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A MODIFIED INERTIAL EXTRAGRADIENT ALGORITHM
FOR SOME CLASS OF SPLIT VARIATIONAL

INEQUALITY PROBLEM

FRANCIS MONDAY NKWUDA, JAMES ADEDAYO OGUNTUASE, and HAMMED
ANUOLUWAPO ABASS

Abstract. A new inertial extragradient algorithm for approximating solutions
of some class of split variational inequality problem in real Hilbert space is in-
troduced and discussed. Furthermore, the sequence generated by our algorithm
is shown to converge strongly to the solution of the aforementioned problem.
Our result is obtained without the assumption of the Lipschitz constant of the
underline operator, and also with minimal number of projections per iteration
compare to other results on split variational inequality problems in the literature.
A numerical example is presented to demonstrate and compare the versatility of
our result. Our result extends and improves many recent results of this type in
the literature.
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1. INTRODUCTION

Let f : C → C be a nonlinear map, where C is a nonempty closed and
convex subset of a real Hilbert space H. The map f is said to be

(1) L− Lipschitz continuous, if there exits a constant L > 0 such that

∥f(x)− f(y)∥ ≤ L∥x− y∥, ∀ x, y ∈ C,

if the constant L is in the interval [0, 1), then f is called a contraction
map, while f is called nonexpansive map if L = 1,

(2) v-strongly monotone, if there exists a constant v > 0 such that〈
f(x)− f(y), (x− y)

〉
≥ v∥x− y∥2 ∀ x, y ∈ C,

(3) v-inverse strongly monotone (v-ism), if there exists a constant v > 0
such that〈

f(x)− f(y), (x− y)
〉
≥ v∥f(x)− f(y)∥2 ∀ x, y ∈ C,
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if v = 1, then f is called firmly nonexpansive,
(4) monotone, if〈

f(x)− f(y), (x− y)
〉
≥ 0 ∀ x, y ∈ C,

(5) α-averaged, if f = (1 − α)I + αT , for 0 < α < 1 and T : C → C is
nonexpansive.

It can easily be seen that both v-strongly monotone and v-inverse strongly
monotone maps are monotone. Also, firmly nonexpansive maps are 1

2 -averaged
while averaged mappings are nonexpansive. It is also known that every v-ism
map is 1

v -Lipschitz continuous.
Recall that, in the sense of Browder and Petryshyn [7] a mapping T : C → C

is called κ-strictly pseudocontractive if for 0 ≤ κ < 1,

∥T (x)− T (y)∥2 ≤ ∥x− y∥2 + κ∥(I − T )x− (I − T )y∥2 ∀ x, y ∈ C.

A point x ∈ C is called a fixed point of T , if T (x) = x. Let F (T ) denotes
the set of fixed point of T , and it is known generally that if F (T ) ̸= ∅, then
F (T ) is closed and convex. Clearly, nonexpansive mappings are 0-strictly
pseudocontractive.

The Variational Inequality Problem (VIP) is defined as: find x ∈ C such
that 〈

f(x), (y − x)
〉
≥ 0, ∀ y ∈ C.(1)

The set of solutions of VIP (1) is denoted by V I(C, f).
VIP was first introduced by Stampacchia [42] for modelling problems arising

from mechanics. To study the regularity of the problem for partial differen-
tial equations, Stampacchia [42] studied a generalization of the Lax-Milgram
theorem and called all problems involving inequalities of such kind, the VIPs.
The VIP is also known to have numerous applications in diverse fields such
as, physics, engineering, economics, mathematical programming, among oth-
ers. It can also be considered as a central problem in optimization and non-
linear analysis since the theory of variational inequalities provides a simple,
natural and unified frame work for a general treatment of many important
mathematical problems such as, minimization problems, network equilibrium
problems, complementary problems, systems of nonlinear equations and oth-
ers (see [5, 6, 11, 21, 27, 28, 37, 42, 47] and the references therein). Thus, the
theory has become an area of great research interest to numerous researchers.
As a result of this, there has been an increasing research interest in developing
efficient and implementable methods for solving VIPs.

A simple iterative method for solving VIP (1) is the gradient projection
method

xn+1 = PC(xn − λf(xn)), n ≥ 1,(2)

where λ > 0 and PC is the metric projection of H onto C.
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Algorithm (2) converges strongly to a unique solution of problem (1) pro-
vided that f is v-strongly monotone and L-Lipschitz continuous with λ ∈(
0, 2v

L2

)
. However, if f is v-inverse strongly monotone, V I(C, f) may not exists.

In this case, it is assumed that V I(C, f) ̸= ∅ and λ ∈ (0, 2v), then V I(C, f) is
closed and convex, and (2) converges weakly to a solution of (1). An attempt
to relax the strong monotonicity assumption (i.e., ν-strongly monotonicity and
ν-inverse strongly monotonicity assumptions) to monotonicity would compli-
cate the situation. In fact, Algorithm (2) may not converge if f is monotone
and Lipschitz continuous. Therefore, the gradient projection method is only
efficient for solving VIP (1) when f is either strongly monotone or inverse
strongly monotone (see for example [47]). To overcome this setback, Korpele-
vich [29] introduced the following extragradient method for solving VIP (1) in
the finite dimensional Euclidean space when f is monotone and L-Lipschitz
continuous: {

yn = PC(xn − λf(xn)),
xn+1 = PC(xn − λf(yn)), n ≥ 1,

(3)

where λ ∈ (0, 1
L). Korpelevich [29] proved that the sequence {xn} generated

by (3) converges weakly to a solution of V I(C, f) provided that V I(C, f) ̸= ∅.
Since then, many authors have studied the extragradient method in the infinite
dimensional spaces (see [1, 2, 3, 10, 22, 24, 33] and the references therein).

