATION

4.1. BOCHNER SUBORDINATION

For the following notion we refer the reader to [5, Chap. II-9], [6, Sec. V-3],
[11] and [12].

A Bochner subordinator β = (βt)t>0 is a family of sub-probability measures
on (R+, A) such that that

(1) βt ∗ βs = βs+t for all s, t > 0.
(2) limt→0 βt = δ0 vaguely.

For each p > 0, we put κp :=
∫∞
0 e−psβs ds and κ := κ0 := supp κp =

∫∞
0 βs ds.

The associated Bernstein function ϕ is given by the relation Lβt(s) =
exp (−tϕ(s)) for each s, t > 0.

Let P be a semigroup on E and β be a Bochner subordinator. Then the
subordinate semigroup of P by means of β is defined by (2).
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Let Uβ be the resolvent of Pβ then we can write for all p > 0

(4) Uβ
p =

∫ ∞

0
Ps κp(ds)

A Bochner subordinator is said to be of (K)-type if there exists a completely
monotone function ψ on ]0,∞[ such that κ = ψ · λ.

Let β be a subordinator of (K)-type then ψ = L(ρ) for some non-negative
measure ρ on [0,∞[ due to the Bernstein Theorem. According to [12, Proposi-
tion 11], ψ is integrable at 0 and κp(dt) = ψp(t)·dt where ψp is also a completely
monotone and integrable function on ]0,∞[, for each p > 0. Therefore ψp is
also the Laplace transform of a non-negative measure ρp on [0,∞[. Following
[12, p. 157], we have ρp({0}) = 0 and

∫∞
0

1
sρp(ds) ≤

1
p for all p > 0. Moreover

from [11, p. 240], it was affirmed that

(5) lim
p→0

1

1 + t
ρp(dt) =

1

1 + t
ρ(dt) weakly.

We give now the most important subordinator ηα, defined by its Bernstein
function ϕα(x) = xα for α ∈]0, 1[. It is called the one sided stable subordintor.
Following [6, p. 187] we have κα = ψα · λ = L(ρα) · λ where

ψα(s) =
sα−1

Γ(α)
1]0,∞[(s) and ρα(ds) =

sα

Γ(α) Γ(1− α)
1]0,∞[(s)

Let β be a Bochner subordinator of (K)-type, then we have

(6) Uβ
p =

∫ ∞

0
Us ρp(ds), p > 0

Since κp ↑ κ as p→ 0 then (4) and (6) may be extended to p = 0. We denote

by Lβ the energy functional associated to Uβ. In the sequel subordinators are
considered of (K)-type. We denote by H the set of Bochner subordinators
β of (K)-type such that ρ([0, ε[) > 0 for all ε > 0. Note that the trivial
subordinator ε = (εt)t>0 ∈ H. Also, if ρ is absolutely continuous with respect
to λ then β ∈ H, in particular ηα ∈ H.

Let f := (fp)p>0 be a U-exit law, we denote by fβ := (fβp )p>0 the family

defined by fβp =
∫∞
0 fs ρp(ds). According to [19, Proposition 4.3], fβ is a

µ-exit law for Uβ whenever f0 ∈ F .

Proposition 4.1. If P is proper then Pβ is proper. Moreover S(P) ⊂ S(Pβ)
and Exc(P) ⊂ Exc(Pβ).

Theorem 4.2. Let f = (fp)p>0 be a U-exit law such that f0 ∈ F and
fq ∈ L1(µ) for some q > 0, then the function h :=

∫∞
0 fs ρ(ds) is equal µ-a.e.

to some Pβ-excessive function.

Proof. Suppose first that f0 ∈ F . According to Proposition 4.1, µ is also a
reference measure for Uβ. Taking into account that fβ is a Uβ-exit law then

fβ∞ = 0, µ-a.e. Therefore fβ0 is equal µ-a.e. to a Pβ-excessive function. We
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shall prove that fβ0 = h, µ-a.e.. Making use of the relation Uqf
β
p = Uβ

p fq for
each p, q > 0 together with MCT, we get

(7) Uqf
β
0 = Uq

(
lim
p→0

fβp

)
= lim

p→0
Uqf

β
p = Uβfq =

∫ ∞

0
Usfq ρ(ds) = Uqh.

Moreover

(8) Uqh ≤
(
1

q
+ 1) f0

∫ ∞

0

1

1 + s
ρ(ds

)
<∞, µ-a.e.