The VIP has also been studied as a split type problem, namely the Split
Variational Inequality Problem (SVIP) which was introduced by Censor et al.
[11] and defined as: find x ∈ C such that〈

f(x), (y − x)
〉
≥ 0 ∀ y ∈ C(4)

and 〈
g(Ax), z −Ax

〉
≥ 0 ∀ z ∈ Q,(5)

where C and Q are nonempty closed and convex subsets of real Hilbert spaces
H1 and H2 respectively, A : H1 → H2 is a bounded linear operator and f, g are
nonlinear mappings on C andQ respectively. As observed in [11], the SVIP can
be seen as a pair of VIPs in which a solution of one VIP occur in the first space
H1 whose image under a given bounded linear operator A is a solution of the
second VIP in the second space H2. Furthermore, SVIPs are very important
in optimization, nonlinear and convex analysis. They can be viewed as an
important generalization of the spilt feasibility problems introduced by Censor
and Elfving [14] which are known to have applications in many fields such
as phase retrieval, medical image reconstruction, signal processing, radiation
therapy treatment planning among others (for example, see [9, 12, 14, 13,
20, 25, 26] and the references therein). To solve SVIP (4)-(5), Censor [11]
proposed the following algorithm:

xn+1 = PC(I − λf)(xn + τA∗(PQ(I − λg)− I)Axn) n ≥ 1,(6)



94 F. M. Nkwuda, J. A. Oguntuase, and H. A. Abass 4

where τ ∈
(
0, 1

L

)
, L being the spectral radius of A∗A. They proved that

the sequence {xn} generated by (6) converges weakly to a solution of (4)-(5)
provided that the solution set of problem (4)-(5) is nonempty, f, g are α1, α2-
inverse strongly monotone mappings, λ ∈ (0, 2α), where α := min{α1, α2},
and for all x solution of (4),〈

f(y), PC(I − λf)(y)− x
〉
≥ 0, ∀ y ∈ H.(7)

Indeed, the weak convergence of Algorithm (6) requires some slightly strong
assumptions (assumption (7) and the fact that both mappings are inverse
strongly monotone). To overcome these assumptions, Tian and Jiang [47]
proposed the following algorithm by combining Algorithm (3) and (6): yn = PC(xn − τnA

∗(I − T )Axn),
xn = PC(yn − λnf(yn)),
xn+1 = PC(yn − λnf(xn)), n ≥ 1.

(8)

They obtained the following results without assumption (7), and under the
condition that f is monotone and L-Lipschitz continuous.

Theorem 1.1. Let H1 and H2 be real Hilbert spaces and C be a nonempty
closed and convex subset of H1. Let A : H1 → H2 be a bounded linear operator
such that A ̸= 0, and T : H2 → H2 be a nonexpansive mapping. Let f :
C → H1 be a monotone and L-Lipschitz continuous mapping. Suppose that
Γ := {z ∈ V I(C, f) : Az ∈ F (T )} ̸= ∅ and the sequence {xn} is defined for

arbitrary x1 ∈ C by (8), where {τn} ⊂ [a, b] for some a, b ∈
(
0, 1

∥A∥2

)
and

{λn} ⊂ [c, d] for some c, d ∈
(
0, 1

L

)
. Then {xn} converges weakly to z ∈ Γ.

We also note that the class of SVIP considered by Tian and Jian [47], that
is, find x ∈ C satisfying〈

f(x), (y − x)
〉
≥ 0 ∀ y ∈ C and Ax ∈ F (T ),(9)

generalizes the class of SVIP considered by Censor et al. [11] (see [47, Theorem
3.3]). We now make the following observations about the results of Tian and
Jiang [47].

Remark 1.2. (1) The sequence generated by Algorithm (8) converges
weakly to a solution of problem (9). However, we know that strong
convergence results are more desirable than weak convergence results
in infinite dimensional spaces.

(2) For the weak convergence of Algorithm (8) to the solution of problem
(9), one needs to compute three projections onto the closed convex set
C in each iteration which seems very difficult to do in practice when
C does not posses a simple structure, and this could seriously affect
the efficiency of the algorithm. Thus, for the sake of computation,
it is more desirable to develop algorithms with minimized number of
evaluations of PC per iteration.
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(3) To implement Theorem 1.1, one needs to compute the Lipschitz con-
stant L before the control sequence {λn} can be computed. Thus,
Theorem 1.1 is dependent on the knowledge of the Lipschitz constant
L.

(4) Problem (9) can be viewed as a class of SVIP for which a solution of
a VIP occur in the first space H1 whose image under a given bounded
linear operator A is a fixed point of a nonexpansive mapping in the
second space H2.

We note here that items (1)-(3) of Remark 1.2 can also be attributed to
the work of Korpelevich [29]. In this case, two projections onto C needs to
be computed for solving VIP (1). To reduce the number of projections onto
C from two to one, Thong and Hieu [37] proposed the following two iterative
methods for approximating solutions of (1).

Algorithm 1
Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x0 ∈ H be arbitrary.
Iterative Steps: Assume that xn ∈ H is known, calculate xn+1 as follows:
Step 1. Compute

yn = PC(xn − λnf(xn)),

where λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · } satisfying

λ∥f(xn)− f(yn)∥ ≤ µ∥xn − yn∥.(10)

If xn = yn, then stop and xn is the solution of VIP. Otherwise,
Step 2. Compute

xn+1 = yn − λn(f(yn)− f(xn)),

where f : H → H is monotone and Lipschitz continuous.
Set n := n+ 1 and return to Step 1.

Algorithm 2
Initialization: Given γ > 0, l ∈ (0, 1), µ ∈ (0, 1). Let x0 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step1. Compute

yn = PC(xn − λnf(xn)),

where λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · } satisfying

λ∥f(xn)− f(yn)∥ ≤ µ∥xn − yn∥.(11)

If xn = yn, then stop and xn is the solution of VIP. Otherwise,
Step 2. Compute

xn+1 = αng(xn) + (1− αn)zn,

where zn = yn − λn(f(yn) − f(xn)), where f : H → H is monotone and
Lipschitz continuous, and g : H → H is a contraction with constant ρ ∈ [0, 1).
Set n := n+ 1 and return to Step 1.
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They obtained weak and strong convergence of Algorithm 1 and Algorithm
2 respectively, to a solution of (1) in a real Hilbert space. The main features
of Algorithm 1 and Algorithm 2 are that:

(1) Only one projection onto C is required to be computed in each itera-
tion,

(2) the Armijo-like search rule (10) (see also (11)) which has been estab-
lished in [37, Lemma 3.1] to be well-defined, can be seen as a local
approximation of the Lipschitz constant of the mapping f . Thus, the
Lipschitz constant need not to be known. Hence, the control sequence
{λn} is given self-adaptively (see [21]) unlike Algorithm (2), (3), (6)
and (8) where the knowledge of {λn} (or λ) depends on the knowledge
of L (see also (3) of Remark 1.2).

Therefore, Algorithm 1 and Algorithm 2 are very efficient for solving prob-
lem (1). However, our interest in this paper is in the development of efficient
and better implementable algorithm for solving problem (9) which is more
general and known to have more applications than problem (1).

We would also like to mention here that, the construction of inertial-type
algorithms have been of great interest ever since it was first introduced in [4].
It has been successfully applied for solving various optimization problems em-
anating from the area of applied sciences [8, 30]. For instance, the method was
applied for solving the split feasibility problem [17, 34]. In recent time, it has
also proved successful in speeding up convergence rate of iterative algorithms.
Some more contributions in this direction are Hybrid inertial proximal algo-
rithms, Chuang [16], inertial method for split common fixed point problems,
Thong and Hieu [39], inertial subgradient extragradient algorithms, Thong
and Hieu [38], modified inertial Mann algorithm and inertial CQ algorithm,
Dong et al. [18], inertial projection and contraction methods for split feasibil-
ity problem applied to compressed sensing and image restoration, Suanti et al.
[43], inertial projection-type methods for solving pseudomonotone variational
inequality problems in Hilbert space, Reich et al. [35], Iterative method with
inertial for variational inequalities in Hilbert spaces, Shehu and Cholamjiak
[40], among others in the literature. As a passing remark, we point out here
that most of the results involving inertial-type algorithms only yielded weak
convergence results. In very few cases where strong convergence results were
obtained, the authors employed the inertial CQ algorithms which requires that,
at each step of the iteration process, the computation of the two subsets Cn and
Qn, the computation of their intersection Cn∩Qn and the computation of the
projection of the initial vector onto this intersection (see [32, 18, 19, 45, 44]
and the references therein). Thus, it will be of great interest to study the
strong convergence of an inertial-type algorithm which does not involve any
of the above mentioned computations at each step of the iteration process.

Motivated by the works of Tain and Jaing [47], Thong and Hieu [37, 39, 38],
Dong et al. [18] and Chuang [16], we propose an iteration method which
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does not require prior knowledge of the Lipschitz constant L, and which has a
minimized number of evaluations of PC (unlike algorithm (8)) for solving SVIP
(9) (which clearly extends the VIP (1) studied in [37]. Furthermore, we prove
that the sequence generated by our iteration converges strongly to a solution
of SVIP (9) for which T is strictly pseudocontractive (unlike the nonexpansive
mapping considered in [47]). Our strong convergent algorithm (interia-type
algorithm) does not require the construction of any of the subsets used in
[18, 19, 45, 44]. Also, a numerical example of our algorithm in comparison
with Algorithm (8) of Tian and Jiang [47] is given to show the applicability
of our result. The numerical experiment shows that our algorithm converges
faster than that proposed by Tian and Jiang [47]. Our result extends and
improves the results of Tian and Jiang [47], Thong and Hieu [37, 39, 38], Dong
et al. [18] and Chuang [16], and many important results in this direction.

2. PRELIMINARIES

We state some useful results which will be needed in the proof of our main
theorem.

Lemma 2.1 ([15]). Let H be a real Hilbert space, then for all x, y ∈ H and
α ∈ (0, 1), the following hold:

(i) 2⟨x, y⟩ = ||x||2 + ||y||2 − ||x− y||2 = ||x+ y||2 − ||x||2 − ||y||2,
(ii) ∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2,
(iii) ||x− y||2 ≤ ||x||2 + 2⟨y, x− y⟩.

Lemma 2.2 ([48]). Let H be a Hilbert space and f : H → H be a nonlinear
mapping, then the following hold.

(i) f is nonexpansive if and only if the complement I − f is 1
2 -ism.

(ii) f is ν-ism and γ > 0, then γf is ν
γ -ism.

(iii) f is averaged if and only if the complement I − f is ν-ism for some
ν > 1

2 . Indeed, for β ∈ (0, 1), f is β-averaged if and only if I − f is
1
2β -ism.

(iv) If f1 is β1-averaged and f2 is β2-averaged, where β1, β2 ∈ (0, 1), then
the composite f1f2 is β-averaged, where β = β1 + β2 − β1β2.

(v) If f1 and f2 are averaged and have a common fixed point, then F (f1f2)
= F (f1) ∩ F (f2).

Lemma 2.3 ([46]). Let H1 and H2 be real Hilbert spaces. Let A : H1 → H2

be a bounded linear operator with A ̸= 0, and T : H2 → H2 be a nonexpansive
mapping. Then A∗(I − T )A is 1

2∥A∥2 -ism.