Suppose first that fp ∈ L1(µ) for all p > 0. Denote by B the σ-field generated
by functions of the form Url for l ∈ L1(µ) and r > 0. The fact that f∞ =
0, µ − a.e implies that fp is equal µ − a.e to some Qp-excessive function.
Without loss of generality we can suppose that fp is Qp-excessive so fp is B-
measurable for each p > 0. The continuity of the mapping p→ fp(x) on [0,∞[
yields the A⊗B-measurability of (p, x) → fp(x). In view of the boundedness of
measures (1 + s)−1ρ(ds) and (1 + s)−1ρp(ds), we affirm by Tonelli’s Theorem

that h and fβ0 are B-measurable. From [8, XII 57], (7) and (8) we claim

that limq→∞ qUqf
β
0 = fβ0 , µ−a.e. and limq→∞ qUqh = h, µ-a.e. Consequently

fβ0 = h, µ− a.e due to (7).
Now suppose that there exists q > 0 such that fq ∈ L1(µ) then (f qp )p>0 is a

Uq-exit law included in L1(µ) and f q0 = fq <∞, µ-a.e.. According to the first
case we have µ-a.e.:

(9) sup
p>0

p

∫ ∞

0
U q
r

(∫ ∞

0
f qs ρ(ds)

)
ρp(dr) =

∫ ∞

0
f qs ρ(ds)

Using Fubini’s Theorem, Lemma 3.1, (9) and MCT we get µ-a.e.

sup
p>0

pUβ
p

∫ ∞

0
fs ρ(ds) = sup

p>0
p

∫ ∞

0
Urfs ρ(ds) ρp(dr)

= sup
p>0

sup
q>0

p

∫ ∞

0
Ur+q fs+q ρ(ds) ρp(dr)

= sup
q>0

sup
p>0

p

∫ ∞

0
U q
r

∫ ∞

0
f qs ρ(ds) ρp(dr)

= sup
q>0

∫ ∞

0
f qs ρ(ds) =

∫ ∞

0
fs ρ(ds)

□

4.2. INTEGRAL REPRESENTATION

Consider two semigroups P and P̂ in duality with respect to µ. Suppose,

until the end of this section that P and P̂ verify the following condition (C):

(1) P and P̂ are proper and satisfy the principle uniqueness of charges.

(2) The cones S(P) and S(P̂) are inf-stable and generates E .
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Remark 4.3. We cite two situations when the condition (C) is satisfied:

(1) E is locally compact space with countable base and P together with

P̂ are proper strong feller semigroups on E. In this case excessive
functions are lower-semi-continuous functions. The properness of P
and P̂ implies that E is generated by S(P) and S(P̂) as well.

(2) P and P̂ are associated to transient right Markov processes. This sit-
uation will be focused later.

The idea of the proof of the following proposition is adapted from the proofs
of [17, Proposition 11 and Theorem 12].

Proposition 4.4. Let Λ be a Uβ-purely excessive measure such that Lβ(Λ,
v) < ∞ for some U-excessive function v > 0. Then there exists a unique
U-entrance law (mp) such that Λ =

∫∞
0 ms ρ(ds).

Proof. According to [17, Theorem 6 and Remark 13] there exists a unique
U-purely excessive measure l such that Lβ(Λ, v) = L(l, v). Letmq := l−l(qUq)
for q > 0, then (mq) is a U-entrance law and m0 := limq→0mq = l. From [17,

Theorem 6] again, we have Lβ(ΛpUp, v) = L(lpUp, v). By reason of [8, XII
39.1] and the entrance law equation we have

Lβ(mpU
β, v) = mp(v) = L(mpU, v) = L(m0 Up, v) =

1

p
L(lpUp, v) =

=
1

p
Lβ(ΛpUp, v) = Lβ(ΛUp, v)