Lemma 2.4 ([47]). Let H1 and H2 be real Hilbert spaces. Let C be a
nonempty, closed and convex subset of H1. Let T : H2 → H2 be a nonex-
pansive mapping and let A : H1 → H2 be a bounded linear operator. Suppose
that C ∩ A−1F (T ) ̸= ∅. Let γ > 0 and x∗ ∈ H1. Then the following are
equivalent.
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(i) x∗ = PC(I − γA∗(I − T )A)x∗;
(ii) 0 ∈ A∗(I − T )Ax∗ +NCx

∗;
(iii) x∗ ∈ C ∩A−1F (T ).

Lemma 2.5 ([49]). Let H be a real Hilbert space and T : H → H be a
nonexpansive mapping with F (T ) ̸= ∅. If {xn} is a sequence in H converging
weakly to x∗ and if {(I − T )xn} converges strongly to y, then (I − T )x∗ = y.

Lemma 2.6 ([50]). Let {an} be a sequence of non-negative real numbers
satisfying

an+1 ≤ (1− αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn} and {γn} satisfy the following conditions:

(i) {αn} ⊂ [0, 1],
∞∑
n=0

αn = ∞,

(ii) lim supn→∞ δn ≤ 0,

(iii) γn ≥ 0 (n ≥ 0),
∞∑
n=0

γn < ∞.

Then limn→∞ an = 0.

Lemma 2.7 ([51]). Let H be a real Hilbert space and T : H → H be a κ-
strictly pseudocontractive mapping with κ ∈ [0, 1). Let Tβ := βI + (1 − β)T ,
where β ∈ [κ, 1), then

(i) F (T ) = F (Tβ),
(ii) Tβ is a nonexpansive mapping.

Lemma 2.8 ([31]). Let {Γn} be a sequence of real numbers that does not
decrease at infinity, in the sense that there exists a subsequence {Γnj}j≥0 of
{Γn}such that

Γnj < Γnj+1 ∀j ≥ 0.

Also consider the sequence of integers {τ(n)}n≥n0 defined by

τ(n) = max{k ≤ n | Γk < Γk+1}.

Then {Γn}n≥n0 is a nondecreasing sequence such that τ(n) → ∞, as n → 0,
and for all n ≥ n0, the following two estimates hold:

Γτ(n) ≤ Γτ(n)+1, Γn ≤ Γτ(n)+1.

Lemma 2.9 ([37]). The Armijo-like search rule (10) is well defined and

min{γ, µlL } ≤ λn ≤ γ.

Lemma 2.10 ([36]). Assume that f : H → H is a continuous and monotone
operator. Then x∗ is a solution of (1) if and only if x∗ is a solution of following
problem: find x ∈ C such that〈

fx, x− y
〉
≥ 0, ∀ y ∈ C.
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3. MAIN RESULT

We now present and study our inertial extragradient algorithm in this section,
for solving the SVIP (9). Throughout this section, we assume that H1 and H2

are two real Hilbert spaces, C is a nonempty closed and convex subset of H1

and f : H1 → H1 is a monotone and Lipschitz continuous operator, but the
Lipschitz constant need not to be known. We also assume that g : H1 → H1

is a contraction mapping with constant ρ ∈ [0, 1), A : H1 → H2 is a bounded
linear operator and T : H2 → H2 is a κ-strictly pseudocontractive mapping
with κ ∈ [0, 1). Finally, we assume that {αn} is a sequence in (0, 1), {θn} ⊂
[0, θ), θ ∈ [0, 1) and the solution set Γ := {z ∈ V I(C, f) : Az ∈ F (T )} ≠ ∅.

Algorithm 3.1
Initialization: Let γ > 0, l, µ ∈ (0, 1) and x0, x1 ∈ H be given arbitrarily.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Set un = xn + θn(xn − xn−1) and compute

wn = PC(un − τnA
∗(I − Tβ)Aun) and yn = PC(wn − λnf(wn)),(12)

where Tβ is as defined in Lemma 2.7 and λn is chosen to be the largest λ ∈
{γ, γl, γl2, · · · } satisfying

λn∥f(wn)− f(yn)∥ ≤ µ∥wn − yn∥.(13)

Step 2. Compute

xn+1 = αng(xn) + (1− αn)zn,(14)

where zn = yn − λn(f(yn)− f(wn)). Set n := n+ 1 and go back to Step 1.
We highlight below some of the features or advantages of Algorithm 3.1

stated above;

(1) The iterative method used does not require prior knowledge of lipschitz
constant L.

(2) Minimized number of evaluations of PC per iteration unlike algorithm
(1.8) for solving SVIP (1.9).

(3) The sequence generated converges strongly to a solution of SVIP (1.9)
for which T is strictly pseudocontractive unlike the nonexpansive map-
ping considered in [47].

(4) The strong convergence results obtained does not require construction
of the subsets used in [18, 19, 44, 45].

Lemma 3.1. Let {xn}, {wn}, {yn} and {zn} be sequences generated by Al-
gorithm 3.1, then

(1) ∥zn − p∥2 ≤ ∥wn − p∥2 − (1− µ2)∥yn − wn∥2 ∀ p ∈ Γ.
(2) ∥xn+1−p∥2 ≤ αn∥g(xn)−p∥2+(1−αn)∥xn−p∥2+(1−αn)θn(∥xn−p∥2−

∥xn−1−p∥2)+2θn(1−αn)∥xn−xn−1∥2−(1−αn)(1−µ2)∥yn−wn∥2 ∀ p ∈
Γ.
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Proof. (1) Let p ∈ Γ, then by the monotonicity of f , we obtain from (13)
and (14) that

∥zn − p∥2 = ∥yn − p∥2 + λ2
n∥f(yn)− f(wn)∥2

− 2λn⟨yn − p, f(yn)− f(wn)⟩
= ∥yn − wn∥2 + ∥wn − p∥2 + 2⟨yn − wn, wn − p⟩
+ λ2

n∥f(yn)− f(wn)∥2

− 2λn⟨yn − p, f(yn)− f(wn)⟩
≤ ∥wn − p∥2 + ∥yn − wn∥2 + 2⟨wn − p, yn

− wn⟩+ µ2∥yn − wn∥2

− 2λn⟨yn − p, f(yn)− f(wn)⟩
= ∥wn − p∥2 + (1 + µ2)∥yn − wn∥2 + 2⟨yn − p, yn − wn⟩
− 2⟨yn − wn, yn − wn⟩ − 2λn⟨yn − p, f(yn)− f(wn)⟩
= ∥wn − p∥2 − (1− µ2)∥yn − wn∥2

+ 2⟨yn − p, yn − wn − λn(f(yn)− f(wn))⟩.

(15)

Now, since from (12), yn = PC(wn − λnf(wn)), we obtain from the character-
istics property of PC that

⟨yn − p, yn − wn + λnf(wn)⟩ ≤ 0.

Thus, we obtain from the monotonicity of f that

2⟨(yn − p), yn − wn − λn(f(yn)− f(wn))⟩
= 2⟨(yn − p), yn − wn + λnf(wn)⟩ − 2λn⟨yn − p, f(yn)⟩
≤ −2λn⟨yn − p, f(yn)⟩
= −2λn⟨yn − p, f(yn)− f(p)⟩ − 2λn⟨yn − p, f(p)⟩
≤ 0.

(16)

From (15) and (16), we obtain the desired conclusion.
(2) For p ∈ Γ, we obtain

∥un − p∥2 = ∥xn − p∥2 + 2θn
〈
xn − p, xn − xn−1

〉
+ θn

2∥xn − xn−1∥2

= ∥xn − p∥2 + θn(∥xn − xn−1∥2 + ∥xn − p∥2

− ∥xn−1 − p∥2) + θn
2∥xn − xn−1∥2

≤ ∥xn − p∥2 + θn(∥xn − p∥2 − ∥xn−1 − p∥2)
+ 2θn∥xn − xn−1∥2.

(17)

Lemma 3.2. Let {xn}, {un}, {wn}, {yn} and {zn} be sequences generated

by Algorithm 3.1 such that
∞∑
n=1

θn||xn − xn−1|| < ∞, then the sequences {xn},
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{un}, {wn}, {yn} and {zn} are bounded, and lim
n→∞

∥xn−un∥ = 0. Furthermore,

if lim
n→∞

αn = 0, then lim
n→∞

∥xn+1 − zn∥ = 0.

Proof. From Lemma 2.2 (ii),(iii),(iv), Lemma 2.3 and Lemma 2.7, we obtain

that PC(I − τnA
∗(I − Tλ)A) is 1+τn∥A∥2

2 -average. That is PC(I − τnA
∗(I −

Tλ)A) = (1−βn)I+βnTn, ∀n ≥ 1, where βn = 1+τn∥A∥2
2 and Tn is nonexpansive

for all n ≥ 1. Therefore, we can rewrite wn from (12) as

wn = (1− βn)un + βnTnun, n ≥ 1.(18)

Let p ∈ Γ, then from (18), we obtain that

∥wn − p∥2 ≤ (1− βn)∥un − p∥2 + βn∥Tnun − p∥2

− βn(1− βn)∥un − Tnun∥2

≤ ∥un − p∥2 − βn(1− βn)∥un − Tnun∥2

≤ ∥un − p∥2,

(19)

which implies that

∥wn − p∥ ≤ ∥un − p∥
≤ ∥xn − p∥+ θn∥xn − xn−1∥.

(20)

Again, from (14), (15) and (17), we obtain

∥xn+1 − p∥2 = αn∥g(xn)− p∥2 + (1− αn)∥zn − p∥2

− αn(1− αn)∥g(xn)− zn∥2

≤ αn∥g(xn)− p∥2 + (1− αn)∥wn − p∥2

− (1− αn)(1− µ2)∥yn − wn∥2

≤ αn∥g(xn)− p∥2 + (1− αn)∥un − p∥2

− (1− αn)(1− µ2)∥yn − wn∥2

≤ αn∥g(xn)− p∥2 + (1− αn)∥xn − p∥2

+ (1− αn)θn(∥xn − p∥2 − ∥xn−1 − p∥2)
+ 2θn(1− θn)∥xn − xn−1∥2

− (1− αn)(1− µ2)∥yn − wn∥2.

(21)

□
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Thus, from (14) and Lemma 3.1, we obtain that

∥xn+1 − p∥ ≤ αn∥g(xn)− p∥+ (1− αn)∥zn − p∥
≤ αnρ∥xn − p∥+ αn∥g(p)− p∥+ (1− αn)∥zn − p∥
≤ αnρ∥xn − p∥+ (1− αn)∥wn − p∥+ αn∥g(p)− p∥
≤ αnρ∥xn − p∥+ (1− αn)∥xn − p∥
+ (1− αn)θn∥xn − xn−1∥+ αn∥g(p)− p∥
= (1− αn(1− ρ))∥xn − p∥+ (1− αn)θn∥xn − xn−1∥
+ αn∥g(p)− p∥

≤ max

{
∥xn − p∥, ∥g(p)− p∥

1− ρ

}
+ θn∥xn − xn−1∥

≤ max
{
max

{
∥xn−1 − p∥, ∥g(p)− p∥

1− ρ

}
+ θn−1∥xn−1 − xn−2∥,

∥g(p)− p∥
1− ρ

}
+ θn∥xn − xn−1∥

= max

{
∥xn−1 − p∥, ∥g(p)− p∥

1− ρ

}
+ θn−1∥xn−1 − xn−2∥+ θn∥xn − xn−1∥.