Hence, by [17, Proposition 9], we conclude that

(10) mpU
β = ΛUp

Using the resolvent equation again and (10), we get for each 0 < p < q

(mp −mq)U
β = ΛUp − ΛUq = (q − p) ΛUpUq = (q − p)mpU

βUq =

= (q − p)mpUq U
β

Following [15, Theorem 1], Pβ satisfies also (UC) and consequently (mp) is

a U-entrance law. Using (10) we get ΛUβ =
∫∞
0 ms ρ(ds)U

β. Put Υ =∫∞
0 ms ρ(ds). Then for each h ∈ S(P) we obtain

Λ(h) = Lβ(ΛUβ, h) = Lβ(ΥUβ, h) = Υ(h)

So Λ = Υ. For the uniqueness, suppose that there exists some U-entrance law
(m̃p) such that Λ =

∫∞
0 m̃sρ(ds), µ-a.e. Then we get mpU

β = ΛUp = m̃pU
β

for each p > 0 and the proof is achieved by using (UC). □

Lemma 4.5. Let ϕ be the Bernstein function associated to β, then id/ϕ is
a Bernstein function and

(11) U = Uβ U β̃

where β̃ is the Bochner subordinator associated to id/ϕ.



138 W. Touhami 9

Proof. The fact that 1/ϕ = L(κ) = L(Lρ) yields 1/ϕ is a Stieltjes function
(see [21, Definition 2.1]). According to [21, Proposition 7.1 and Theorem 7.3],
id/ϕ is also a Bernstein function. We have

L(λ) = 1

id
=

1

ϕ

1
id
ϕ

= L(κ) ∗ L(κ̃) = L(κ ∗ κ̃)

where κ̃ =
∫∞
0 β̃s ds. Thus κ ∗ κ̃ = λ and consequently

U =

∫ ∞

0
Ps ds =

∫ ∞

0

∫ ∞

0
Ps+r κ(ds) κ̃(dr) =

∫ ∞

0
PsU

β̃ κ(ds) = Uβ U β̃.

□

Theorem 4.6. Suppose that β ∈ H. Then for each h ∈ S(Pβ), there exists
a unique U-exit law (fp) such that h =

∫∞
0 fs ρ(ds), µ-a.e.

Proof. The fact that P̂ is proper yields the existence of a positive function

l such that Û l is bounded. Since h · µ ∈ Exc(P̂β) and P̂β is proper, then there

exists a sequence of bounded measures (νn) ⊂ M such that νnÛ
β ↑ h · µ, due

to Hunt’s approximation Theorem [8, XII 38]. Let L̂β be the energy functional

of P̂β. By virtue of [8, XII 39.1], we have for each n ∈ N

L̂β(νnÛ
β, Û l) =

∫
Û l dνn <∞

According to Proposition 4.4, there exists a Û-entrance law (m̂n
p )p>0 such that

(12) νnÛ
β =

∫ ∞

0
m̂n

s ρ(ds), n ∈ N

From (10) we have νnÛ
β Ûp = m̂n

p Û
β, which implies that the sequence

(m̂n
p Û

β)n is increasing for each p > 0. By reason of [8, XII 17], the properness

of P̂ leads to the existence of a sequence (φk)k ⊂ pE such that Ûφk ↑ ĥ for

every ĥ ∈ S(Û). Let n1, n2 ∈ N such that n1 < n2, by using (11) we obtain

m̂n1
p Ûφk = m̂n1

p Û
β(Û β̃φk) ≤ m̂n2

p Û
β(Û β̃φk) = m̂n2

p Ûφk

letting k → ∞ and using MCT we get m̂n1
p (ĥ) ≤ m̂n2

p (ĥ), which affirm that
(m̂n

p )n is increasing for each p > 0. Consequently m̂p := limn→∞ m̂n
p is a

positive measure on E. Letting n → ∞ in (12) and applying MCT again we
obtain

(13) h · µ =

∫ ∞

0
m̂s ρ(ds)

From (13) we deduce that (m̂p) ⊂ M and we can show easily that (m̂p) is a Û-
entrance law. Let A ∈ E such that µ(A) = 0 then

∫∞
0 m̂s(A) ρ(ds) = 0 due to

(13). For each s > 0, since ρ([0, s[) > 0, then there exists 0 < r < s such that
m̂r(A) = 0 and consequently m̂s(A) = 0 because q → m̂q(A) is decreasing.
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Therefore there exists a measurable function gs such that m̂s = gs · µ for each
s > 0, by reason of Radon-Nikodym Theorem. According to Lemma 3.2, (gp)
is a µ-exit law for U and from Lemma 3.3, the integral representation of h
holds for some U-exit law (fp). Now, let us prove the uniqueness. Suppose

that there exists some U-exit law f̃ such that h =
∫∞
0 f̃s ρ(ds)µ-a.e., then we

have for all p > 0

(14) Uβfp =

∫ ∞

0
Usfp ρ(ds) = Up

∫ ∞

0
fs ρ(ds) = Up

∫ ∞

0
f̃s ρ(ds) = Uβ f̃p,

for all p > 0. Since h is supermedian for Uβ and ρp ̸= 0, then there exists
r > 0 such that Urh <∞ and so Uph <∞ for all p ≥ r. The duality property
together with (14) yields

(fp · µ)Ûβ = (Uβfp) · µ = (Uβ f̃p) · µ = (f̃p · µ) Ûβ, p ≥ r

It follows that f̃p = fp, µ-a.e. for all p ≥ r, because Uβfp = Uph <∞ and P̂β

satisfies (UC). By using (1) we get for p < r

f̃p − f̃r = (r − p)Upf̃r = (r − p)Upfr = fp − fr

which implies f̃p = fp for all p > 0. □

Corollary 4.7. Suppose that β ∈ H. Then for each Uβ-exit law (gp) sat-

isfying g0 ∈ F , there exists a unique U-exit law (fp) such that gp = fβp , µ-a.e.
for each p > 0.

Proof. We know that there exists h ∈ S(Pβ) such that g0 = h, µ-a.e..
From Theorem 4.6, there exists a unique U-exit law (fp) such that g0 =∫∞
0 fs ρ(ds), µ-a.e.. Using (1) and (6) we obtain for each p > 0

Uβgp = Uβ
p g0 =

∫ ∞

0
Usf

β
p ρ(ds) = Uβfβp ≤ 1

p
g0,

which implies (gp · µ)Ûβ = (fβp · µ)Ûβ ∈ M. The result is a consequence from
(UC). □

5. APPLICATION

Let X := (Ω,F ,Ft, (Xt), (Θt),P
x) be a right Markov process with state

space (E, E) (see [2, p. 306-307]). The associated semigroup P := (Pt)t>0 is
given by

Ptf(x) = Ex(f(Xt)), t > 0, x ∈ E, f ∈ pE
If P is proper then X is called transient. It is known that h is Qp-excessive if
and only if the process (e−pth(Xt)) is a right continuous (Ft)-supermartingale
with respect to Px for all x ∈ E (for more details we refer the reader to [4,
Appendix p. 418-419 ]).

An additive functional (At) for X is an increasing right continuous pro-
cess, (Ft)-adapted, satisfying A0 = 0 and for all s, t > 0: As+t = As + At ◦
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Θs, Px-a.e.. We put ep(A)(x) := Ex[
∫∞
0 exp(−pt) dAt]. According to [8, XV

29], the family (ep(A)) is a U-exit law when it is included in F .
Let β be a subordinator of (K)-type and let Y be the right Markov process

whose semigroup is Pβ. The process Y is called the subordinate of X by
means of β. Now, let (At) be an additive functional of X. It follows from
Theorem 4.2 that the function h defined by
(15)

h(x) = Ex

(∫ ∞

0
ψ(t) dAt

)
= Ex

(∫ ∞

0
Lρ(t) dAt

)
=

∫ ∞

0
es(A)(x) ρ(ds)

is equal µ-a.e. to a Pβ-excessive function whenever Ex(A∞) < ∞, µ-a.e. and
eq(A) ∈ L1(µ) for some q > 0.

In the next Theorem we will prove the converse while supposing that X =

(Ω,F ,Ft, (Xt), (Θt),P
x) and X̂ = (Ω̂, F̂ , F̂t, (X̂t), (Θ̂t), P̂x) are two right tran-

sient Markov processes on (E, E) and their associated semigroups are in dual-

ity with respect to µ. According to [2, Proposition 1.8.2], P and P̂ satisfy the
condition (C).