Let M :=
∑n

i=1 θi∥xi − xi−1∥, since
∑n

i=1 θi∥xi − xi−1∥ < ∞, we obtain that

∥xn+1 − p∥ ≤ max

{
∥x1 − p∥, ∥g(p)− p∥

1− ρ

}
+M.

Therefore, {xn} is bounded. Consequently, {un}, {wn}, {yn} and {zn} are all
bounded. More so, we obtain from Algorithm 3.1 that

∥un − xn∥ = θn∥xn − xn−1∥ → 0, as n → ∞.(22)

Furthermore, from (14), we obtain that

∥xn+1 − zn∥ = αn∥g(xn)− zn∥ → 0, as n → ∞.(23)

□

Lemma 3.3. Let {xn}, {un}, {wn} and {yn} be sequences generated by

Algorithm 3.1 such that
∞∑
n=1

θn||xn − xn−1|| < ∞ and lim
n→∞

∥wn − yn∥ = 0 =

lim
n→∞

∥wn − un∥. If there exists a subsequence {wnk
} of {wn} that converges

weakly to some v ∈ H, then v ∈ Γ.

Proof. Since limn→∞ ∥wn − un∥ = 0, we obtain that there exists a sub-
sequence {unk

} of {un} that converges weakly to v ∈ H. Without loss of
generality, we may also assume that the subsequence {τnk

} of {τn} converges
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to a point say τ ∈
(
0, 1

∥A∥2

)
. Also, by Lemma 2.3, A∗(I − Tβ)A is an inverse

strongly monotone operator. Therefore, {A∗(I−Tβ)Aunk
} is bounded. Hence,

by the firmly nonexpansivity of PC , we obtain that

∥PC(I − τnk
A∗(I − Tβ)A)unk

− PC(I − τA∗(I − Tβ)A)unk
∥

≤ |τnk
− τ |∥A∗(I − Tβ)Aunk

∥ → 0, as k → ∞.

That is,

lim
k→∞

∥wnk
− PC(I − τA∗(I − Tβ)A)unk

∥ = 0,

which implies that

lim
k→∞

∥unk
− PC(I − τA∗(I − Tβ)A)unk

∥ = 0.(24)

Thus, by Lemma 2.5, we obtain that v ∈ F (PC(I − τA∗(I − Tβ)A). It then
follows from Lemma 2.4 that v ∈ C ∩A−1F (Tβ), which together with Lemma
2.7 implies that

Av ∈ F (Tβ) = F (T ).(25)

Now, by the monotonicity of f and the characteristic property of PC , we obtain
for all x ∈ C that

0 ≤
〈
ynk

− wnk
+ λnk

fwnk
, x− ynk

〉
=

〈
ynk

− wnk
, x− ynk

〉
+ λnk

〈
fwnk

, wnk
− ynk

〉
+ λnk

〈
fwnk

, x− wnk

〉
≤ ∥ynk

− wnk
∥∥x− ynk

∥+ λnk
∥fwnk

∥∥wnk
− ynk

∥
+ λnk

〈
fwnk

, x− wnk

〉
∀x ∈ C

= ∥ynk
− wnk

∥∥x− ynk
∥+ λnk

∥fwnk
∥∥wnk

− ynk
∥

+ λnk

(〈
fwnk

− fx, x− wnk

〉
+
〈
fx, x− wnk

〉)
≤ ∥ynk

− wnk
∥∥x− ynk

∥+ λnk
∥fwnk

∥∥wnk
− ynk

∥
+ λnk

〈
fx, x− wnk

〉
∀x ∈ C.

(26)

Since by Lemma 2.9, min{γ, µlL } ≤ λn ≤ γ, we obtain by passing limit as
n → ∞ in (26) that 〈

fx, x− v
〉
≥ 0 ∀x ∈ C.

Thus, by Lemma 2.10, we have that v ∈ V I(C, f). This together with (25)
gives that v ∈ Γ. □

Theorem 3.4. Let {xn} be a sequence generated by Algorithm 3.1 such that
∞∑
n=1

θn||xn − xn−1|| < ∞. Assume that lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞, lim
n→∞

θn
αn

=

0, lim
n→∞

θn||xn − xn−1|| = 0 and hence bounded. Then, {xn} converges strongly

to z = PΓg(z).
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Proof. We consider two cases for our proof.
Case 1. Let z = PΓg(z). Suppose that {∥xn−z∥2} is monotone decreasing,

then {∥xn − z∥2} is convergent. Thus,

lim
n→∞

∥xn − z∥2 = lim
n→∞

∥xn+1 − z∥2.(27)

Since
∑∞

n=1 θn∥xn−xn−1∥ < ∞ and limn→∞ αn = 0, we obtain from (21) and
(27) that

lim
n→∞

∥yn − wn∥ = 0.(28)

Again, from Algorithm 3.1, we obtain that

∥zn − yn∥ = λn∥fyn − fwn∥ ≤ µ∥wn − yn∥ → 0, as n → ∞.(29)

From (23), (28) and (29), we obtain that

∥zn − wn∥ → 0 and ∥xn+1 − wn∥ → 0, as n → ∞.(30)

From (17) ,(19), (21) and (27), we obtain that

βn(1− βn)∥un − Tnun∥2

≤ ∥un − z∥2 − ∥wn − z∥2

≤ ∥xn − p∥2 + θn(∥xn − z∥2 − ∥xn−1 − z∥2)
+ 2θn∥xn − xn−1∥2 − ∥wn − z∥2

≤ ∥xn − z∥2 + θn(∥xn − z∥2 − ∥xn−1 − z∥2)
+ 2θn∥xn − xn−1∥2 + αn∥g(xn)− z∥2 − ∥xn+1 − z∥2