Theorem 5.1. If β ∈ H, then for each h ∈ S(Pβ), there exists an additive
functional (At) for X such that

(16) h(x) = Ex

(∫ ∞

0
ψ(t) dAt

)
, µ-a.e.

The uniqueness holds whenever X is continuous.

Proof. By Theorem 4.6 we have h =
∫∞
0 fs ρ(ds) for some U-exit law (fp).

The fact that fp is equal µ-a.e. to some Qp-excessive function and based on
[8, XV 7-b)], there exists an additive functional (At) for X and a Qp-excessive
function ℓp such that (e−ptℓp(Xt)) is a local martingale and

(17) fp = ep(A) + ℓp, µ-a.e., p > 0

It is clear that (ep(A)) is a U-exit law. In the other hand, the random vari-
able Tn := inf{s > 0 : ℓp(Xt) > n} is a stopping time for each n ∈ N,
because the mapping s → e−psℓp(Xs) is right continuous µ-a.e.. Let (Sn) be
a sequence of stopping times such that (e−ptℓp(Xt∧Sn)) is a martingale then
(e−ptℓp(Xt∧Sn∧Tn)) is also a martingale, for the reason that Tn ↑ ∞. Taking
into account that

e−pt(ℓp ∧ n)(XSn∧Tn∧t) = e−ptℓp(XSn∧Tn∧t)

for all n ∈ N and t > 0, then (e−pt(ℓp∧n)(Xt)) is a bounded locale martingale
and therefore it is a martingale. Hence ℓp ∧ n is Qp-invariant, meaning that
qUq+p(ℓp ∧ n) = ℓp ∧ n for each q > 0. By letting n → ∞ and applying
MCT we get qUq+pℓp = ℓp. From (17) we affirm that (ℓp) is also a U-exit
law, therefore, for every p > 0, ℓp = limq→0 qUq+pℓp = limq→0(ℓp − ℓp+q) = 0.
Consequently fp = ep(A), µ-a.e., and from (15) we get (16). To prove the
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uniqueness, suppose that there exists some additive functional (Bt) for X
such that h(x) = Ex(

∫∞
0 ψ(t) dBt), µ-a.e.. Then we obtain

(18) h =

∫ ∞

0
es(A) ρ(ds) =

∫ ∞

0
es(B)ρ(ds), µ-a.e.

Since β ∈ H, it follows from (18) that ep(B) ∈ F for each p > 0, and so (ep(B))
is a U-exit law. According to the uniqueness in Theorem 4.6, we affirm that
ep(A) = ep(B), µ-a.e. for all p > 0. Consequently Ex(At) = Ex(Bt), µ-a.e.
Thanks to [7, p. 159], we get At = Bt due to the above and the continuity of
X. □

Corollary 5.2. For each h ∈ S(P), there exists an additive functional
(At) for X such that h(x) = Ex(A∞), µ-a.e.. The uniqueness holds whenever
X is continuous.

Corollary 5.3. Let α ∈]0, 1[ and h ∈ S(Pηα). Then there exists some
additive functional (At) such that

h(x) =
1

Γ(α)
Ex

(∫ ∞

0
tα−1 dAt

)
, µ-a.e.

If X is continuous, the uniqueness holds.

Example 5.4. Let X be a Brownian motion on Rd and let Y be the subor-
dinate of X by means of ηα. For a bounded domain D ⊂ Rd, the process Y D

is obtained by killing Y upon leaving D. The process Z is defined as the result
of first killing X upon leaving D, and then subordinating the killed Brownian
motion XD using ηα.

Let h be a quasimartingale function for Y D. According to [3, Corollary 3.7],
h is also a quasimartingale function for Z. Furthermore, by [3, Corollary 2.7],
there exist two excessive functions h1, h2 for the semigroup of Z, such that
h = h1 − h2. Using Theorem 4.6, h can be represented in terms of two exit
laws f and g for the resolvent of XD:

h =
1

Γ(α)Γ(1− α)

∫ ∞

0
(fs − gs)s

αds, µ-a.e.

Morover, Theorem 5.1 guarantees the existence of two additive functionals A
and B for XD such that:

h(x) =
1

Γ(α)
Ex

[∫ ∞

0
sα−1dAs −

∫ ∞

0
sα−1dBs

]
, µ-a.e.
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