= ∥xn − z∥2 − ∥xn−1 − z∥2 + θn(∥xn − z∥2 − ∥xn−1 − z∥2)
+ 2θn∥xn − xn−1∥2 + αn∥g(xn)− z∥2 → 0, as n → ∞,

which implies from the definition of βn that

lim
n→∞

∥un − Tnun∥ = 0.(31)

Again, from (18) and (31), we obtain that

∥wn − un∥ = βn∥un − Tnun∥ → 0, as n → ∞.(32)

Thus, we obtain from (22) that

lim
n→∞

∥xn − wn∥ = 0.(33)

From (30) and (33), we obtain that

lim
n→∞

∥xn − xn+1∥ = 0.(34)
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By Lemma 3.2, there exists a subsequence {xnk
} of {xn} that converges weakly

to some v ∈ H such that

lim sup
n→∞

〈
g(z)− z, xn − z

〉
= lim

k→∞

〈
g(z)− z, xnk

− z
〉

=
〈
g(z)− z, v − z

〉
.

(35)

By (33), there exists a subsequence {wnk
} of {wn} that converges weakly to

v ∈ H. It the follows from (28), (32) and Lemma 3.3 that v ∈ Γ.
Furthermore, since z = PΓg(z), we obtain from (35) that

lim sup
n→∞

〈
g(z)− z, xn − z

〉
≤ 0,

which implies from (34) that

lim sup
n→∞

〈
g(z)− z, xn+1 − z

〉
= lim sup

n→∞

(〈
g(z)− z, xn+1 − xn

〉
+
〈
g(z)− z, xn − z

〉)
≤ 0.

(36)

Thus, from (14) and Lemma 2.1 (iii), we obtain that

∥xn+1 − z∥2 ≤ (1− αn)
2∥zn − z∥2 + 2αn

〈
g(xn)− z, xn+1 − z

〉
= (1− αn)

2∥zn − z∥2 + 2αn

(〈
g(xn)− g(z), xn+1 − z

〉
+
〈
g(z)− z, xn+1 − z

〉)
≤ (1− αn)

2∥un − z∥2 + 2αnγ∥xn − z∥∥xn+1 − z∥
+ 2αn

〈
g(z)− z, xn+1 − z

〉
≤ (1− αn)

2∥xn − z∥2 + (1− αn)
2θn

(
∥xn − z∥2 − ∥xn−1 − z∥2

)
+ 2(1− αn)

2θn∥xn − xn−1∥2 + 2αnρ∥xn − z∥∥xn+1 − z∥
+ 2αn

〈
g(z)− z, xn+1 − z

〉
≤ (1− 2αn(1− ρ))∥xn − z∥2 + α2

n∥xn − z∥2 + 2αn

〈
g(z)− z, xn+1 − z

〉
+ θn

(
∥xn − z∥2 − ∥xn−1 − z∥2 + 2∥xn − xn−1∥2

)
≤ (1− 2αn(1− ρ))∥xn − z∥2 + 2αn(1− ρ)

×
[αn∥xn − z∥2

2(1− ρ)
+

〈
g(z)− z, xn+1 − z

〉
1− ρ

]
+ 2θn∥xn − xn−1∥2.

(37)

Thus, by Lemma 2.6, we obtain that lim
n→∞

∥xn−z∥2 = 0. Hence, {xn} converges
strongly to z = PΓg(z).

Case 2. Suppose that {∥xn − z∥2} is not monotone decreasing, then there
exists a subsequence {∥xni − z∥2} of {∥xn − z∥2} such that ∥xni − z∥2 <
∥xni+1−z∥2 ∀i ∈ N. Thus, by Lemma 2.8 there exists a nondecreasing sequence
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{mk} of N such that k → ∞ and the following holds

∥xmk
− z∥2 ≤ ∥xmk+1

− z∥2 and ∥xk − z∥2 ≤ ∥xmk
− z∥2.(38)

Thus, we obtain from (21) that

(1− αmk
)(1− µ2)∥ymk

− wmk
∥2

≤ ∥xmk
− z∥2 − ∥xmk+1

− z∥2 + αmk
∥g(xmk

)− z∥2

+ θmk

(
∥xmk

− z∥2 − ∥xmk−1
− z∥2

)
+ 2θmk

∥xmk
− xmk−1

∥2

≤ αmk
∥g(xmk

)− z∥2 + 2θmk
∥xmk

− xmk−1
∥2

+ θmk

(
∥xmk

− z∥2 − ∥xmk−1
− z∥2

)
→ 0, k → ∞,

which implies that limk→∞ ∥ymk
− wmk

∥ = 0. Similarly, we obtain that
limk→∞ ∥wnk

− umk
∥ = 0. By similar arguments as in Case 1, we obtain

limk→∞ ∥xmk
− wmk

∥ = 0 = limk→∞ ∥xmk
− xmk+1

∥ = 0 and

lim sup
k→∞

〈
g(z)− z, xmk+1

− z
〉
≤ 0.

Now, for all k ≥ k0, we obtain from (37) that

∥xmk+1
− z∥2 ≤ (1− 2αmk

(1− ρ))∥xmk
− z∥2

+ 2αmk
(1− ρ)

[
αmk

∥xmk
− z∥2

2(1− ρ)
+

〈
g(z)− z, xmk+1

− z
〉

1− ρ

]

+ 2αmk
(1− ρ)

θmk

2αmk(1− ρ)

[(
∥xmk

− z∥2 + 2∥xmk
− xmk−1

∥2
)]

≤ (1− 2αmk
(1− ρ))∥xmk

− z∥2

+ 2αmk
(1− ρ)

[ αmnM1

2(1− ρ)
+

〈
g(z)− z, xmk+1

− z
〉

1− ρ

+
θmk

2αmk
(1− ρ)

(M1 +M2)
]
,

for some M1,M2 > 0. Thus, we obtain from (38) that

∥xk − z∥2 ≤ ∥xmk+1
− z∥2 ≤ αmnM1

2(1− ρ)
+

〈
g(z)− z, xmk+1

− z
〉

1− ρ

+
θmk

2αmk
(1− ρ)

(M1 +M2),

which implies that lim supk→∞ ∥xk − z∥ ≤ 0. Hence, {xk} converges strongly
to z, where z = PΓg(z). □

By setting H1 = H2 and T = I = A in Algorithm 3.1, we obtain the following
result as a corollary of Theorem 3.4.
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Corollary 3.5. Let γ > 0, l, µ ∈ (0, 1) and x0, x1 ∈ H be given arbitrary.
Then calculate xn+1 as follows:

Step 1. Set wn = xn+θn(xn−xn−1) and compute yn = PC(wn−λnf(wn)),
where λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · } satisfying

λn∥f(wn)− f(yn)∥ ≤ µ∥wn − yn∥.

Step 2. Compute xn+1 = αng(xn)+(1−αn)zn, where zn = yn−λn(f(yn)−
f(wn)). Assume that

∞∑
n=1

θn||xn − xn−1|| < ∞, lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞ and

lim
n→∞

θn
αn

= 0. Then, the sequence {xn} converges strongly to z = PΓg(z).

Remark 3.6. Notice that our algorithm (Algorithm 3.1) is also of viscosity-
type. The motivation for using the viscosity-type algorithm over the Halpern-
type (which also converges strongly) stems from the fact that viscosity-type
algorithms have higher rate of convergence than the Halpern-type. More so, it
was established in [41] (see also [25, Remark 3.7]) that viscosity convergence
theorems imply Halpern-type convergence theorems for weak contractions. In
fact, setting g(x) = u for all x ∈ H in Algorithm 3.1, we obtain the following
result as a corollary of Theorem 3.4.

Corollary 3.7. Let γ > 0, l, µ ∈ (0, 1) and x0, x1 ∈ H be given arbitrary.
Then calculate xn+1 as follows:

Step 1. Set un = xn + θn(xn − xn−1) and compute wn = PC(un − τnA
∗(I −

Tβ)Aun) and yn = PC(wn − λnf(wn)), where Tβ is as defined in Lemma 2.7
and λn is chosen to be the largest λ ∈ {γ, γl, γl2, · · · } satisfying λn∥f(wn) −
f(yn)∥ ≤ µ∥wn − yn∥.

Step 2. Compute xn+1 = αnu + (1 − αn)zn, where zn = yn − λn(f(yn) −
f(wn)).

Assume that
∞∑
n=1

θn||xn − xn−1|| < ∞, lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞ and

lim
n→∞

θn
αn

= 0. Then, the sequence {xn} converges strongly to z = PΓu.

4. NUMERICAL EXAMPLE

In this section, we give a numerical example of our algorithm in comparison
with Algorithm (8) of Tian and Jiang [47] in an infinite dimensional Hilbert
space. Let H1 = H2 = L2([0, 2π]) be endowed with inner product ⟨x, y⟩ =∫ 2π
0 x(t)y(t)dt ∀ x, y ∈ L2([0, 2π]) and norm ||x|| :=

( ∫ 2π
0 |x(t)|2dt

) 1
2 ∀ x, y ∈

L2([0, 2π]). Let C = {x ∈ L2([0, 2π]) : ⟨y, x⟩ ≤ a}, where y = e2t and a = 3.

Then, PC(x) =

{a−⟨y,x⟩
||y||2L2

y + x, if ⟨y, x⟩ > a,

x, if ⟨y, x⟩ ≤ a.
Now, define the operator f :
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Fig. 4.1 – Errors vs Iteration numbers(n): Case 1 (top left); Case 2 (top right); Case 3
(bottom left); Case 4 (bottom right).

L2([0, 2π]) → L2([0, 2π]) by

fx(t) =

∫ 2π

0

(
x(t)−

( 2tset+s

e
√
e2 − 1

)
cosx(s)

)
ds+

2tet

e
√
e2 − 1

,

x ∈ L2([0, 2π]), t ∈ [0, 1]. Then f is 2-Lipschitz continuous and monotone
on L2([0, 2π]) (see [23]). Let A, g, T : L2([0, 2π]) → L2([0, 2π]) be defined by

Ax(t) = x(t)
2 , gx(t) = x(t)

3 and Tx(t) = −4x(t). Then, A is a bounded linear

operator with adjoint A∗x(t) = x(t)
2 , g is a contraction with coefficient ρ = 1

3

and T is 3
5 -strictly pseudocontractive. Thus, we can choose β = 3

5 , so that

Tβx(t) = −x(t). Take µ = 1
2 = l, γ = 1, αn = 1

n+1 and θn = n
9n2+1

for all
n ≥ 1, then the conditions in Theorem 3.4 are satisfied. Now, consider the
following cases.

Case 1: Take x0(t) = t3 and x1(t) = 2t.
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Case 2: Take x0(t) = 2t and x1(t) = t3.
Case 3: Take x0(t) = cos t and x1(t) = sin t.
Case 4: Take x0(t) = sin t and x1(t) = cos t.

By using these cases (Case 1-Case 4 above), we compared Algorithms 3.1
(studied in this paper) with Algorithm (8) of Tian and Jiang [47] as shown in
the graphs above. The graphs show that our algorithm converges faster than
Algorithms (8) of Tian and Jiang [47].
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